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The movement of a micron-size section of an individual domain wall in a uniaxial garnet film was studied
using ballistic Hall micromagnetometry. The wall propagated in characteristic Barkhausen jumps, with the
distribution in jump size S, following the power-law relation, D�S��S−�. In addition to reporting on the
suitability of employing this alternative technique, we discuss the measurements taken of the scaling exponent
�, for a single domain wall in a two-dimensional sample with magnetization perpendicular to the surface, and
low pinning center concentration. This exponent was found to be 1.14±0.05 at both liquid helium and liquid
nitrogen temperatures.
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I. INTRODUCTION

The Barkhausen effect is the name given to the nonrepro-
ducible and discrete propagation of magnetic domain walls
due to an applied magnetic field. The walls remain immobile
for inconstant lengths of time, before shifting to a new stable
configuration in either a single jump, or a series of jumps
�commonly referred to as an “avalanche”�. It was discovered
in 1919,1 and has seen a renewed interest as a result of recent
work, connecting it with various aspects of noise and critical
phenomena.2–8 An analysis of Barkhausen statistics has been
proven as an effective nondestructive method of probing
physical characteristics of a material, including the level of
lattice disorder, and the tensile stress exerted upon a sample.

The effect is often quoted as an example of a system
exhibiting self-organized criticality �SOC�, an idea that re-
flects the fact that domain walls in a ferromagnetic material
will exhibit Barkhausen noise without needing any specific
tuning of conditions,2,3,5,6,9,10 and that the size, S, and dura-
tion, T, of the avalanches have been found to show scaling
behavior, and hence follow power laws. The power law for
jump size can be expressed as

D�S� = S−�f�S/S0� , �1�

where S0 is the cutoff limit, and � is the scaling exponent,
which is linearly dependent on the applied magnetic driving
rate.

Most previous studies3,5–8,11–13 have experimentally deter-
mined this exponent for bulk three-dimensional samples of a
soft, ferromagnetic material, using a pickup coil to measure
flux variations. This inductive method allows movement
across a large system of domain walls to be detected, though
it cannot differentiate between a single jump and a large
number of jumps occurring in several places at once. How-
ever, comparatively little work has been done with two-
dimensional samples, as a pickup coil receives a greatly de-
creased signal, making it difficult to resolve against
background noise. Accordingly, although the inductive
method has been employed in this area successfully by one
group,14 most experiments in this area have been based on
different techniques, such as MOKE15,16 and MFM.17 With
the exception of Ref. 17, the two-dimensional samples all

feature in-plane magnetization and thus have negligible de-
magnetization fields, which have been shown to significantly
affect Barkhausen statistics.5 The authors of Ref. 17 scanned
the surface of a manganite film using magnetic force micros-
copy. This surface had a highly granular structure, which
meant that the domain walls were being pinned on a large
number of extended pinning regions, such as grain bound-
aries and dislocations. Again, this is likely to affect the way
in which a wall is able to propagate, and so change the scal-
ing exponents. These issues make it difficult to accurately
relate such experimental results to the idealized theoretical
models.

As an alternative to the previous methods used to study
the Barkhausen effect, we describe here our use of ballistic
Hall micromagnetometry. As a result of the convenient and
sensitive detection of local magnetic flux that this technique
offers, it has been used to study a wide range of other phe-
nomena, including magnetization switching behavior in me-
soscopic superconductors,18,19 and in single and arrayed
nanostructures,20,21 the nucleation22 and annihilation23 of do-
mains, and the coercivity of a single pinning center.24 Al-
though larger Hall probes operating in the diffusive regime
have been used to study the Barkhausen effect previously,
the focus of that research was qualitative observation of do-
main reversal within bulk Nd-Fe-B samples.25

Our technique is closely related to that using a standard
Hall cross layout, but with conducting channels constructed
on the �m scale with very high mobility and a low level of
defects. The particular device we used, shown as an inset in
Fig. 1, was constructed from a GaAs/ InGaAs heterostruc-
ture, which had a 2DEG embedded 60 nm below the surface,
with an electron density of 3.4�10−12 cm−2. This was
formed into five adjacent crosses using standard lithographic
techniques, three with a channel width of 1.5 �m, and the
remaining two with channels of 1.0 �m, which are standard
sizes proven to work effectively for ballistic Hall micromag-
netometry. The high mobility of the 2DEG means that trans-
port along the conducting channels of the device is ballistic.
Such Hall probes were found to be the most sensitive for our
work.26

For one of our Hall crosses, when a ballistic current is
travelling along one channel, the Hall resistance Rxy, is given
by the equation
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Rxy = �H�B�RH, �2�

where �H is a coefficient relating to the geometrical design
of the Hall cross �1.2 for our device�,27 and �B� is the mag-
netic field averaged over the Hall cross intersection, shown
as the shaded area in Fig. 2�a�. The treatment of data is thus
simplified as the precise field configuration across the inter-
section need not be determined, and gradual changes in the
magnetic field can be measured accurately.28 When a domain
wall moves past this intersection or sensitive zone �SZ�, the
average magnetic field is altered, which induces a corre-
sponding change in the Hall resistance, allowing an accurate
measurement of the wall movement. The extended parts of
the wall that are outside the SZ have a negligible effect on
the Hall resistance.

We chose to employ this method in studying the
Barkhausen effect exhibited by a single domain wall in a
10 �m thick, ferromagnetic yttrium iron garnet �YIG�
sample, as this can be considered, for the purposes of com-
parison with theory, to be very close to an ideal two-
dimensional system, for reasons discussed later. At liquid
helium temperatures, our samples have an exchange
constant A=1.8�10−7 erg/cm, and an anisotropy constant
K=1.4�106 erg/cm3. The domain wall width �, is then
given by �=	�A /K�10 nm. At higher temperatures, K de-
creases to 4.7�105 erg/cm3, and the wall therefore has an
increased width of �20 nm.

These garnet samples display strong uniaxial anisotropy,
so that the magnetization lies only in the two opposing di-
rections perpendicular to the sample surface. This leads to a
series of domains of alternating magnetization direction,

which are separated by a system of 180� domain walls. An
example of such a domain structure can be seen in Fig. 1,
which shows a section of our garnet film pictured using
transmitted polarized light, and displaying the tendency for
the walls to form parallel to each other. In addition to pro-
ducing this simple domain arrangement, the strong aniso-
tropy prevents deformation of the domain wall away from
the axis perpendicular to the sample surface.

This particular system of cylindrical domains is the usual
result when the uniaxial anisotropy Ku
2	Ms

2, which is true
for our sample, and especially when the applied field is
aligned with the easy axis of the specimen.30 It has also been
demonstrated that deviation from the easy axis is signifi-
cantly lower in samples that, when arranged in parallel stripe
domains of equal size, have a domain width approximately
equal to the thickness of the sample. An examination of Fig.

FIG. 1. �Color online� A micrograph of part of our garnet
sample, visualized using transmitted polarized light. A SEM image
of the Hall cross device used is shown to scale, as an inset. On the
scale of a single Hall cross, it can be seen that an individual domain
wall is close to being straight. The three adjacent Hall crosses to the
left of the image have a square intersection area of 2.25 �m2, mak-
ing the channels an order of magnitude smaller than the average
width of a domain in the equilibrium state shown. The two crosses
to the right have an area of 1 �m2. The connections to the device
were numbered for easier reference, with a few of these labels
shown. The results in this paper were taken using connections 1, 2,
7, and 12.

FIG. 2. �Color online� �a� A representation of several positions
of a domain wall moving past the intersection or sensitive zone of a
Hall cross, with this zone shown shaded. The large arrow represents
the direction of motion of the wall. The size of jump S, as used in
this paper, is defined as shown, for two arbitrary positions of the
wall. �b� An example of data taken at 4.2 K, showing a typical set
of 20 sweeps. The total change in magnetic field is quite small �just
over 100 G�, and so does not cause saturation. One loop has been
highlighted to show more clearly the behavior of the domain wall
and has numbered positions that correspond to the positions in �a�.
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1 reveals that the domain thickness is about 10 �m, which is
equal to the garnet film thickness, indicating empirically that
divergence of the walls from the easy axis is minimal.

Thus, the domain wall deforms only in the x-y plane,
while remaining straight in the z direction, i.e. parallel to the
easy axis. It is this domain arrangement that categorizes the
sample as two-dimensional, not in reference to the physical
dimensions of the film, but to the reduced dimensionality of
the domain walls themselves, which have lost a degree of
freedom of distortion. The walls could alternatively be de-
scribed as displaying one-dimensional vaulting, or
bowing.29,31,32

A garnet film was also chosen, as it can be manufactured
with a very low level of defects, and most of those present
are pointlike pinning centers arising from imperfections in
the surface �length scale �10 nm�,24 and so the walls are
straight over lengths of up to 100 �m. It can be seen from
Fig. 1 that on the scale of a typical cross ��1 �m�, it is only
a small section of a single domain wall that is being studied.
At the temperatures used, this section is sufficiently small
that it will remain straight. This assumption is supported by
measurements taken at liquid helium temperature on two
crosses simultaneously, when the crosses were aligned paral-
lel to the domain wall.24 In this instance identical movements
were recorded by both crosses, meaning that walls move
without bending over lengths of several �m. Therefore, the
section of the domain wall under observation exhibits no
bowing at all within the SZ, which means that at low tem-
peratures the domain wall may effectively have even lower
dimensionality.

One valuable consequence of the wall remaining straight
while traversing the Hall cross is that the size of each jump
can be expressed simply as a distance, S, as shown in Fig.
2�a�. The maximum and minimum values of Hall resistance
recorded over a full sweep correspond to the wall being at
opposite sides of the cross, i.e., at positions 1 and 2 in Fig.
2�a�. The average difference between these two resistance
values is therefore equivalent to a domain wall movement
equal in size to the branch width of the Hall cross used.

The combination of high anisotropy and low defects re-
sults in a system that is ideally suited for investigating the
scaling exponents, especially at a low temperature, which is
assumed in most models of the Barkhausen effect. The
Barkhausen statistics will be characteristic of a domain wall
system in a two-dimensional sample, with long-range dipolar
interactions and with the demagnetizing field present as a
result of the perpendicular magnetization.

II. EXPERIMENTAL TECHNIQUE

The five Hall cross device is attached to the garnet
sample, with a gap of under 200 nm between them.24 The
sample and device were placed at the center of a solenoid, so
as to ensure a uniform applied field, and kept at either liquid
nitrogen or liquid helium temperature. The field is perpen-
dicular to the surface of the sample, and hence parallel to
both possible magnetization directions. The ballistic current
was directed down the long path of the Hall device �the
horizontal path in Fig. 1�, allowing the use of any of the five

crosses. We selected a cross with a channel width of 1.5 �m
with which to take measurements, as it exhibited the lowest
noise.

We used standard low-frequency lock-in techniques to
measure the Hall resistance, culminating in several sets of
data similar to the example in Fig. 2�b�. From this raw data,
we measured the size of each jump, allowing a histogram of
the relative probabilities of each jump size to be plotted,
which provided a value for �.

The section of the highlighted loop between positions 1
and 2 in Fig. 2�b� describes the normal movement of a do-
main wall across the SZ of the Hall cross by Barkhausen
jumps. However, between positions 2 and 3, when the wall
has passed fully across the SZ and begins to move away
from the Hall cross, the jumps in the opposite direction to the
trend are observed. This behavior is the result of the decay in
the stray magnetic field as one moves away from a domain
wall. Related to this external wall effect is the fact that the
SZ does not have a uniform response over its area, with
decreased sensitivity at the edges.

Recorded jumps arising from the edges and outside of the
SZ are not related to the critical behavior of the Barkhausen
effect and, if left mixed with the desired jump data, will
distort the resultant jump size distribution. As a result, only
the jumps that occur within the SZ, i.e., between positions 1
and 2, are included in the statistical analysis. The external
wall effect has additional consequences, which are discussed
in the next section.

We ensured that the wall under observation moved past
the entire SZ for every sweep of the applied external field, so
as to elicit consistent data, with a constant total variation in
the Hall resistance for each loop. This was achieved by
ramping the field at a constant rate so that the domain walls
passed back and forth over the Hall probe, between positions
either at or just outside the edge of the SZ, e.g., at positions
1 or 2 in Fig. 2. The direction of field sweep switched once
the maximum response of the device had occurred, which
was recognizable by the cessation of significant change in
the Hall resistance.

The maximum allowed field was set at ±200 G �approxi-
mately the saturation magnetization of our garnet film�, al-
though the field rarely reached this level, staying within the
±50 G range. As the sample never reaches saturation, the
simple wall propagation regime of magnetization is domi-
nant, rather than those of domain nucleation or coalescence.
These two processes, along with spontaneous spin rotation,
are not governed by the same physical laws as the
Barkhausen effect, and so the discussion in this paper is con-
cerned with domain wall motion only.

III. RESULTS AND DISCUSSION

The progress of the domain wall past the SZ is slow, such
that a single sweep will take about an hour to complete. This
has limited the number of recorded sweeps to 2792 at liquid
nitrogen temperature, and 1429 at liquid helium temperature.
In general, the jump distributions, plotted on double-log10
scales, display the expected linear appearance for each tem-
perature, with the gradients of the straight sections of the
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lines giving the values for � �see Eq. �1�	. Figure 3 shows the
data for both temperatures over a similar range of jump sizes.
The number of occurrences of each value of S was normal-
ized to give the frequency per 1000 sweeps, D�S�. The data
at 4.2 K has been artificially moved up the D�S� scale by an
arbitrary factor of 2 so as to prevent overlap, and allow easier
viewing.

The chosen upper limit for displayed data was 300 nm, as
there are few jumps occurring above this level, and conse-
quently they are too scarce to be used to increase the accu-
racy of the gradient. The data are not shown for jump sizes
smaller than �10 nm and �15 nm for 4.2 and 77 K, respec-
tively, as below these levels it becomes very difficult to re-
solve jumps against the background noise. This does not rep-
resent the maximum resolution achievable with this
technique, as a resolution of 1 Å has already been reported.33

However, this was achieved using Hall probes, which, al-
though similar in design to the one described here, had a
much lower electron concentration. The benefit of the higher
concentration probes we have employed here is the ability to
take measurements at room temperature, while the lower
concentration probes must be used in liquid helium.

The dashed line in Fig. 3 is a logarithmic fit to the data of
the form A /S�, which on the log scales has a gradient of
−1.14±0.05 in the straight section of the data, for S below
120 nm. The error on the fitted gradient for the 4.2 K data
was given by the fitting algorithm as ±0.024, but this is un-
realistic considering the small range of the data. The quoted
error represents the range of gradient values that have believ-

able agreement with this data. The 77 K data has a gradient
of −1.14±0.048, though the range of data that strongly con-
forms to this is even less than for the helium temperature
data. However, there is strong agreement between the data at
the two temperatures for jump sizes greater than 30 nm,
which implies that they are displaying identical statistical
behavior. The agreement is even more obvious when the
4.2 K data is not shifted up the D�S� scale, as the normalized
data for both temperatures overlap very closely.

Thus, the scaling exponent � has a constant value of 1.14
over the temperature range 4–77 K. The lack of a strong
response to temperature variation has been observed previ-
ously in three-dimensional samples,34 though thermally acti-
vated effects, such as domain wall creep, tend to become
increasingly apparent in thin films as the temperature is
increased.35 Other previous research on thin film samples
found the value of � to increase from 1.0 to 1.8 as the tem-
perature was decreased from 300 to 10 K in an iron thin
film.36

At jump sizes greater than �120 nm, there is a cutoff
where the jump distributions deviate away from the fitted
line. This deviation is accentuated due to the use of a loga-
rithmic scale and the small numbers of recorded large jumps,
as evidenced by Fig. 3 �inset�, where the 4.2 K data are
shown with D�S� plotted on a linear scale, and S on a loga-
rithmic scale as before. From this plot it is apparent that the
deviation is relatively small. The cutoff is present partly be-
cause of the insufficient size of the set of data used, but also
due to the finite size effects caused by the physical size of the
Hall cross employed. If the wall starts from a position inside
the sensitive region, but in a single Barkhausen jump moves
to a position outside or vice versa, then due to the external
wall effect mentioned earlier, the measured size of the jump
will be less than the true value. A typical sweep consists of
about 25 to 30 jumps, two of which will exhibit this behav-
ior, implying that 8% of jumps will have measured values
lower than their true values. This will influence larger jump
sizes both more often and with a greater effect than the
smaller jumps. The absolute upper limit in recorded jump
size is ultimately controlled by the size of the Hall junction.
As ours was 1.5 �m across, this is the maximum value ob-
tainable, though in practice this is unlikely to be observed.

Although the distributions for the two temperatures show
a strong correlation for larger jumps, there is a noticeable dip
in the 77 K data below S=30 nm. One possible cause of this
is the fact that real domain walls have finite width. As a
result, two pinning centers which are positioned apart by a
distance smaller than the domain wall width will affect the
wall in the same way as a single, larger center. Once the wall
is pinned at this location, jumps smaller than the distance
required to escape from the center will not be observed. This
would also cause a corresponding dip in the jump distribu-
tion at helium temperatures, which is not visible in the data
shown. This is to be expected however, since at helium tem-
peratures the width of a domain wall is reduced so the dip
would only begin to manifest at the minimum displayed S
value.

Using these ideas, we have derived an approximated
equation of the form of Eq. �1�, with the coefficient S0 re-
placed by the width of the Hall cross, that takes account of

FIG. 3. �Color online� A comparison between the power-law
behavior of a single domain wall at 77 K over 2792 sweeps �lower
plot�, and at 4.2 K over 1429 sweeps �upper plot�. The frequency
D�S� is a count of the number of occurrences of jumps of a given
size, normalized per 1000 sweeps. The dashed line represents the
best fit to both data, which gives a value of � of 1.14±0.05. The
solid, darker lines are fits with the same value of �, but taking into
account behavior explained in the main text. The inset shows the
data taken at 4.2 K with D�S� plotted on a linear scale. This dem-
onstrates that the deviation at large jump sizes from the fitted line,
also shown, is minimal.
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the changed behavior at both extremes of S. Using this, fits
made to the measured data at either temperature using
�=1.14 show a greatly increased correlation. These are the
solid fitted lines shown with their associated datasets in Fig.
3.

Previous experimental work on 2D systems has produced
different values, ranging from � being �1.5,14 to �1.1.15 Our
results are close to the lower of the two, although the authors
offer no explanation as to the physical meaning of their
value, so it is difficult to know whether the causes are the
same in each case.

Using the basic ideas present in the CZDS model,5 one
might expect a value of �=1.33 for a domain wall in a two-
dimensional system �from the equation given where
�=2−2/ �d+1�, where d is the number of dimensions	, and
this has been used to support such measured values of �.16

However, it has been suggested that this equation cannot be
applied in such a straightforward way, as there are additional
factors to consider with two-dimensional samples.32 Among
these is the high anisotropy that causes reduced domain wall
roughness, as is evident for the walls in our sample, which
are flat on the scale of the Hall probe. In such a case, renor-
malization group analysis has yielded a reduced value of
�=1.25,37 though this is still larger than that observed in our
experiment.

Another possible explanation for the small value of � is
that a dimensional crossover as a result of small sample
thickness has caused the Barkhausen statistics to correspond
to a sample that has a dimensionality between integer values.
This idea has been explored, based on a simulation of the
Barkhausen effect.38 The single-interface model used in this
simulation predicts a crossover from �=1.275 in bulk
samples, to �=1.06 in d=2, which would cover the value
measured here. For a sample with dimensions and aspect
ratio equal to those of our garnet film, the graphs given in the
quoted paper predict a value of �=1.15, but again the effects
of reducing the degrees of freedom of the domain wall are
not explored.

The fact that � remains constant over the tested tempera-
ture range is unusual, as there are several ways in which a

decrease in thermal energy within the sample could be ex-
pected to change the statistics. First, this energy decrease
would cause the wall to display less bowing, which would
have the effect of reducing �. This effect will be small for our
sample, partly because the bowing is already constrained by
the anisotropy, and also because of the small size of the Hall
cross intersection, so there is limited scope for constraining it
further upon cooling below 77 K.

Alternatively, with lower thermal energy the wall will be
more susceptible to becoming trapped by a pinning center
during an avalanche, which will act to increase �, as the
proportion of smaller jumps will increase. Films such as that
which showed the marked change in �36 will more noticeably
demonstrate this effect than will our sample, as a result of the
lack of out-of-plane magnetization allowing longer range in-
teractions with the rest of the domain wall network.

The long-range interactions clearly play a major role in
the way in which a domain wall is able to propagate through
our material. The Hall cross used is so small that the domain
wall can be approximated as being a one-dimensional object,
traveling through the SZ of the cross without bending in any
significant fashion. However, since this small section of wall
is still coupled to the whole wall, and undergoing dipole
interactions with other walls, we believe it produces the
jump statistics expected for the whole wall network, i.e. the
statistics from a wall able to bow or distort in one dimension.

Other models are usually based on the assumption that the
dominant damping mechanism of domain wall motion is
through the formation of eddy currents within the sample,
which is not applicable to our samples, as they are noncon-
ducting. One of the dominant forms of wall motion damping
is through the interactions between the other domain walls
via the demagnetization field. This field is not temperature
dependent, and as it has a strong influence on Barkhausen
statistics, this will tend to keep � constant.
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