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By considering the appropriate finite-size effect, we explain the connection between Monte Carlo simula-
tions of two-dimensional anisotropic Heisenberg antiferromagnet in a field and the early renormalization group
calculation for the bicritical point in 2+� dimensions. We found that the long-length-scale physics of the Monte
Carlo simulations is indeed captured by the anisotropic nonlinear � model. Our Monte Carlo data and analysis
confirm that the bicritical point in two dimensions is Heisenberg-like and occurs at T=0; therefore the uncer-
tainty in the phase diagram of this model is removed.
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I. INTRODUCTION

The two-dimensional anisotropic Heisenberg antiferro-
magnet has recently been restudied with extensive Monte
Carlo simulations.1 Twenty-five years after the first attempt
to delineate its phase diagram with Monte Carlo simu-
lations,2 many features of it have been clarified. However,
the nature of the “spin-flop transition” has been an issue
under debate, because the data from the simulations have
been inadequate to show unambiguously the thermodynamic
limit of the phase boundaries. There is no spin-flop transition
in the thermodynamic limit according to renormalization
group �RG� calculations in 2+� dimensions.3–5 Instead, there
are two neighboring second-order phase boundaries and a
disordered phase in between. By tracing the phase bound-
aries from high to low temperatures, only an upper bound for
the bicritical temperature can be claimed. Below this tem-
perature, an apparent first-order spin-flop transition is indeed
observed in both Monte Carlo simulations and neutron scat-
tering experiments on quasi-two-dimensional Heisenberg an-
tiferromagnetic systems with anisotropy.6 It has been gener-
ally agreed that the existing data are consistent with the RG
predictions, although some features near the spin-flop line,
e.g., the apparent hysteresis2 and unexpected crossing points
in the Binder cumulant,1 have not been accounted for.

In this paper, we study the spin-flop transition of the XXZ
model defined by the Hamiltonian

H = J�
�i,j�

���Si
xSj

x + Si
ySj

y� + Si
zSj

z� − H�
i

Si
z. �1�

Here Si
x, Si

y, and Si
z are three components of a unit vector

located on site i of a square lattice with periodic boundary
conditions in both directions. The anisotropy is given by the
parameter �, and H is the external magnetic field in the z
direction. By the term “spin-flop transition,” we refer to the
boundary region between the antiferromagnetic �AF� phase
and the XY phase where two separate second-order phase
boundaries cannot be identified in simulations of finite-size
systems. We set J=1 and �=4/5 for simplicity. Our results
are expected to be valid for 0���1, since no qualitatively
different behavior has been found for other values of �, and

the phase diagram for �=4/5 is most accurately known.1

At low temperatures and in a low magnetic field, systems
described by Eq. �1� exhibit an Ising-like AF phase, where
the order parameter, i.e., the staggered magnetization in the z
direction, has a finite value. Above a sufficiently large mag-
netic field, which is a function of temperature, the AF phase
is replaced by an XY phase, where the order parameter, i.e.,
the in-plane staggered magnetization, has a finite value in the
finite-size system due to the power-law decay of its correla-
tion function. As pointed out in Ref. 1, there are three differ-
ent possible scenarios for this spin-flop transition. �a� It is a
first-order phase transition at low temperature; the first-order
phase boundary and the second-order phase boundaries of
the XY phase and the AF phase meet at a bicritical point. �b�
The bicritical point appears at zero temperature with a very
narrow disordered phase separating the XY and AF phases.
�c� A “biconical phase,” in which both order parameters are
nonzero, separates the XY and the AF phases. These three
scenarios are shown in Fig. 1 schematically.

Both RG calculations7 and the Monte Carlo simulation8

have shown that �a� is realized in three dimensions, a sce-
nario that is consistent with the finite critical temperature of
the three-dimensional isotropic Heisenberg model. In two di-
mensions, as a result of the Mermin-Wagner theorem,9 such
a bicritical point can only be at zero temperature, and the
same prediction comes from RG calculations with the non-
linear � model.3–5,10–12 Because of the limited computer
power that was then available, early Monte Carlo simulations
with the Hamiltonian of Eq. �1� did not favor any of the
above three scenarios.2 Recently, Ref. 1 has found Ising-like
scaling behavior in the specific heat and susceptibility on a
spin-flop line at T /J=0.33 for �=4/5, which gives an upper
bound in temperature for the bicritical point. We have repro-
duced these scaling behaviors in our simulations; however,
our simulations at lower temperatures do not display such
Ising-like scaling behavior, as we will show in this paper.
Scenario �c� is realized in systems with random fields13 or
spins with more than four components, e.g., the SO�5�
theory.14 It is unlikely to be the case based on current and
previous Monte Carlo simulations.

The main issue to address in this paper is how to compare
our extensive data from Monte Carlo simulations of limited
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system sizes with the RG calculations. If they are consistent
with each other, we will have a bicritical point at zero tem-
perature in the thermodynamic limit. Otherwise, we are
forced to accept the apparent first-order phase transition that
we have seen at low temperatures. Because the correlation
length is expected to diverge as exp�4� /T� at low tempera-
tures, our computer power is very unlikely to be ample for
simulations with system sizes larger than the correlation
length in the foreseeable future. Therefore, properly extract-
ing the thermodynamic limit from our data is essential. We
will discuss the Monte Carlo simulation and derive the the-
oretical finite-size scaling predictions in Sec. II, present re-
sults from our simulation and the data analysis in Sec. III,
and conclusions with discussion in Sec. IV.

II. THEORETICAL BACKGROUND

A. Monte Carlo simulation and traditional finite-size scaling

At zero temperature, the system has a spin-flop transition
at Hc=4J�1−�2. The system is in the fully aligned AF con-
figuration for H�Hc and is in the spin-flop configuration for
H�Hc. As H→Hc

+, the spin-flop configuration approaches
Si

z=��1−�� / �1+�� and Si
x,y = �−1�inx,y�2� / �1+��, where

�nx ,ny� is an arbitrary unit vector. Obviously, the spin-flop
transition is a first-order phase transition at zero temperature,
since the order parameter �staggered magnetization� exhibits
a discontinuity. In scenario �a� in Fig. 1, the spin-flop line
starts from Hc at T=0, shows a small positive slope as the
temperature increases, and eventually develops into an um-
bilicus, where the AF-paramagnetic phase boundary and the
XY-paramagnetic phase boundary are clearly separated. For
the other possibilities in two dimensions, two phase bound-
aries might well be indistinguishable from each other but
yield the same “effective” finite-temperature behavior.

We perform Monte Carlo simulations that scan the mag-
netic field across the spin-flop transition at constant tempera-
tures. The random spin configurations are generated with the
heatbath algorithm,15 which has been recently shown to be
the optimal single-spin algorithm for Heisenberg spins.16,17 It
is a rejection-free algorithm due to the fact that the probabil-
ity distribution P�S��exp�h ·S /T� of a single spin subject to
a magnetic field can be produced with uniform random num-
ber generators without rejecting trial flips. As in Ref. 17, we
simultaneously perform two simulations with different initial
configurations, the equilibrium is achieved by letting these
two simulations run until their order parameters are almost
equal. Each simulation then runs for 106–107 Monte Carlo

steps per spin at the given temperature and magnetic field,
and is allowed to accumulate substantially more data near the
critical magnetic field. The data for energy, magnetization,
and staggered magnetization are stored for histogram re-
weighting. The difference in observables measured from in-
dependent simulations is used to estimate the error bar. To-
tally we have spent about 1 CPU yr and accumulated
27 gigabytes of data, which represents a modest computing
load on a decent Linux cluster.

We calculate the ensemble average of the staggered mag-
netization:

M† =
1

L2�
i

�− 1�iSi, �2�

where the sign is different on the two sublattices. We define
the tilt angle 	 between the z axis and M† as

	 = cos−1 	Mz
†	

	M†	
, �3�

where the value of 	 is restricted to �0,� /2� due to the
inversion symmetry of the staggered magnetization, and cal-
culate its probability distribution. The Binder cumulant for
an arbitrary observable X is defined as

U4�X� = 1 −
�X4�

3�X2�2 , �4�

where �¯� denotes the ensemble average. The susceptibility
per spin of Mz

† is defined as


 =
L2

T
���Mz

†�2� − �	Mz
†	�2� , �5�

and the specific heat per spin is defined as

cv =
L2

T2 ��E2� − �E�2� , �6�

where E is the internal energy per site.
In order to determine the type of phase transition, we

performed the traditional finite-size scaling analysis. In the
case of an Ising-like second-order phase transition, the spe-
cific heat exponent �=0, because cv is logarithmically diver-
gent near the critical temperature or critical field, and its
maximum value increases as ln L. The localization length
exponent �=1; the spontaneous magnetization exponent
=1/8; and the susceptibility exponent �=7/4. In case of a
first-order phase transition, these exponents can also be de-
fined properly, and they have a different set of values:18 �

FIG. 1. Three candidates for
the phase diagram. Solid lines are
second-order phase boundaries,
and the dashed line in �a� is a first-
order phase boundary.
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=1, =0, �=1/2, �=1. �In general �=1/d, where d is the
dimensionality of the system.� Near the phase transition
point, it is convenient to define the reduced temperature
t=T /Tc−1 and reduced field h=H /Hc−1. Finite-size scaling
theory predicts the following scaling relations:

��Mz
†�2�L = L−2/�M�tL1/�� , �7�

�
�L = L�/�C�tL1/�� . �8�

Similar relations hold for �Mx
†�2+ �My

†�2 and cv, as well as for
transitions with h as the control variable. In particular, for cv
of Ising-like transition, the prefactor L�/� is replaced by
C+ln L, where C is a constant.

B. Low-temperature finite-size scaling predictions

As we shall see from the results in the next section, nei-
ther the scaling relations for the first-order phase transition
nor those for second-order phase transitions fit our data per-
fectly well. The first-order phase transition apparently seems
to be more consistent though. To resolve these discrepancies,
we return to the RG calculation of bicritical phenomenon in
2+� dimensions. The long-length-scale physics is expected
to be governed by the nonlinear � model with an anisotropy
term:3,4

H� = −
1

2T

 ddx������2 + �����2 + g�2� , �9�

where the O�3� spin field (�1�x� ,�2�x� ,�) satisfies the con-
straint �2+�2=1 and the anisotropy constant g�H−Hc.
�Note: we follow the convention in Ref. 4 here, so the Bolt-
zmann factor is exp�H��.� In general, g is expected to be a
linear combination of both magnetic field and temperature
contributions:19 g=a�H2−Hc

2�+b�T−Tc�. The spin-flop line
�defined by g=0� of our model is almost horizontal, with a
very small negative b. In the scenario shown in Fig. 1�b�, Hc
actually falls in the paramagnetic phase between two phase
boundaries. The RG calculation can proceed with either the
momentum shell renormalization technique4 or Polyakov’s
approach.3,10 The same results can also be derived with
Brézin and Zinn-Justin’s method.11,12 The RG flow differen-
tial equations for renormalized temperature T�l� and aniso-
tropy constant g�l� are

dT�l�
dl

= − �T�l� +
T�l�2

2�
�n − 3 +

1

1 + g�l�� , �10�

dg�l�
dl

= 2g�l� −
T�l�
�

g�l�
1 + g�l�

, �11�

where �=d−2. For our present purpose, it is sufficient to set
�=0,n=3, and keep the lowest-order terms of g in these
equations. The approximate solution then reads

T�l� =
2�T

2� − Tl
, �12�

g�l� = ge2lT2/T�l�2 = ge2l�1 − Tl/�2���2. �13�

Additionally, the equation for the renormalization constants
for � and � can be derived from Ref. 4:

d ln ��

dl
= d −

T�l�
4�

g�l� + 2

g�l� + 1
, �14�

d ln ��

dl
= d −

T�l�
2�

. �15�

Using Eq. �12� and d=2, for negligible g, one finds that ��

and �� are both given by

�� = �� = e2l�1 −
Tl

2�
� . �16�

These results imply that for g�0, the renormalization flow
goes to g= +�, which corresponds to the XY model; for g
�0, it goes to g=−�, which corresponds to the two-
dimensional Ising model; for g=0, it goes to the high-
temperature paramagnetic phase, which is consistent with the
Mermin-Wagner theorem.9 Conventionally, the thermody-
namic quantities are calculated by integrating the renormal-
ization flow equation to a characteristic scale l*, for which
g�l*�=O�1�. The corresponding thermodynamic quantities
can be calculated by other means, e.g., perturbation theory.
Then a trajectory integral “matching” formalism4,20–22 is
used to obtain these quantities at the original scale l=0. For
example, the susceptibility has the scaling form 
�T ,g�
e4�/T��ge4�/T� for small T and g in the thermodynamic
limit,4 which is analogous to the crossover phenomenon of a
finite-temperature bicritical point.23,24 The Ising or XY criti-
cal behavior is contained in the scaling function �, which is
calculated from the effective Ising or XY model �depending
on the sign of g� at the scale l*e4�/T. Due to the finite size
of the systems in our simulations, the above RG flow cannot
go very far in the RG flow diagram for an infinite system, but
only to the scale set by the system size l�� ln�L /a�, where a
is the microscopic lattice constant �fixed to be unity�. For our
model, L=100a is not a large system size compared to the
correlation length, so we expect that the lowest-order solu-
tions Eqs. �12� and �13� are sufficient. In the real-space RG
terminology,25 at scale l�, the spins in a block of linear size
el� are effectively replaced by a single block spin; therefore,
we expect that our simulation with system size L in a mag-
netic field sufficiently close to the critical field is governed
by the simple Hamiltonian

Heff = − q�2, �17�

where the coefficient q is given by

q =
g�ln L�

2T�ln L�
=

gL2

2T
�1 −

T ln L

2�
�3

. �18�

Near the spin-flop transition, g=k�T ,L�h+O�h2�, where h is
the reduced field, and we expect the coefficient k�T ,L� to
weakly depend on T and L. As a result, the free energy
should appear as a function of hT−1L2�1−T ln L / �2���3. One
can define a “correlation length exponent” �=1/2, based on
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the leading L2 dependence. The staggered magnetization also
has to contain a factor from the spin renormalization con-
stant:

��Mz
†�2�L = L−4��

2��2�Heff
, �19�

��Mxy
† �2�L = ��Mx

†�2 + �My
†�2�L = L−4��

2 ��2�Heff
, �20�

where �¯�Heff
denotes the thermal average with respect to

the effective Hamiltonian Eq. �17�. When �� /���1, both of
them have the scaling form:

�1 −
T ln L

2�
�2

F�,��hL2

T
�1 −

T ln L

2�
�3� . �21�

Furthermore, the distribution of M† should be on a sphere of
radius 1−T ln L / �2��; the distribution of its tilt angle has the
form

P�	� = Y−1 exp�− q cos2 	�sin 	 , �22�

where Y is a normalization constant. At the critical field
g=h=0, the above distribution is uniform. Consequently the
critical Binder cumulant for cos 	 is U4�cos 	�=2/5. U4�Mz

†�
should also be close to this value, with a small negative
correction due to the longitudinal fluctuation of M†. The
maximum susceptibility corresponds to the maximum fluc-
tuation in �, so the following scaling formula is expected:


 =
��

2

L2X�hL2

T
�1 −

T ln L

2�
�3� . �23�

One can again define a susceptibility exponent �=1 based on
the leading L2 dependence, which is assumed to be L�/�. The
critical exponent ratio is then identical to that for a first-order
phase transition; therefore, the logarithmic corrections are
required to determine whether the spin-flop transition is a
first-order phase transition or not.

To calculate the specific heat, the standard approach is to
derive it from the free energy f =−L−2 ln Z. As in Ref. 4, we
perform a trajectory integral from l=0 to l* to evaluate the
free energy. For clarity of our discussion, we reproduce the
trajectory integral formula from Ref. 4 here:

f�T,g� = 

0

l*

e−dlG0�l�dl + e−dl*f�T�l*�,g�l*�� , �24�

in which we set d=2 in our calculation and the kernel G0
depends on both the on-shell Green’s function and the spin
renormalization factors. With the final scale l*=ln L and the
approximate solution Eqs. �12� and �13�, this trajectory inte-
gral can be evaluated analytically with the technique in Ap-
pendix A of Ref. 22. Among many terms in the result, we are
particularly interested in those of the form L−2fs�T�l*� ,g�l*��,
for reasons which will soon become clear. It turns out that
the only such term is fs�g�l*��=−ln�1+g�l*��. The last term
in Eq. �24� is given by the single-spin Hamiltonian Eq. �17�:

L−2F�gL2

2T
�1 −

T ln L

2�
�3� , �25�

where

F�q� = − ln 

0

�

exp�− q cos2 	�2� sin 	 d	 . �26�

The divergent term in the specific heat is given by

cv = −
�

�T
�T2L−2��F + fs�

�T
� . �27�

One would expect the leading divergent term in Eq. �27� is
proportional to L2g2, with multiplicative logarithmic correc-
tions. However, obviously on the spin-flop line g=0, this
term vanishes. This dilemma is solved by noting that T in Eq.
�27� is the real temperature at which the simulation is per-
formed, while T in Eqs. �24� and �25� is a renormalized
temperature for the long-length-scale effective Hamiltonian,
and from now on it will be denoted T*. The spin-flop line
does not follow a constant temperature; in other words, the
effective anisotropy g is also a function of T. If we change T
in the simulation, we actually change the effective anisotropy
g, which could drive the system to cross the spin-flop line.
Therefore, the partial derivative in Eq. �27� should be written
as

�

�T
= a

�

�T* + b
�

�g
. �28�

Two derivatives � /�g acting on L−2F would produce a diver-
gent term proportional to L2�1−T* ln L / �2���6. Similarly, fs

results in a divergent term proportional to L2�1
−T* ln L / �2���4. After all these considerations, the divergent
part of the specific heat is expected to have the following
scaling form:

cv = L2x6C6�hL2x3� + L2x4C4�hL2x3� , �29�

where x=1−T* ln L / �2��. If the spin-flop line is perfectly
horizontal, i.e., b=0, there will not be a peak in the specific
heat. We expect the C6 term to be dominant in Eq. �29�,
because F also contributes a factor T−2 after being differen-
tiated twice; on the other hand, a straightforward calculation
shows that the C4 term does not show a peak at g=0, but an
asymmetric background.

The above trajectory integral actually connects the inter-
mediate renormalized Hamiltonian Eq. �9� to the final renor-
malized Hamiltonian Eq. �17�. In doing so, we have ignored
a similar trajectory integral which connects the bare Hamil-
tonian Eq. �1� to the intermediate Hamiltonian Eq. �9�. Al-
though we cannot write down an analytic expression for its
integrand and its final contribution to the free energy, we
expect it to depend on the lattice constant, which is the
smallest length scale in the system, and an intermediate
length scale at which Eq. �9� is valid, but not on the largest
length scale L. Therefore, it cannot possibly give rise to an
L2 divergence. For the divergent terms in cv, it is hence jus-
tified to ignore this precursory trajectory integral.

Unlike the conventional finite-size scaling, the above
finite-size scaling relations are not expected to hold for very
large system sizes, because for sufficiently large L, the phase
boundaries of the AF and XY phases become discernible.
This obviously happens when T ln L2�, i.e., the spin
renormalization constants become very small, corresponding
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to a disordered phase. For either large l or large g, the higher-
order terms in Eqs. �10� and �11� become non-negligible;
therefore, the approximate solution Eqs. �12� and �13� and
the above finite-size scaling relations are no longer sufficient.
Thus, we expect the above finite-size scaling analysis to be
valid for small effective anisotropy, i.e., H�Hc, and system
sizes smaller than the correlation length.

III. DATA AND ANALYSIS

A. Raw data and the apparent first-order phase transition

We first present some representative raw data for the stag-
gered magnetization from simulations with different system
sizes, and we will then show traditional finite-size scaling
plots. Figure 2 shows the staggered magnetization at T=0.2

for magnetic fields on both sides of the finite lattice spin-flop
transition. The spin-flop transition can be clearly observed,
and when viewed at moderate resolution �see the insets� the
data suggest a first-order transition. Both ��Mz

†�2� and
��Mxy

† �2� reach either zero or a large value quickly as H de-
viates from Hc, which is why we have to zoom in on a very
narrow range �0.005 in width� of the magnetic field to see the
finite-size effect for relatively large systems. The critical
magnetic field that separates the XY phase from the AF phase
can already be estimated rather accurately from the size de-
pendence seen in Fig. 2. There is no noticeable sign of an
intermediate phase which has zero expectation values for
both order parameters. There is also no sign of a region with
nonzero values for both order parameters. In the XY phase,
we see from the inset of Fig. 2�b� that the saturated values of
the order parameter are smaller for larger systems, which is
consistent with the property of the XY phase. �We expect the
saturated value to decrease as L−2�, where � is a
temperature-dependent exponent.26,27� On the other side, in
the AF phase, the inset of Fig. 2�a� shows that ��Mz

†�2� cal-
culated with different system sizes quickly converges to the
nonzero thermodynamic limit.

If the spin-flop transition contains an Ising-like transition,
then we would expect to see the universal value of the
Binder cumulant U4

*�0.618 at the critical magnetic field,
therefore we plot U4�Mz

†� in Fig. 3 to see if it indicates an
Ising-like second order phase transition. However, the curves
in Fig. 3 cross each other at values close to 0.4, clearly below
the Ising universal value. There is not any systematic trend
indicating that the crossing point moves up with increasing
system size. This result is in agreement with Ref. 1, where it
is shown that only when T�0.4 do the crossing points in the
Binder cumulant curves start to move toward the Ising uni-
versal value. As Ref. 1 has shown in the phase diagram, the
AF-paramagnetic boundary and XY-paramagnetic boundary
are clearly separated for T�0.4. We have also calculated the
Binder cumulant for T=0.1, 0.265, and 0.33, and seen results
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FIG. 2. �Color online� Staggered magnetization across the finite-
lattice spin-flop line at T=0.2. Each group of nearby data points is
from one simulation performed with a single fixed magnetic field.
Histogram reweighting was used to calculate observables in slightly
different magnetic fields. The insets show the data measured from a
larger range of magnetic field.
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FIG. 3. �Color online� Binder cumulant for various sizes at
T=0.2. The crossing points of these curves are near H=2.4055. U4

at the crossing point is different from the universal value for an
Ising-like transition.
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similar to Fig. 3. So it is indeed tempting to consider the
possibility of a bicritical point that exists between T=0.33
and 0.4.

To see whether our data really fit the behavior expected
for a first-order phase transition, we show the finite-size scal-
ing analysis of Mz

† in Fig. 4. According to Eq. �7�, all the data
points should collapse onto a single curve if we choose the
right exponents � and . The field dependence of the data in
both Fig. 2 and Fig. 3 indicate that Hc is between 2.405 and
2.406. In Fig. 4, we have fine-tuned Hc to collapse the data
as much as possible onto a single curve, and found that it is
impossible to do so with Ising exponents. With first-order
exponents, the scaling plot Fig. 4�a� is clearly better. How-
ever, systematic deviations are discernible in the low-field
AF phase. In fact, if we allow  to have a small value, we
have found that the scaling plot looks best with =0.031.
The same phenomenon has also been observed in traditional
finite-size scaling plots for ��Mxy

† �2�.
Similar scaling analyses have been done for T=0.1 and

0.265. In all those cases, the Ising exponents fail, but the
first-order exponents work reasonably well, especially for
T=0.1. If we accept a small  which goes to zero as T goes
to zero, then at finite temperatures, the spontaneous stag-
gered magnetization does decay as Mz

†� 	h	 in the thermo-
dynamic limit �L→��. We would indeed have a second-
order phase transition. However, the correlation length
exponent �=1/2 is not consistent with this scenario. For sus-
ceptibility and specific heat, finite-size scaling analysis has
also ruled out an Ising-like transition as a possible scenario.
Especially for the specific heat, its maximum value scales
roughly as L2 at T=0.1, 0.2, which is glaringly different from
the Ising-like logarithmic behavior.

B. Proper finite-size effect and scaling

To characterize the spin-flop transition, we first study the
probability distribution of the staggered magnetization to get

a vivid picture of the spin-flop transition. Due to the obvious
rotational symmetry around the z axis, we plot in Fig. 5 the
probability distribution P�r ,z� of systems with L=100 in cy-
lindrical coordinates at T=0.265. It can be clearly seen from
this figure that M† is distributed on a sphere of about 0.65 in
radius. In the AF phase, the distribution is confined to the
north and south poles; in the XY phase, the distribution is
near the equator. One would naturally define a finite-size
critical field Hc at which the distribution is uniform on this
sphere, i.e., zero effective anisotropy. For L=100 and
T=0.265, we have found Hc�2.411 which is in agreement
with the observation of ��Mz

†�2� and U4�Mz
†�. At this critical

field, U4�Mz
†��2/5, which can be immediately calculated

given this uniform distribution. The same pattern of transi-
tion have been observed at different temperatures with dif-
ferent system sizes. For larger systems and higher tempera-
tures, we have observed smaller spheres. Clearly, a finite-size
effect can be extracted from these spherical distributions.

To be more quantitative, we calculate the angular distri-
bution of the staggered magnetization. Figure 6 shows the
distribution of the tilt angle 	 calculated from simulations at

−15 −10 −5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

(H−H
c
)L1/ν/H

c

<
(M

+ z
)2 >

L
2β

 /ν

 

 

T = 0.2

H
c
 = 2.4055

ν = 0.5, β = 0.0

(a)

L = 40
L = 60
L = 80
L = 100
L = 120

−0.1 −0.05 0 0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(H−H
c
)L1/ν/H

c

 

 

T = 0.2

H
c
 = 2.4055

 ν = 1, β = 0.125

(b)

L = 40
L = 60
L = 80
L = 100
L = 120

FIG. 4. �Color online� Finite-size scaling of Mz
†. �a� Exponents

used belong to first-order phase transition; �b� Ising exponents are
used. Error bars are not plotted since most of them are smaller than
or equal to the size of the symbols, as shown in Fig. 2.

FIG. 5. Probability distribution of the staggered magnetization
across the spin-flop transition. P�r ,z� is proportional to the gray
scale. The data are from simulations with L=100 at T=0.265.
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FIG. 6. �Color online� Probability distribution of the tilt angle 	.
Symbols are calculated from the histogram of 	 in the simulations,
and the solid lines are curve fitting with Eq. �22�. The fitting pa-
rameter q is plotted in the inset, where the straight line is a linear fit.
The simulations were performed with L=80 at T=0.265.
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T=0.265 for L=80. The data are fitted with Eq. �22�, which
only has one fitting parameter q. Obviously this simple func-
tional form fits the simulations very well. The inset in Fig. 6
shows the fitting parameter, i.e., Eq. �18�, is a linear function
of H, which is consistent with our assumption that g�h.
Thus, we have shown that close to Hc, the thermodynamics
of the staggered magnetization is indeed governed by the
simple Hamiltonian Eq. �17�.

The staggered magnetization clearly has a finite value at
Hc in the simulations. If this is also true for the thermody-
namic limit, then we will have to choose between the sce-
nario of a first-order phase transition, or that of an interme-
diate ordered phase with a tetracritical point. However, this is
not the case for two-dimensional systems. Suppose we en-
large the simulation to a size nL, since we have shown that
an L�L block indeed behaves as an effective Heisenberg
spin in an anisotropic potential, the long-length-scale physics
should be captured by a Hamiltonian of these block spins.
Although microscopically, the anisotropy may have different
forms, at a large enough length scale the g�2 term turns out
to be the only dominant term, as shown by the probability
distribution in Fig. 6. In terms of RG terminology, it is the
only relevant perturbation that keeps the z axis rotational
symmetry. Since a similar anisotropy in the kinetic energy,
g1�����2, has been found to be irrelevant,3 our simulations
have indeed justified Eq. �9� as an appropriate Hamiltonian
to analyze the spin-flop transition. Following the RG analysis
outlined in Sec. II one would conclude that the behavior in
the thermodynamic limit is two second-order phase bound-
aries and a bicritical point at zero temperature, i.e., that
which is shown in Fig. 1�b�.

Now we perform a finite-size scaling analysis in order to
examine whether or not the logarithmic corrections in Eq.
�21� can be seen in the data from the simulations. The renor-
malized temperature T in the effective Hamiltonian Eq. �9�
is, in general, different from the temperature at which the
simulation is performed. Therefore, we are allowed to use an

extra fitting parameter T* in Fig. 7 to make the data points
collapse better on a single curve. We find that all the data
points do collapse onto a single curve in both Figs. 7�a� and
7�b� with the choice T*=0.3. Actually, if this renormalized
temperature is not introduced, Fig. 7 still looks clearly better
than Fig. 4�a�, where we assume a first-order phase transi-
tion. In the transition region, we also expect ��Mz

†�2

+ �Mxy
† �2� to be nearly a constant as seen in Fig. 5. This is

also consistent with Fig. 7 where the decrease in ��Mz
†�2� is

compensated by the increase in ��Mxy
† �2�. A small  improves

Fig. 4�a� because a logarithmic correction enters by the Tay-
lor expansion for small : L2/��1+2�−1 ln L. Error bars
are not plotted in Fig. 7 and the other scaling plots, because
most of them are smaller than or equal to the size of the
symbols used in these figures. They can be found in Figs. 2
and 3. Figure 8 shows the same scaling analysis for simula-
tions performed at T=0.1. We have found that this scaling
plot is very clear even without introducing a renormalized
temperature. The critical field Hc is fixed up to six significant
digits in Figs. 7 and 8 by closely examining the central criti-
cal region of very small h. However, one should not push
this too far because the apparent existence of a single critical
field is only a finite-size effect. For large systems, there are
two separate critical fields for the AF phase boundary and the
XY phase boundary, respectively. The same finite-size scal-
ing analysis at T=0.265 still produces a very good single
curve; however, the best scaling is achieved by allowing Hc
for the XY phase to be slightly above that for the AF phase,
behavior which could be understood as a sign of separating
phase boundaries.

The logarithmic correction for M† comes from the spin
renormalization constants in Eqs. �19� and �20�. The effec-
tive spin � and � can be calculated directly from M†, given
that �����. One would expect that the finite-size scaling of
��2� only involves a scaling of the magnetic field. In fact,
Eqs. �17� and �18� imply that ��2�L for different sizes as well
as different temperatures can collapse on to a single curve,
provided that k�T ,L�=h /g depends weakly on T and L. Fig-
ure 9 plots ��2�L versus hT−1L2�1−T ln L /2��3, and shows
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FIG. 7. �Color online� Finite-size scaling analysis corresponding
to Eq. �21� at T=0.2. �a� The AF order parameter; �b� the XY order
parameter. We introduce T* as a fitting parameter which is slightly
above the actual temperature at which the simulation is done. Error
bars are smaller than or equal to the size of the symbols.
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FIG. 8. �Color online� The same as Fig. 7, but for simulations at
T=0.1. Unlike Fig. 7, we have used T*=T here.
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that this is indeed true in the simulations. We have also cal-
culated the Binder cumulant U4�cos 	�. Since the longitudi-
nal fluctuation in M† is completely projected out, U4�cos 	�
is exactly 2/5 at the crossing point, which corresponds to the
critical magnetic field for finite-size systems.

As for the susceptibility, we test Eq. �23� by plotting

L−2�1−T ln L /2��−2 versus hL2�1−T ln L /2��3 in Fig. 10.
For L=40, 60, and 80, our data collapse onto single curves at
T=0.1 and 0.2 very well. For two larger sizes L=100 and
120, although we have fewer data points near the peak of the
susceptibility and a few data points have larger statistical
errors than others, they appear to fall on the same curve
reasonably well. We have also plotted the data assuming
finite-size scaling for an Ising-like transition or a first-order
phase transition but found none of those works better than
Fig. 10.

Finally, in Fig. 11 we show the finite-size scaling plots for
specific heat which follow Eq. �29�. Only the first C6 term
has been considered here. Most of the data points collapse
quite well onto a single curve in both Figs. 11�a� and 11�b�,
and this verifies the validity of our finite-size scaling analy-
sis. We have made the same scaling plot for specific heat at
T=0.265 and 0.33, and found none of them obeys this scal-
ing formula. This is obviously because at higher tempera-
tures, the phase boundaries of the XY and AF phases start to
separate. In fact, those data at higher temperatures are con-
sistent with an Ising transition. As in other figures, a group of
nearby data points are calculated from the same simulation
with histogram reweighting. The disadvantage of histogram
reweighting is that the statistical error in one simulation is
replicated by several data points. Therefore, the deviations
observed in Fig. 11 as well as Fig. 10 are not real “system-
atic” deviations, but an artifact of histogram reweighting.

IV. DISCUSSION

Although near the critical magnetic field, the simulation is
hindered by the huge correlation length, so that two separate
second-order phase boundaries may never be revealed, the
staggered magnetization behaves as a rigid spin of nearly
fixed length subject to an anisotropic potential. The length of
the spin and the form and strength of the anisotropy are
predictions of the RG calculation that have been confirmed
by our Monte Carlo simulations. Logarithmic corrections of
particular forms, which are absent in either first- or second-
order phase transitions, have been found in the Monte Carlo
simulations in complete agreement with our theoretical pre-
dictions. For the phase diagram of the two-dimensional XXZ
Heisenberg antiferromagnet with an easy axis, we have thus
reached the conclusion that in the thermodynamic limit, the
bicritical point appears at T=0, with an exponentially narrow
paramagnetic phase sandwiched between the low-field AF
phase and the high-field XY phase. The location of the bi-
critical point is “hidden” from detection by “ordinary” means
because of finite-size effects that must be carefully analyzed.
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FIG. 9. �Color online� Finite-size scaling plot of the effective �
spin component from simulations at T= �a� 0.2 and �b� 0.1. Instead
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FIG. 10. �Color online� Scaling plot for susceptibility near the
spin-flop transition according to Eq. �23�, at T= �a� 0.1 and �b� at
0.2.
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FIG. 11. �Color online� Scaling plot for specific heat near the
spin-flop transition according to Eq. �29�, at T= �a� 0.1 and �b� 0.2.
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In the simulation of any finite-size system, the staggered
magnetization remains nonzero on the spin-flop line, which
only becomes two separate phase boundaries in the thermo-
dynamic limit. The Ising-like or XY-like critical behavior
near the spin-flop transition is also expected to be seen in an
exponentially narrow range of magnetic field. Our results
should be valid for all two-dimensional Heisenberg antifer-
romagnets or ferromagnets with short-range interaction and
easy-axis anisotropy of different forms, since their long-
length-scale physics is described by the same Hamiltonian.
Due to the finite experimental resolution, including effects
from the inhomogeneity in magnetic field and disorder in
samples, and possible crossover to three-dimensional behav-
iors, we expect experiments would only reveal apparent first-
order spin-flop transitions and an apparent bicritical point at
finite temperature. Also symmetry-breaking perturbations,
e.g., crystal fields of square symmetry, are highly relevant to
the bicritical phenomena in 2+� dimensions as well as the
intricate correlations in the XY phase.3,28 As a result, both the
AF phase and the “XY” phase might have discrete symme-
tries, so that the two second-order phase boundaries are
likely to be reduced to a first-order phase boundary.

V. CONCLUSION

We have carried out extensive Monte Carlo simulations
for a two-dimensional anisotropic Heisenberg antiferromag-
net near the spin-flop transition and performed a finite-size
scaling analysis based on the anisotropic nonlinear � model
in the regime where the correlation length is much larger
than the system size. We have found that, although the finite-
size effects tend to obscure the asymptotic behavior, the re-
sults of the Monte Carlo simulations are perfectly consistent
with the RG calculation for the spin-flop transition and that
the bicritical point is at T=0.
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