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In this paper, we extend the quasicontinuum approach for a multiscale analysis of silicon nanostructures at
finite temperature. The quasicontinuum method uses the classical continuum mechanics framework, but the
constitutive response of the system is determined by employing an atomistic description. For finite-temperature
solid systems under isothermal conditions, the constitutive response is determined by using the Helmholtz free
energy density. The static part of the Helmholtz free energy density is obtained directly from the interatomic
potential while the vibrational part is calculated by using the theory of quantum-mechanical lattice dynamics.
Specifically, we investigate three quasiharmonic models, namely the real space quasiharmonic model, the local
quasiharmonic model, and the reciprocal space quasiharmonic model, to compute the vibrational free energy.
Using the finite-temperature quasicontinuum method, we compute the effect of the temperature and strain on
the phonon density of states, phonon Grüneisen parameters, and the elastic properties of the Tersoff silicon. We
also compute the mechanical response of silicon nanostructures for various external loads and the results are
compared to molecular dynamics simulations.
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I. INTRODUCTION

Rapid advances in nanotechnology have led to the fabri-
cation of nanoscale mechanical structures with applications
in nanoelectromechanical systems �NEMS�.1–3 The design,
optimization, and fabrication of NEMS for various applica-
tions can be accelerated by developing accurate physical
theories and computational design tools that describe the mo-
tion and operation of nanostructures.4,5 There are two major
challenges in the physical modeling and computational
analysis of nanostructures. First, when the characteristic
length of NEMS scales down to several tens of nanometers,
nanoscale effects, such as quantum effects, material defects,
and surface effects become significant. Classical theories
based on continuum assumptions or the computational de-
sign tools that have been developed for microsystems and
macrosystems may not be directly applicable for nanosys-
tems because of the small scales encountered in NEMS. Sec-
ond, although the characteristic length of NEMS is often a
few nanometers, the entire system could still be of the order
of micrometers. Therefore, typical NEMS can still contain
millions of atoms. In this case, atomistic simulation methods
such as ab initio calculations, molecular dynamics �MD�,
and Monte Carlo �MC� simulations, that can be employed for
an accurate analysis of systems comprising several hundreds
of atoms, are computationally impractical for design and op-
timization of practical NEMS.

To achieve the goal of accurately capturing the atomistic
physics and yet retaining the efficiency of continuum mod-
els, multiscale modeling and simulation techniques which
connect and integrate the atomistic and continuum theories
have recently attracted considerable research interest.6–21

Broadly defined, there are three multiscale modeling strate-
gies: direct coupling, top-down, and bottom-up approaches.
Direct coupling methods6–10 typically decompose the physi-
cal domain into atomistic, continuum, and interface regions.
Atomistic and continuum calculations are performed sepa-

rately and the interface regions are used to exchange infor-
mation between the atomistic and continuum regions. Top-
down approaches, such as the quasicontinuum �QC�
method,11–13 the bridging scale method,14 and the heteroge-
neous multiscale method,15 solve the continuum equations by
extracting constitutive laws from the underlying atomistic
descriptions. In contrast, bottom-up methods such as the
coarse-grained molecular dynamics16 and multigrid bridging
approaches17 coarse-grain the atoms of the system into mac-
roatoms and the fundamental equations defined on the atoms
are coarse-grained into equivalent macroscale equations. Of
these multiscale modeling techniques, the QC approach is
attractive due to its simplicity and generality. The QC
method11–13 was originally formulated using a continuum fi-
nite element framework and restricted to zero temperature.
To accurately predict the mechanical behavior of nanosys-
tems, it is necessary to take into account the effect of finite
temperature. Recently, the QC approach has been extended
to deal with finite-temperature solid systems.18–21 In Refs. 18
and 19, a QC Monte Carlo �QCMC� method and a QC free
energy minimization �QCFEM� method were proposed to
study equilibrium properties of defects at finite temperature.
In these methods, a local quasiharmonic approximation22 of
the interatomic potential was used to compute the entropic
energy contribution from the thermal vibration of the atoms.
The entropic energy contribution was then added to the zero
temperature QC energy to construct the effective energy and
the free energy in the QCMC and QCFEM methods, respec-
tively. In Ref. 20, a finite-temperature QC method was pro-
posed to investigate the thermal and mechanical properties of
single-wall carbon nanotubes, where the local quasiharmonic
approximation of the Brenner’s potential was employed to
compute the Helmholtz free energy density of carbon atoms.
In Ref. 21, the QC concepts are employed to develop a
coarse-grained alternative to molecular dynamics. The ther-
mal vibrational part of the coarse-grained potential energy is
obtained from the local quasiharmonic approximation.
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In this paper, within the top-down framework, we provide
an alternative approach to extend the QC method to perform
a mechanical analysis of nanostructures at finite-temperature.
In particular, we formulate a finite-temperature QC method
to calculate the mechanical response of silicon nanostruc-
tures subjected to externally applied forces. We solve the
continuum elasticity governing equations, but extract the ma-
terial constitutive laws using an underlying atomistic de-
scription where the silicon atoms are described by the Tersoff
interatomic potential.23 At finite temperature, for an isother-
mal system, the constitutive relations are computed by using
the Helmholtz free energy density of the representative at-
oms. The static part of the Helmholtz free energy density is
obtained directly from the Tersoff interatomic potential while
the vibrational part �or the finite temperature part� is calcu-
lated by using the quantum-mechanical lattice dynamics. In
this paper, we employ three quasiharmonic models, namely
the real space quasiharmonic �QHM� model, the local quasi-
harmonic �LQHM� model, and the reciprocal space �or
k-space� quasiharmonic �QHMK� model, to compute the vi-
brational Helmholtz free energy density. For Tersoff silicon,
we calculate the temperature and strain effects on the phonon
density of states �PDOS�, phonon Grüneisen parameters, and
the elastic properties. By comparing the results obtained
from the three quasiharmonic models to experimental and
MD results, we observe that �1� the QHM model predicts the
material properties accurately, however, it is extremely inef-
ficient when the system contains more than several hundred
atoms; �2� the LQHM model is simple and efficient, but it
can be inaccurate in predicting elastic constants of Tersoff
silicon, especially when the material is under strain; �3� the
QHMK model can predict the material properties accurately
and efficiently. Based on these observations, we propose to
employ the QHMK model along with a semilocal approxi-
mation of the vibrational Helmholtz free energy density to
extract the material properties. We then compute the me-
chanical response of silicon nanostructures subjected to vari-
ous external loads by using the proposed finite-temperature
QC method. We also perform MD simulations for the me-
chanical analysis of the silicon nanostructures and compare
the results with the finite-temperature QC method. It is
shown that, for silicon nanostructures larger than a few na-
nometers, the QHMK model predicts the mechanical re-
sponse of the nanostructure accurately over a large tempera-
ture range, while the LQHM model can be inaccurate for
Tersoff silicon.

The rest of the paper is organized as follows. Section II
presents the finite-temperature QC method, Sec. III describes
the molecular dynamics simulations used in this paper, Sec.
IV presents results on the material properties and mechanical
analysis of silicon nanostructures, and Sec. V presents con-
clusions.

II. THEORY

The key idea in the QC approach is to adopt the frame-
work of continuum mechanics, but to extract the material
properties and the constitutive relations from the atomistic
description of the underlying local environment. Figure 1

illustrates the basic idea in the QC approach by using a
simple example: a silicon structure subjected to a uniaxial
external force. In the QC approach, the structure is described
in two levels: the continuum level and the atomistic level. In
the continuum level, the structure is represented by a set of
discrete nodes or elements and the deformation of the struc-
ture is determined by the laws of continuum mechanics. In
the atomistic level, the crystalline silicon structure consists
of atoms which are connected by covalent bonds and each
atom is tetrahedrally bonded to four neighboring silicon at-
oms, as shown in Fig. 1. When the structure is subjected to
an external force, the configuration of the silicon atoms
changes to balance the external force. The change in position
of the atoms in the crystal lattice manifests as deformation at
the continuum level. In the QC approach, the material vol-
ume surrounding each continuum node corresponds to a
large number of atoms in the atomistic scale as shown in Fig.
1 and the covalent bonding of the atoms is described by
atomistic models, e.g., empirical interatomic potentials and
tight-binding descriptions.12,24 At the continuum level, the
governing equations can be solved by using a variety of nu-
merical methods. The deformation gradient at each con-
tinuum node is used in the underlying crystal lattice �in ac-
cordance with the Cauchy-Born rule25� to determine the
deformed configuration of the atoms. The material constitu-
tive relations of the continuum nodes are then extracted from
the underlying crystal lattice. Based on the above descrip-
tion, the QC approach can be classified as a “top-down”
multiscale strategy.

In the original QC method,11–13 where no temperature is
considered �i.e., T=0 K�, the mechanical response of the at-

FIG. 1. The two-level paradigm of the QC approach: at the
continuum level, the structure is represented by a set of discrete
nodes and each node corresponds to a large number of silicon atoms
at the atomistic level. Note that although only 17 atoms are shown
for the continuum node in the figure, the actual number of atoms
represented by the node can be much larger. When the structure
deforms due to an external force, the equilibrium position of the
atoms of the underlying crystal lattice changes to balance the exter-
nal force.
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oms and, consequently, the constitutive laws of the material
at the continuum nodes are solely determined by the inter-
atomic potential energy of the atoms. In the case of finite
temperature, the crystal structure is a thermodynamic system
and the mechanical response of the system depends on the
thermodynamic quantities such as the internal energy �for the
adiabatic system� or the Helmholtz free energy �for the iso-
thermal system�.26 The constitutive relations for the con-
tinuum nodes are obtained from the internal energy or the
Helmholtz free energy density. The internal energy or the
Helmholtz free energy is extracted from the atomic lattice by
using the theory of quantum-mechanical lattice dynamics.
Several lattice dynamics models based on the quasiharmonic
approximation of the interatomic potential are discussed in
this paper.

Before proceeding to the details on the finite-temperature
QC approach, we introduce the notation used in this paper.
As shown in Fig. 1, at the continuum level, the initial and the
deformed positions of a continuum node are denoted by X
and x, respectively. The displacement of the node is denoted
by u with the relation x=X+u. At the atomistic level, as
shown in Fig. 1, the initial and the deformed equilibrium
position of the center atom 1, which is the representative
atom corresponding to the continuum node, are denoted by X
and x, respectively. The vectors between the equilibrium po-
sitions of atoms 1 and 2 in the initial and the deformed
configurations are denoted by R12

0 and r12
0 , respectively. At

finite temperature, the atom fluctuates around its equilibrium
position. The thermal vibrational displacements of atoms 1
and 2 are denoted by v1 and v2, respectively. Note that, for
clarity, the thermal vibrational displacements are only shown
in the deformed configuration in Fig. 1. The instantaneous
positions of atoms 1 and 2, denoted by x1 and x2, in the
deformed configuration are given by

x1 = x + v1, �1�

x2 = x + r12
0 + v2. �2�

Denoting the vectors from the equilibrium position of atom 1
�in the deformed configuration� to the instantaneous position
and equilibrium position of an atom � ��=1,2 , . . . � by ��

and ��
0 , respectively, we obtain

�� = x� − x , �3�

��
0 = r1�

0 . �4�

Note that �1
0=r11

0 =0. At any instant, the distance between
atom � and atom �, denoted by r��, is given by

r�� = �r��� = �x� − x�� = ��� − ��� , �5�

where r�� is the vector between the instantaneous positions
of atoms � and �. At finite temperature, the vector, R��

0 ,
between the equilibrium positions of atoms � and � in the
initial configuration is given by

R��
0 =

aR̄��

ā
, �6�

where a is the lattice constant at a given temperature, ā is the
0 K static lattice constant �i.e., neglecting thermal fluctua-

tion�, and R̄�� is the vector between atoms � and � in the
initial configuration at 0 K.

A. Continuum level description

The continuum elastostatic governing equations for an ar-
bitrary domain � are given by27

� · �FS� + B = 0 in � , �7�

u = Ḡ on �g, �8�

P · N = T̄ on �h, �9�

where u is the displacement vector of a continuum node
from the initial configuration X to the deformed configura-
tion x and F is the deformation gradient, which is given by
F=I+�u /�X, where I is the identity tensor, S is the second
Piola-Kirchhoff stress tensor, N is the unit outward normal
vector in the initial configuration, B is the body force vector

per unit undeformed volume, Ḡ is the prescribed displace-

ment vector on the boundary portion �g, T̄ is the surface
traction vector per unit undeformed area on the boundary �h,
and P is the first Piola-Kirchhoff stress tensor given by P
=FS. In continuum mechanics, the second Piola-Kirchhoff
stress S can be described by

S =
dW

dE
, �10�

where W is the strain energy density function and E is the
Green-Lagrange strain tensor, which is given by E= 1

2 �FTF
−I�. Note that Eq. �10� is the general form of the constitutive
law describing the material response to external forces. De-
pending on the form of the strain energy density function,
different classes of materials can be defined. In classical con-
tinuum mechanics, analytical formulations of the strain en-
ergy density function have been developed for linear and
nonlinear elastic, hyperelastic, and other types of materials.27

Given a strain energy density function, the elastic constants
can be obtained as

Cijkl =
dSij

dEkl
=

d2W

dEijdEkl
, i, j,k,l = 1,2,3. �11�

The divergence of the first Piola-Kirchhoff stress tensor in
the governing equation, Eq. �7�, is thus given by

� · P =
�Pij

�X j
=

�Fik

�X j
Skj + Fik

�Skj

�X j

=
�Fik

�X j
Skj + FikCkjlm

�Elm

�X j
, i, j,k,l,m = 1,2,3.

�12�
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Equations �7�–�12� provide a description of the elastostatic
behavior of solid structures at the continuum level. For nano-
structures, however, the use of continuum constitutive laws
can be questionable, since both the form and the material
properties in the constitutive laws can vary spatially due to
material inhomogeneities and device geometry. To overcome
this limitation, in the QC approach, the stress-strain relations,
Eq. �10�, are obtained directly from the underlying crystal
lattice, i.e., by using an atomistic level description of the
structure.

B. Atomistic level description

We use the Tersoff potential model23 for a microscopic
description of silicon in this work. The Tersoff potential has
been used extensively to investigate the energetics and elas-
tic properties of crystalline silicon.28 In the Tersoff empirical
potential model, the total lattice potential energy is expressed
as the sum of local many-body interactions. The total poten-
tial energy U of the system is given by

U = �
�

U� =
1

2 �
���

V��, �13�

where � and � are the atom indices, U� is the potential
energy of atom �, and V�� is the bond energy between atoms
� and � and is given by

V�� = fC�r����Ae−�1r�� − b��Be−�2r��� , �14�

where r�� is the distance between atoms � and �, A is the
coefficient of the repulsive term, B is the coefficient of the
attractive term, �1 and �2 are constants, fC is the cutoff func-
tion which has the form

fC�r� = �
1 r � R − D

1

2
−

1

2
sin�	�r − R�/2D� R − D 
 r 
 R + D

0 r � R + D

,

�15�

where R and D are constants, the function b�� is a measure
of the bond order which describes the dependence of the
bond-formation energy on the local atomic arrangement due
to the presence of other neighboring atoms, and is given by

b�� = �1 + �n
��
n �−1/2n, �16�


�� = �
���,�

fC�r���g�cos �����e�3
3�r�� − r���3

, �17�

g�cos �� = 1 + c2/d2 − c2/�d2 + �h − cos ��2� , �18�

where � denotes an atom other than � and �, 
�� is called
the effective coordination number, ���� is the bond angle
between the bonds �� and ��, and g�cos �� is the stabiliza-
tion function of the tetrahedral structure. The remaining vari-
ables are constants. While several different parameter sets
have been presented for the Tersoff model, the parameter
values from Ref. 23 are used in this work.

C. QC method at classical zero temperature

In this paper, in the continuum level description of a sili-
con nanostructure, the structure is represented by a set of
discrete continuum nodes and a continuum mechanical de-
scription of the structure is given by quantities such as the
stress S, and the strain E, which are functions of the defor-
mation gradient F. From a microscopic point of view, each
continuum node is associated with an underlying crystal lat-
tice consisting of silicon atoms bonded in the form of a dia-
mond structure. When the macroscale structure deforms, the
underlying lattice deforms accordingly. The interactions
among the atoms in the underlying lattice are described by
the Tersoff model, which takes into account the actual atom
configuration at a given location and provides a description
of the material behavior. To connect the macroscopic level
description of the continuum nodes with the atomistic de-
scription of the underlying crystal lattice, we employ the
hypotheses of the Cauchy-Born rule,25 which states that the
crystal lattice surrounding a continuum node is homoge-
neously distorted according to the deformation gradient at
the continuum node. In addition, there exist additional inner
displacements for the two interpenetrating fcc Bravais lat-
tices �denoted by B1 and B2� of silicon crystal. For example,
atoms 1 and 6–17 shown in Fig. 1 belong to one Bravais
lattice and atoms 2–5 belong to the other Bravais lattice. In
this paper, the inner displacements associated with B1 and B2
are denoted by �1 and �2, respectively. The Cauchy-Born rule
can be expressed as

r��
0 = FR��

0 + � j − �i, � � Bi; � � Bj; i, j = 1,2,

�19�

where �i, i=1,2, are the additional inner displacements of
the two Bravais lattices which can be determined by the en-
ergy minimization for a given deformation gradient F. Since
the inner displacements �1 and �2 are relative displacements
between the two Bravais lattices, in order to rule out rigid-
body translations we fix the lattice by setting �2=0. There-
fore, �2 can be simply discarded. To simplify the notation, �1
is denoted as � in the rest of the paper. The Cauchy-Born rule
can then be rewritten as

r��
0 = FR��

0 + � if � � B2 and � � B1, �20�

r��
0 = FR��

0 − � if � � B1 and � � B2, �21�

r��
0 = FR��

0 if �,� � same Bravais lattice. �22�

When the temperature is 0 K and the system is considered as
a classical system, there is no thermal fluctuation of the at-
oms �i.e., vi=0, i=1,2 , . . ., as shown in Fig. 1� and the strain
energy density function in Eq. �10� is simply the potential
energy per unit volume of the silicon lattice. Due to the
symmetric properties of the diamond structure silicon lattice
and as the Tersoff potential only includes the nearest neigh-
bor interactions, the calculation of the strain energy density
function and its derivatives can be limited to within a five-
atom unit cell �see Fig. 1 in Ref. 29 for the five-atom unit
cell� where, without losing generality, the four outer atoms
are assumed to belong to the first fcc Bravais lattice B1, and
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the center atom belongs to the second fcc Bravais lattice B2.
The strain energy density, thus, can be rewritten as

W = WU =
U1

VA
=

1

2VA
�
�=2

5

V1�, �23�

where WU is the potential energy density, U1 is the potential

energy of the center atom which is numbered as 1, and VA is
the volume of an atom in the initial configuration, which is
given by a3 /8, where a is the silicon lattice constant. Note
that a= ā=5.432 Å for Tersoff silicon at classical 0 K.28 In
Eqs. �14�–�18�, V1� is a function of the distances between the
atoms at their instantaneous positions. At zero temperature,
since r��=r��

0 , Eqs. �14�–�18� can be combined as

V1� = fC�r1�
0 ��Ae−�1r1�

0
− Be−�2r1�

0 	1 + �n
 �
��1,�

fC�r1�
0 �g�cos �1��

0 �e�3
3�r1�

0 − r1�
0 �3�n�−1/2n
 , �24�

where cos �1��
0 = ��r1�

0 �2+ �r1�
0 �2− �r��

0 �2� / �2r1�
0 r1�

0 �. By using
the Cauchy-Born rule given in Eqs. �20�–�22�, one obtains

r1�
0 = �r1�

0 � = �FR1�
0 + ��, � = 2, . . . ,5, �25�

and

r��
0 = �r��

0 � = �FR��
0 �, �,� = 2, . . . ,5; � � � . �26�

Note that the inner displacements for atoms � and � cancel
out in Eq. �26� since the two atoms belong to the same Bra-
vais lattice. From Eqs. �24�–�26�, we note that V1� is a func-
tion of the atom positions in the initial configuration, the
deformation gradient F and the inner displacement �. The
second Piola-Kirchhoff stress can then be rewritten as

S =
1

2VA

d

dE
�
�=2

5

V1�� =
1

2VA
�
�=2

5 
 �V1�

�E
+

�V1�

��

��

�E
� .

�27�

For a given deformation gradient F, the inner displacement �
can be determined by minimizing the strain energy density
function, i.e.,

1

2VA

�

�=2

5
�V1�

��
�

F

= 0. �28�

Substituting Eq. �28� into Eq. �27�, one obtains

S =
1

2VA
�
�=2

5 
 �V1�

�E
� =

F−1

2VA
�
�=2

5 
 �V1�

�F
� . �29�

Substituting Eq. �24� into Eq. �29� and using the chain rule,
the second Piola-Kirchhoff stress can be further rewritten as

S =
F−1

2VA
�
�=2

5

��V1�

�r1�
0

�r1�
0

�F
+ �

�=2

���

5 
 �V1�

�r1�
0

�r1�
0

�F

+
�V1�

� cos �1��
0

� cos �1��
0

�F
�� . �30�

The derivatives of the bond lengths r1�
0 , r1�

0 and the cosine of
the bond angle cos ����

0 , with respect to the deformation gra-

dient F and the inner displacement �, are given in Appendix
A. The elastic constants can be computed from

Cijkl =
�2WU

�Eij � Ekl
−

�2WU

�Eij � �m

 �2WU

��m � �n
�−1 �2WU

��n � Ekl
,

i, j,k,l,m,n = 1,2,3, �31�

where the first term on the right-hand side of Eq. �31� is the
homogeneous part, which describes the elastic response
when all the atoms are displaced homogeneously upon the
application of the strain, and the second term on the right-
hand side of Eq. �31� is the inhomogeneous part associated
with the inner displacement � between the two fcc Bravais
lattices under a uniform strain. As shown in Appendix B, Eq.
�31� can be rewritten as

Cijkl = Fin
−1 �2WU

�Fnj � Fmk
Flm

−1 − Fin
−1Fkm

−1 �WU

�Fmj
Fln

−1

− Fip
−1 �2WU

�Fpj � �m

 �2WU

��m � �n
�−1

Fkq
−1 �2WU

�Fql � �n
,

i, j,k,l,m,n,p,q = 1,2,3, �32�

where the elastic constants are expressed in terms of F and �
and the derivatives of the strain energy density with respect
to the deformation gradient F and the inner displacement �
are obtained in a straightforward manner by using the results
in Appendix A. After all the strain and stress tensors and
their derivatives are calculated, the governing Eqs. �7�–�9�
can be solved either by constructing a weak form �as is typi-
cally done in the finite element method� or by collocating the
governing equations at the continuum nodes �as is typically
done in a finite difference method or in a collocation mesh-
less method30�. We solve the governing equations using the
collocation method, but the finite element method can also
be implemented easily.

D. QC method at finite temperature

In the finite-temperature case, the silicon structure is con-
sidered as a thermodynamic system. For an isothermal sys-
tem, the second Piola-Kirchhoff stress tensor at a constant
temperature, T, is defined by26
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S = 
dWA

dE
�

T
, �33�

where the strain energy density function W in Eq. �10� is
replaced by the Helmholtz free energy density function WA.
The Helmholtz free energy is calculated by using the theory
of lattice dynamics with a quasiharmonic approximation of
the interatomic potential. In a harmonic approximation, the
Tersoff potential function is written in a quadratic form by
neglecting the higher-order ��2� terms in its Taylor’s series
expansion. The total potential energy of a system of N atoms
at any instantaneous position can thus be rewritten as

U��1, . . . ,�N�

= U��1
0, . . . ,�N

0 �

+
1

2 �
�,�=1

N

�
j,k=1

3 ��2U��1, . . . ,�N�
���j ���k

�
�1,. . .,�N=�1

0,. . .,�N
0
v�jv�k,

�34�

where ��j and ��k are the jth and kth component of the
relative position of atoms � and �, respectively, and v�j and
v�k are the jth and kth component of the thermal vibrational
displacement of atoms � and �, respectively. Denoting �
= ��1 , . . . ,�N� and �0= ��1

0 , . . . ,�N
0 �, Eq. �34� can be rewrit-

ten in a matrix form as

U��� = U��0� + 1
2vT�v , �35�

where v= �v1 , . . . ,vN�T and � is the 3N�3N force constant
matrix given by

�3�+j−3,3�+k−3 = � �2U���
���j ���k

�
�=�0

,

�,� = 1, . . . ,N; j,k = 1,2,3. �36�

Note that �0 is a function of lattice constant a, the deforma-
tion gradient F, and the inner displacement �, as shown in
Eqs. �4�, �6�, and �20�–�22�. In a quasiharmonic approxima-
tion, the lattice constant is a function of temperature. For a
crystal lattice, the normal vibrational frequencies can be
computed from the force constant matrix by using the theory
of lattice dynamics. Once the vibrational frequencies are ob-
tained, the Helmholtz free energy A can be readily computed
as25

A = U0 +
1

2�
n

� �n + kBT�
n

ln�1 − e−��n/kBT� , �37�

where U0�U��0� denotes the total potential energy evalu-
ated at the equilibrium position of the system, � is the re-
duced Planck’s constant, kB is the Boltzmann constant, and
�n is the vibrational frequency of the nth normal mode of the
crystal lattice. Note that on the right-hand side of Eq. �37�,
the first term is the static potential energy, the second term is
the quantum-mechanical zero point energy and the sum of
the second and the third terms is the vibrational Helmholtz
free energy. The Helmholtz free energy density for an atom �
is given by

WA =
1

VA

U�

0 +
1

N
�

n
	1

2
� �n + kBT ln�1 − e−��n/kBT��� ,

�38�

where VA is the volume of atom � in the initial configuration,
and U�

0 �U���0� denotes the potential energy of atom �
evaluated using the equilibrium position of the system. Note
that U0=��=1

N U�
0 .

In the quasiharmonic approximation, the elements of the
force constant matrix given in Eq. �36� are a function of the
lattice constant a, the deformation gradient F, and the inner
displacement �. Therefore, the vibrational frequencies, �n,
and the Helmholtz free energy density function, WA, are also
functions of a, F, and �. For a given temperature T the lattice
constant a is first determined on the unstrained silicon crystal
by


 �A

�a
�

T

= 0. �39�

More details on the determination of the lattice constant can
be found in Ref. 29. As discussed in Sec. II C, the inner
displacement � can be determined by minimizing WA for a
given deformation gradient F, i.e.,


 �WA

��
�

F
= 0. �40�

After � is determined, the second Piola-Kirchhoff stress is
then calculated as

S = 
 �WA

�E
+

�WA

��

��

�E
� =

�WA

�E
= F−1�WA

�F
. �41�

Substituting Eq. �38� into Eq. �41�, we have

S =
F−1

VA
	 �U�

0

�F
+

�

N
�

n

1

2
+

1

e��n/kBT − 1
� ��n

�F � . �42�

By defining the generalized phonon Grüneisen parameter
�GPGP�,26

��n��F� = − F−1d ln �n

dF
, �43�

S can also be rewritten as

S =
1

VA
	F−1�U�

0

�F
−

�

N
�

n

1

2
+

1

e��n/kBT − 1
��n��n�� .

�44�

The isothermal elastic constants are now given by �see
Appendix B�,
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Cijkl = Fin
−1 �2WA

�Fnj � Fmk
Flm

−1 − Fin
−1Fkm

−1 �WA

�Fmj
Fln

−1

− Fip
−1 �2WA

�Fpj � �m

 �2WA

��m � �n
�−1

Fkq
−1 �2WA

�Fql � �n
,

i, j,k,l,m,n,p,q = 1,2,3. �45�

The procedure for computing the derivatives of the vibra-
tional frequencies with respect to the deformation gradient
and the inner displacement, i.e., ��n /�F and ��n /��, is
given in Appendix C. Once the isothermal elastic constants

are obtained, the adiabatic elastic constants C̄ijkl can be com-
puted by26

C̄ijkl = Cijkl − 
 �2WA

�T2 �−1 �2WA

�T � Eij

�2WA

�T � Ekl
. �46�

In the general procedure illustrated in Eqs. �33�–�46�, a
key step is to calculate the vibrational frequencies �n from
the force constant matrix. Several quasiharmonic models can
be used to calculate the vibrational frequencies,29 including
the QHM model,25 the LQHM model,22 and the QHMK
model.31 In the following sections, we describe how the vi-
brational frequencies are obtained with each of the models
and provide expressions for the second Piola-Kirchhoff
stress and other quantities that are specific to each model.

1. Real space quasiharmonic (QHM) model

In the QHM model, the vibrational frequencies are given
by � j =�� j /M, where M is the mass of the silicon atom, and
� j �j=1,2 , . . . ,3N� are the eigenvalues computed from the
3N�3N force constant matrix � which is defined in Eq.
�36�. The Helmholtz free energy for an N-atom crystal lattice
is given by26

A = �
�=1

N

U�
0 +

1

2�
j=1

3N

� � j + kBT�
j=1

3N

ln�1 − e−��j/kBT� . �47�

The Helmholtz free energy density for an atom � is given
by

WA =
1

VA
	U�

0 +
1

N
�
j=1

3N 
�� j

2
+ kBT ln�1 − e−��j/kBT��� .

�48�

The second Piola-Kirchhoff stress is calculated from Eq. �42�
as

S =
F−1

VA
	 �U�

0

�F
+

�

N
�
j=1

3N 
1

2
+

1

e��j/kBT − 1
� �� j

�F � . �49�

The elastic constants can be calculated by using Eqs. �45�
and �46�.

The QHM model directly computes all the normal modes
and the vibrational frequencies of the system. While the sur-
face effects and/or defects in a nanostructure can be readily
captured in the QHM model, the number of atoms that can
be considered in this approach is limited due to the fact that

the eigenvalues and their derivatives of a 3N�3N system
must be computed. Typically, the number of atoms N that can
be considered is of the order of several hundreds. For nano-
structures with a characteristic length larger than a few na-
nometers the QHM approach described by Eqs. �48� and �49�
can be inefficient.

2. Local quasiharmonic (LQHM) model

The LQHM model has been proposed as a simple and a
reasonably accurate model to compute the Helmholtz free
energy of solid systems.22 In the local quasiharmonic ap-
proximation, the coupling between the vibrations of different
atoms is neglected and the atoms of the system are consid-
ered as independent harmonic oscillators. In other words, for
a homogeneous system such as a perfect crystal lattice, all
the atoms have the same vibrational frequencies. The force
constant matrix �Eq. �36�� can be decomposed into N 3�3
local force constant matrices. The 3�3 local force constant
matrix ���� for an atom � is given by

� j,k��� = � �2Ulocal���
���j � ��k

�
�=�0

, j,k = 1,2,3, �50�

where Ulocal��� is the local potential energy of atom �, which
contains contributions from the first and the second nearest
neighbors of center atom �. In the LQHM model, the center
atom � vibrates about its equilibrium position while the sur-
rounding atoms are considered fixed. As shown by the 17-
atom cluster in Fig. 1, the instantaneous position of the cen-
ter atom ��=1� affects the potential energy of atoms 1–5,
i.e., the potential energy U�, �=1, . . . ,5, is a function of the
center atom position. Therefore, Ulocal��� can be calculated
within a cell that includes the first and the second nearest
neighbors of the center atom �i.e., 17 atoms as shown in Fig.
1�. Ulocal��� is given by

Ulocal��� = �
�=1

5

U�����, � = 1;� � �1, . . . ,17� , �51�

where �� �� takes values of � and its neighbors� denotes the
position of atom � and its four neighbor atoms, and U� is the
potential energy of atom �. By diagonalizing the local force
constant matrix ����, the three vibrational frequencies ��j

can be determined, i.e., ��j =���j /M, where ��j �j=1,2 ,3�
are the eigenvalues of the 3�3 force constant matrix ����.
The Helmholtz free energy for an atom � is given by22

A��� = U�
0 +

1

2�
j=1

3

� ��j + kBT�
j=1

3

ln�1 − e−���j/kBT� .

�52�

The Helmholtz free energy for an N-atom crystal lattice is
given by A=��=1

N A���. The Helmholtz free energy density
function for an atom � is then given by WA=A��� /VA, and
the second Piola-Kirchhoff stress for an atom � is given by
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S =
F−1

VA
	 �U�

0

�F
+ � �

j=1

3 
1

2
+

1

e���j/kBT − 1
� ���j

�F � . �53�

The elastic constants can again be computed by using Eqs.
�45� and �46�.

The LQHM model is computationally attractive, as it re-
duces the degrees of freedom by neglecting the correlations
between the vibrations of different atoms, and has been
used18–21 to extend the QC method at classical 0 K to finite
temperature cases. As shown in Ref. 29 and as pointed out in
Sec. IV B, the LQHM model can be inaccurate in describing
the thermal and elastic properties as it neglects the vibra-

tional coupling of the atoms. For this reason, nonlocal quasi-
harmonic models are necessary to accurately calculate the
material properties.

3. k-space quasiharmonic (QHMK) model

For a perfect crystal lattice with homogeneous deforma-
tion, the Helmholtz free energy can be computed efficiently
in the reciprocal space by using the Bloch’s theorem32 with
the Born–von Karman boundary condition. In the reciprocal
representation, the force constant matrix defined by Eq. �36�
can be reduced to a 6�6 dynamical matrix by using Fourier
transformation as �see Ref. 29 for details�

D�k� =
1

M� �
�=1

N

� j,k
11��,��eik·R��

0 �
�=1

N

� j,k
12��,��eik·�R��

0 −F−1��

�
�=1

N

� j,k
21��,��eik·�R��

0 +F−1�� �
�=1

N

� j,k
22��,��eik·R��

0 �, � = 1; j,k = 1,2,3, �54�

where k is the wave vector and, for a given N atom silicon
lattice, N /2 k points can be chosen to lie in the first Brillouin
zone �FBZ� due to the periodicity of the reciprocal lattice,31

and � j,k
pq�� ,�� is given by

� j,k
pq��,�� = � �2U���

���j � ��k
�

�=�0�F,��,��Bp,��Bq

,

� = 1; � = 1, . . . ,N; p,q = 1,2; j,k = 1,2,3. �55�

In the above equations, � is the center atom selected to com-
pute the dynamical matrix, and Bp and Bq denote the pth and
the qth Bravais lattices, respectively. In the calculation of the
dynamical matrix, for the center atom �, atom � loops over
all the atoms in the crystal lattice. However, as the Tersoff
potential only includes the nearest neighbor interactions, it
can be shown that � j,k

pq�� ,�� has nonzero values only if the
atom � is within two layers of atoms surrounding the center
atom �. Therefore, the force constant matrix can be obtained
by the calculation within a cell that includes the second near-
est neighbors �total 17 atoms for diamond structure crystal
silicon� of a center atom �, as shown by the 17-atom cluster
in Fig. 1. More details on the calculation of the dynamical
matrix for Tersoff silicon can be found in Ref. 29.

The vibrational frequencies can be calculated by �s�k�
=��s�k�, where �s�k� are the eigenvalues of the 6�6 dy-
namical matrix D and s is the index of the polarization for
silicon crystal. In the reciprocal representation, the Helm-
holtz free energy for an N-atom crystal lattice is given by29,31

A = U0 +
1

2�
k

�
s=1

6

� �s�k� + kBT�
k

�
s=1

6

ln�1 − e−��s�k�/kBT� .

�56�

For a bulk silicon crystal, k can be taken as a continuous
variable and �k in Eq. �56� can be replaced by an integral.
Therefore, the Helmholtz free energy density for an atom �
is given by

WA =
U�

0

VA
+

1

2VAVB

1

2
�

k
�
s=1

6

� �s�k�dk

+ kBT�
k
�
s=1

6

ln�1 − e−��s�k�/kBT�dk� , �57�

where VB is the volume of the first Brillouin zone of the
reciprocal lattice and the factor 2 is due to the two Bravais
lattices of a silicon crystal. The first term and the second
term on the right-hand side of Eq. �57� are the static and the
vibrational component of the Helmholtz free energy density,
respectively. After the Helmholtz free energy density is ob-
tained, the second Piola-Kirchhoff stress is given by

S =
F−1

VA
	 �U�

0

�F
+

�

2VB
�
s=1

6 �
k

1

2
+

1

e��s�k�/kBT − 1
� ��s�k�

�F
dk� .

�58�

The elastic constants can again be obtained by using Eqs.
�45� and �46�.

The QHMK model is mathematically equivalent to the
QHM model with the Born–von Karman boundary condition
�see Ref. 29 for more details�. In the QHMK model, the
vibrational component of the Helmholtz free energy density
�the second term on the right-hand side of Eq. �57�� for the
atom corresponding to the continuum node, X, is computed
by using a bulk �nonlocal� silicon crystal lattice. The nonlo-
cal silicon crystal lattice is, however, assumed to be sub-

TANG et al. PHYSICAL REVIEW B 74, 064110 �2006�

064110-8



jected to a homogeneous deformation given by the local de-
formation gradient F�X�. We refer to this approximation as
the “semilocal” approximation to compute the vibrational
free energy density. For large crystal structures where the
surface effects are negligible and each continuum node rep-
resents a large number of atoms, the semilocal approxima-
tion can be an accurate and an efficient way to compute the
vibrational Helmholtz free energy of the structure.29

III. MOLECULAR DYNAMICS SIMULATION
OF SILICON NANOSTRUCTURES

We developed a molecular dynamics code to simulate the
mechanical behavior of nanostructures with applied external
loads. In the MD simulations, the atoms of the nanostructure
are initially positioned at the ideal diamond lattice sites, and
then relaxed to the equilibrium position after the external
loads are applied. In the initialization step, the velocities are
randomized to satisfy the Maxwell-Boltzmann distribution at
the prescribed temperature. For the MD simulation results
presented in this paper, the relaxation step was performed for
2 ns with a time step of 0.2 fs. Once the equilibrium state is
reached, about 10 000 more time steps are performed for
time averaging purpose. The temperature is controlled by
using a Nosé-Hoover thermostat.33 The Newtonian equations
of motion are integrated by the standard Verlet leapfrog al-
gorithm. Verlet’s neighbor lists are also employed to improve
the performance of the code.34 The bonded interactions for
the silicon material are modeled by using the Tersoff poten-
tial.

Since MD simulations obey the rules of classical statisti-
cal mechanics, quantum corrections are necessary when the
results are compared with quantum-mechanical calculations
or experiments, especially at low temperatures. We imple-
mented the temperature scaling method proposed in Ref. 35.
In this method the scaled MD temperature, TMD, �corre-
sponding to a real temperature T� is computed by requiring
that the internal energy of the classical system be identical to
that of the corresponding quantum system at T. This leads to
the scaling relation

TMD =
1

3�N − 1�kB
�
k

�
s=1

6

� �s�k�
1

2
+

1

e��s�k�/kBT − 1
� ,

�59�

where N is the total number of atoms in the system. Note
that, since the QHMK model describes the thermal properties
of the bulk silicon crystal lattice more accurately,29 we adopt
the QHMK model for the quantum correction of the tempera-
ture.

The molecular dynamics code is used to perform stretch
and bending tests on silicon structures. For a stretch test on a
silicon nanostructure, the center atom in the left surface layer
is fixed along all the three Cartesian directions to prevent
translational movement of the structure. All the other atoms
at the left end of the structure are fixed along the x direction
and are allowed to move freely along the y and z directions,
i.e., the nanostructure can expand or contract freely along the
y and z directions. The external loads are applied on the

atoms in the right surface layer. For bending tests on silicon
nanostructures, the appropriate layer of atoms at the end�s� of
the nanostructures are fixed along all the three Cartesian di-
rections.

IV. RESULTS AND DISCUSSION

A. Strain and temperature effects
on PDOS and Grüneisen parameters

The PDOS represents the number of vibrational modes
per unit phonon frequency per atom. In this paper, for the
calculation of PDOS, we adopt the direct sampling method,
which generates a large number of uniformly distributed k
points in the FBZ and approximates the PDOS by a normal-
ized histogram.36 In our calculation, 100�100�100/2
points uniformly distributed in the first quadrant of the FBZ
are used. To investigate the strain effect on the PDOS at
finite temperature, the lattice constant is first determined by
solving Eq. �39�. Next for a given deformation gradient F,
the inner displacement � is determined by solving Eq. �40�.
The phonon frequencies can then be obtained from the ei-
genvalues of the dynamical matrix. The effect of strain on
the PDOS at T=1000 K is shown in Fig. 2. We observe that
when a uniaxial deformation is applied, a shift of optical
phonons and splitting of their degeneracies occur, while the
acoustic phonons do not vary much, as shown in Fig. 2�a�.
Figure 2�b� shows that a shear deformation primarily causes
a splitting of the degeneracies, especially for the optical
phonons.

The GPGPs �ij
�n� defined by Eq. �43� measure the variation

of the phonon frequency �n with deformation at a constant
temperature. These parameters can be used directly in the
calculation of the stress tensor as shown in Eq. �44�. The
volumetric phonon Grüneisen parameter �PGP� for un-
strained silicon crystal, which is defined as �V

�n�=
−d�ln �n� /d�ln V�, where V is the lattice volume, can be cal-
culated from the GPGPs by �V

�n�= ��11
�n�+�22

�n�+�33
�n�� /3. The

volumetric PGP for unstrained Tersoff silicon at 0 K �classi-
cal� has already been calculated in Ref. 37. In this paper, we
investigate the temperature effect on the PGP for unstrained
Tersoff silicon at finite temperature. First, the lattice constant

FIG. 2. �Color online� �a� PDOS for stretch and compression
conditions; �b� PDOS under a shear condition. T=1000 K.
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is determined by using Eq. �39�. In the QHMK method, the
phonon dispersion relations �=�s�k� are obtained by nu-
merically diagonalizing Eq. �54� for different wave vectors
k, which are usually chosen along several special directions
in the FBZ. By differentiating the phonon dispersion rela-
tions with respect to the deformation gradient F, the GPGPs
as a function of the wave vector k are obtained by using
�ij

�ks�=−Fim
−1d�ln �s�k ,F�� /dFmj, i , j ,m=1,2 ,3. The volumet-

ric PGPs �V obtained from the QHMK method at two differ-
ent temperatures are shown in Fig. 3. We observe that the
Grüneisen parameters for both the acoustic modes and the
optical modes increase as the temperature increases and the
shifts are due to the thermal expansion. In the LQHM
method, the three phonon frequencies degenerate into one
value for the unstrained silicon, and the volumetric PGPs are
calculated as 1.295 at T=0 K and 1.317 at T=1000 K.

B. Bulk elastic constants

The elastic constants are the key parameters in the consti-
tutive laws describing a material. We have determined the
isothermal and adiabatic elastic constants of Tersoff silicon
for several cases.

First, when quantum-mechanical effects are neglected at
0 K, i.e., when the zero point energy �the second term on the
right-hand side of Eq. �56�� is neglected, the characteristic
energy is the lattice potential energy. In this case, the elastic
constants are simply the second derivatives of the potential
energy density function with respect to the strain and the
inner displacement as given by Eq. �31�. Since the unstrained
silicon crystal lattice is cubic symmetric,38 the pairs ij and kl
in Cijkl can be replaced by a single index p in the Voigt
notation: ij=11→p=1, ij=22→p=2, and ij=12 or 21→p
=4. For example, C1212 is replaced by C44. The elastic con-
stants computed at classical 0 K for the second Tersoff �T2�
model39 are, C11=1.218 Mbars, C12=0.859 Mbar, C44
=0.103 Mbar, and C44

0 =0.924 Mbar, where C44
0 is C44 com-

puted by neglecting the inner displacement �. For the third
Tersoff �T3� model,23 C11=1.428 Mbars, C12=0.756 Mbar,
C44=0.690 Mbar, and C44

0 =1.189 Mbars. These results
match the calculations performed in Ref. 28. The Cauchy

discrepancy, which is defined as �C12−C44�, for the T2 model
is 0.756 Mbar, for the T3 model is 0.066 Mbar, and from
experiments is −0.16 Mbar.

Second, the adiabatic elastic constants at finite tempera-
ture and zero strain are calculated by using the QHMK,
LQHM, and the QHM models. We first calculate the isother-
mal elastic constants and the adiabatic elastic constants are
then obtained by using Eq. �46�. We use 4000 k points for
the QHMK calculations. For various temperatures, the calcu-
lated elastic constants and the comparison with published
data are summarized in Table I. In the calculations using the
QHM model, 5�5�5 unit cells �1000 atoms� with periodic
boundary conditions are used. We observe that the results
from the QHMK model match well with those from atomis-
tic simulations over a large temperature range while those
from the LQHM model deviate from atomistic simulations
�especially the results for C12�. The QHM model results are
identical to the results obtained from the QHMK model with
1000/2=500 k points. The maximum deviation between the
QHM model results with 1000 atoms and the QHMK model
results with 4000 k points �shown in Table I� is less than 5
�10−4 Mbar. However, the computational cost of the QHM
model is several orders of magnitude higher that of the
QHMK model. For this reason, the QHM model is not used
for the rest of the calculations shown in this paper.

Third, we investigated the strain effect on the isothermal
elastic constants at both 0 and 1000 K. Both QHMK and
LQHM models are employed to calculate the elastic con-
stants. In Fig. 4, the component F11 of the deformation gra-
dient is varied from 0.85 to 1.15 to investigate the effect of
compression �F11�1� and tension �F11�1� along the x di-
rection. The elastic constants decrease as the material is
stretched and increase as the material is compressed. Note
that the cubic symmetry of the unstrained silicon crystal lat-
tice breaks down due to the strain effect and this results in
C1111�C2222, as shown in Fig. 4. Figure 5 shows the varia-
tion of the elastic constants with F12, which represents a
shear deformation along the y direction. In this case, due to
the introduction of shear strain, the elastic constants corre-
sponding to the shear strain and stress relationships become
nonzero, i.e., C1112,C2212�0. Since E12=E21 under any de-
formation, the following symmetric properties remain:
C1112=C1121, C2212=C2221, and C1212=C1221=C2112=C2121.
As shown in Figs. 4 and 5, the LQHM model results can
deviate by as much as 15% compared to the QHMK model
results at 1000 K. The LQHM model results can deviate sig-
nificantly ��30% � when the silicon crystal is under a gen-
eral strain condition at 1000 K as shown in Fig. 6. From
these results, we can conclude that the elastic constants from
the LQHM model can be inaccurate for Tersoff silicon, es-
pecially when the material is under strain at high tempera-
ture.

C. Mechanical behavior of nanostructures
under external loads

In Sec. II, we have described the multiscale QC approach
for zero and finite-temperature conditions. In this section, we
employ the multiscale QC approach to perform a mechanical

FIG. 3. �Color online� The volumetric PGP �V for unstrained
Tersoff silicon: �a� The acoustic modes at 0 K �the dashed lines�
and 1000 K �the solid line�; �b� the optical modes at 0 K �the
dashed lines� and 1000 K �the solid lines�.
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analysis of silicon nanostructures under external loads at zero
and finite temperatures. Both the LQHM and the QHMK
models are employed in all the calculations for finite tem-
perature, and all the calculations for 0 K are carried out with
quantum-mechanical effects included, i.e., the zero point en-
ergy is calculated as shown in Eq. �52� for the LQHM model
and Eq. �56� for the QHMK model. Shown in Fig. 7 are
results for both compression and stretch tests on a silicon
beam with a geometry of 10�length��20�width�
�10�thickness� unit cells, i.e., 5.432�10.864�5.432 nm3

�17 037 atoms in MD simulations� at 0 and 1000 K. The MD
results are also presented in Fig. 7 for comparison. The tem-
perature in MD is scaled by using Eq. �59�. The results in
Fig. 7 show the significance of temperature on the displace-

ment of the structure. In addition, we observe that in the
compression region �pressure�0� the LQHM model under-
estimates the displacement of the structure, due to its over-
estimation of the elastic constants when the crystal structure
is under compression �see Fig. 4�; while in the tensile region
the results from the LQHM model are close to the QHMK
model results, since both models give similar elastic con-
stants under tension. The temperature effect is captured by
the finite-temperature QC approach and the accuracy of the
method is verified by the MD results. Figures 8 and 9 show
bending tests at 0 and 1000 K on a silicon beam with a
geometry of 40�20�10 unit cells, i.e., 21.728�10.864
�5.432 nm3 �66 867 atoms in MD simulations�, with fixed-
fixed and cantilever boundary conditions, respectively. When

TABLE I. Adiabatic elastic constants �in Mbars� for Tersoff silicon at various temperatures.

QHMK LQHM QHM Atomistic simulations

T �K� C11 C12 C44 C11 C12 C44 C11 C12 C44 C11 C12 C44

100 1.392 0.740 0.672 1.392 0.738 0.673

180.7 1.386 0.738 0.669 1.387 0.734 0.671 1.386 0.738 0.669 1.388a 0.742a 0.673
±0.138a

300 1.372 0.732 0.662 1.373 0.725 0.667

500 1.345 0.719 0.648 1.346 0.708 0.656 1.345 0.719 0.648

700 1.315 0.706 0.633 1.317 0.691 0.644

844.6 1.293 0.696 0.622 1.295 0.678 0.635 1.293 0.696 0.622 1.307
±0.002b

0.708
±0.002 b

0.620
±0.01b

900 1.285 0.692 0.618 1.287 0.673 0.631

1000 1.270 0.685 0.611 1.272 0.664 0.625 1.270 0.685 0.611

1100 1.255 0.678 0.603 1.256 0.655 0.618

1300 1.225 0.663 0.588 1.225 0.636 0.605

1460.6 1.200 0.652 0.575 1.200 0.621 0.594 1.200 0.652 0.575 1.228a 0.681a 0.592
±0.01a

1500 1.194 0.649 0.572 1.194 0.617 0.591

aData from Ref. 40.
bData from Ref. 41.

FIG. 4. �Color online� Elastic constants �in Mbars� when the
lattice is under compression �F11�1� and tension �F11�1�. The
dashed lines are the QHMK results for T=0 K, the triangles are the
LQHM results for T=0 K, the solid lines are the QHMK results for
T=1000 K, and the circles are the LQHM results for T=1000 K.

FIG. 5. �Color online� Elastic constants �in Mbars� as a function
of shear deformation. The dashed lines are the QHMK results for
T=0 K, the triangles are the LQHM results for T=0 K, the solid
lines are the QHMK results for T=1000 K, and the circles are the
LQHM results for T=1000 K.
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the temperature is high �1000 K in this case� the results from
the QC method start to deviate from the MD results due to
the anharmonic effects of the interatomic potential. Figure 10
shows results for a silicon beam with a geometry of
10�20�10 unit cells, i.e., 5.432�10.864�5.432 nm3

�17 037 atoms in MD simulations�, subjected to a general
loading condition. The deformation of the beam resembles
the deformation condition under which the elastic constants
shown in Fig. 6 are computed. In this case, the results ob-
tained from the QHMK model agree well with the MD re-
sults, while the LQHM results are in significant error com-
pared to the MD results. The error can be explained by the
elastic constants shown in Fig. 6, where most of the elastic
constants predicted by the LQHM model are significantly
higher than those computed by using the QHMK model.

When the characteristic length of the nanostructure is
large, the surface effects, which arise due to the different

atomic configuration of the surface atoms from that of the
interior atoms, on the mechanical behavior of the nanostruc-
ture are typically negligible. However, when the characteris-
tic length of the nanostructure is less than a few nanometers,
the surface effects can become significant. The surface
atomic configuration depends on the material as well as on
the surrounding environment, which can be quite compli-
cated for silicon nanostructures. In general, the Cauchy-Born
rule may not hold for surface atoms. Accurate treatment of
the surface atoms by the quasicontinuum method at finite
temperatures is still an open research topic.19,42 In this paper,
we adopt a simple surface model, where the deformed con-
figuration of the surface atoms is still assumed to follow the
Cauchy-Born rule and the elastic properties at the surface are
calculated by averaging over the first and the second layer of
atoms. Although the surface model employed in this paper is
simple, more advanced surface models can be readily incor-
porated in the finite-temperature QC framework. Figure 11
shows a 4�10�4 unit cells, i.e., 2.173�5.432
�2.173 nm3 �1487 atoms in MD simulations�, silicon struc-

FIG. 6. �Color online� Elastic constants �in Mbars� at 1000 K
under a combined deformation of F11=0.85 and F12 varies from
−0.2 to 0.2. The dashed lines are the QHMK results for T=0 K, the
triangles are the LQHM results for T=0 K, the solid lines are the
QHMK results for T=1000 K, and the circles are the LQHM results
for T=1000 K.

FIG. 7. �Color online� The peak displacement as a function of
the applied compression pressure ��0� and tensile pressure ��0�
for a silicon beam at 0 and 1000 K.

FIG. 8. �Color online� The peak displacement as a function of
the applied body force �acts vertically downwards� for a fixed-fixed
silicon beam at 0 and 1000 K.

FIG. 9. �Color online� The peak displacement as a function of
the applied body force �acts vertically downwards� for a cantilever
silicon beam at 0 and 1000 K.
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ture with one end clamped and the other end subjected to a
tensile pressure. The deformed shape of the nanostructure
obtained from MD and the QC approaches �using the QHMK
model� is compared. To investigate the significance of the
surface effect, we also computed the deformed shape of the
nanostructure without taking into account the surface effects,
i.e., the surface atoms are treated the same as the interior
atoms. As shown in Fig. 11, the primary local deformation
features due to the surface effects are captured by the QC
approach. Figure 12 shows the displacement as a function of
the applied pressure for the corner point on the right surface
of the structure shown in Fig. 11. The computed results com-
pared well with the MD results.

V. CONCLUSIONS

We have proposed an extension of the original QC
method to treat the solid structures at finite temperature. For
isothermal systems at finite temperature, the constitutive re-
lations are computed by using the Helmholtz free energy
density. The static part of the Helmholtz free energy density

is obtained directly from the interatomic potential while the
vibrational part is calculated by using the real space quasi-
harmonic model, the local quasiharmonic model, and the
k-space quasiharmonic model. Our results indicate that even
though the real space quasiharmonic model predicts the ma-
terial properties accurately, it is inefficient when the system
contains more than several hundreds of atoms. The local
quasiharmonic model is simple and efficient, but it can be
inaccurate to predict elastic constants of Tersoff silicon, es-
pecially when the material is under strain. The k-space
quasiharmonic model can predict the material properties ac-
curately and efficiently. Using the finite-temperature QC
method, we have investigated the effect of temperature and
strain on the PDOS and phonon Grüneisen parameters, and
calculated the elastic constants and the mechanical response
of silicon nanostructures under external loads at various tem-
peratures. Our results indicate that for silicon nanostructures
larger than a few nanometers in critical dimension, the
k-space quasiharmonic model predicts the mechanical re-
sponse of the nanostructure accurately over a large tempera-
ture range, while the local quasiharmonic model can be in-
accurate for Tersoff silicon.
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APPENDIX A: CALCULATION OF THE DERIVATIVES
OF THE BOND LENGTH AND BOND ANGLE

Given any two atoms � and �, the relative position vec-
tors between their equilibrium positions in the initial and the
deformed configurations are denoted by R��

0 and r��
0 , respec-

tively �see Fig. 1�. Without losing generality, we assume �
�B1 and ��B2. From the Cauchy-Born rule, the two vec-
tors are related by r��

0 =FR��
0 −�. The first derivatives of the

bond length, r��
0 = �r��

0 �, with respect to the deformation gra-
dient F and the inner displacement �, are given by

FIG. 10. �Color online� The peak displacement of a silicon beam
subjected to a general loading at 1000 K. Px=5 GPa and Py varies
from 0 to 2 GPa.

FIG. 11. �Color online� Deformed shape of a silicon nanostruc-
ture subjected to an axial pressure. Comparison of the MD and the
QC approaches �874 K�.

FIG. 12. �Color online� The displacement of point A shown in
Fig. 11 as a function of the applied pressure.
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�r��
0

�Fij
=

r��i
0

r��
0 R��j

0 , i, j = 1,2,3 �A1�

and

�r��
0

��i
= −

r��i
0

r��
0 , i = 1,2,3, �A2�

where r��i
0 and R��j

0 are the ith and jth component of r��
0 and

R��
0 , respectively. The derivatives of cos ����

0 can be ob-
tained by applying the chain rule, i.e.,

� cos ����
0

�v
= 
 1

r��
0 −

cos ����
0

r��
0 � �r��

0

�v

+ 
 1

r��
0 −

cos ����
0

r��
0 � �r��

0

�v
−

r��
0

r��
0 r��

0

�r��
0

�v
,

�A3�

where cos ����
0 = ��r��

0 �2+ �r��
0 �2− �r��

0 �2� / �2r��
0 r��

0 �, and v
can be F or �.

The second derivatives of the bond length r��
0 are given

by

�2r��
0

�Fij � Fkl
=

R��j
0 R��l

0

r��
0 
�ik −

r��i
0 r��k

0

�r��
0 �2 � , �A4�

�2r��
0

��i � � j
=

1

r��
0 
�ij −

r��i
0 r��j

0

�r��
0 �2 � , �A5�

�2r��
0

�Fij � �k
= −
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r��
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0 r��k

0
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0 �2 �R��j

0 . �A6�

The second derivatives of cos ����
0 are given by
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where v and w could be F or �.

APPENDIX B: EXPRESSION
FOR ELASTIC CONSTANTS

Given the strain energy density W �W=WU for classical
systems at zero temperature and W=WA for isothermal sys-
tems at finite temperature�, the elastic constants are given by

Cijkl =
�2W

�Eij � Ekl
−

�2W

�Eij � �m

 �2W

��m � �n
�−1 �2W

��n � Ekl
,

i, j,k,l,m,n = 1,2,3. �B1�

Noting that �W /�F=F�W /�E and �W /�E=F−1�W /�F, the
second derivatives of W with respect to Eij and Ekl, i , j ,k , l
=1,2 ,3, can be rewritten as the derivatives with respect to F

�2W

�Eij � Ekl
= Fin

−1 �2W

�Fnj � Fmk
Flm

−1 − Fin
−1Fkm

−1 �W

�Fmj
Fln

−1. �B2�

Substituting Eq. �B2� into Eq. �B1�, we obtain the expression
for the elastic constants in terms of F and �, i.e.,

Cijkl = Fin
−1 �2W

�Fnj � Fmk
Flm

−1 − Fin
−1Fkm

−1 �W

�Fmj
Fln

−1

− Fip
−1 �2W

�Fpj � �m

 �2W

��m � �n
�−1

Fkq
−1 �2W

�Fql � �n
,

i, j,k,l,m,n,p,q = 1,2,3. �B3�

APPENDIX C: DERIVATIVES
OF VIBRATIONAL FREQUENCIES

As discussed in Sec. II D, to compute the elastic constants
and the second Piola-Kirchhoff stress tensor, one needs to
calculate the derivatives of the vibrational frequencies, �n,
with respect to the deformation gradient F and the inner
displacement �. These calculations are not trivial because,
first, degeneracies exist for the vibrational frequencies for a
given wave vector k and the derivatives of the eigenvalues
cannot be obtained directly from the Hellmann-Feynman
theory;43 second, the second derivatives, including the cross
derivatives of �n with respect to F and �, are required. The
calculation becomes more involved when degeneracies occur
in the first derivatives of �n. In this paper, we adopt the
method proposed in Refs. 44–46. The method is summarized
below.

Consider an n�n eigenvalue problem

D�i = �i�i, i = 1, . . . ,n . �C1�

Without losing generality, we assume Eq. �C1� has a repeated
root of order m and the eigenvalues are ordered so that �1
=�2= , . . . , =�m. The eigenvectors �1 ,�2 , . . . ,�m associated
with this repeated eigenvalue are thus not unique, i.e., any
linear combination of the eigenvectors is also an eigenvector.
Assuming the eigenvectors are orthonormal vectors given by
�= ��1 ,�2 , . . . ,�m�, then

� = ��1,�2, . . . ,�m�n�m�h1h2, . . . ,hm�m�m

= ��1,�2, . . . ,�m�H , �C2�

is also a set of orthonormal eigenvectors for any orthonormal
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matrix H, with �i=�hi. When the eigenvalue and eigenvec-
tor derivatives are required, the correct set of eigenvectors
must be chosen, i.e., the correct H must be obtained. Differ-
entiating Eq. �C1� with respect to a parameter �k by using �i
gives


 �D

��k
−

��i

��k
I��i + �D − �iI�

��i

��k
= 0, �C3�

and premultiplying by �H, which is the Hermitian of �, one
obtains

�H �D

��k
�hi =

��i

��k
hi. �C4�

Note that Eq. �C4� is general. If there is no degeneracy for �i,
then hi is simply 1 and ��i /��k can be obtained as the left-
hand side of Eq. �C4�. In the degenerate case, Eq. �C4� is an
eigenvalue problem and the eigenvalue derivatives can be
obtained. Differentiating Eq. �C3� with respect to a param-
eter �l and premultiplying by �H gives

�H
 �2D

��k � �l
−

�2�i

��k � �l
I��i + �H
 �D

��k
−

��i

��k
I� ��i

��l

+ �H
 �D

��l
−

��i

��l
I� ��i

��k
= 0, �C5�

where, in general, the first derivative of �i can be written
as44–46 ��i /��k=vki+�cki, where vki and cki are to be deter-
mined. Substituting ��i /��k into Eq. �C5�, one obtains

�H
 �2D

��k � �l
−

�2�i

��k � �l
I��i + �H
 �D

��k
−

��i

��k
I�vli

+ �H
 �D

��l
−

��i

��l
I�vki = 0, �C6�

where vki is given by vki=Vkhi, and Vk is a solution of �D
−�I�Vk=−��D /��k−��i /��kI��. Note that �D−�I� is rank
deficient with rank �n−m�. Therefore, m elements of each
vector of Vk must be assigned. Several techniques can be
employed to select m elements in the vectors of Vk.

45 In this
paper, we set the elements of the vectors of Vk corresponding
to the m elements of the largest magnitude in each vector of
� to be zero. Substituting vki into Eq. �C6� gives

�H
 �2D

��k � �l
��hi + �H
 �D

��k
−

��i

��k
I�Vlhi

+ �H
 �D

��l
−

��i

��l
I�Vkhi =

�2�i

��k � �l
hi. �C7�

By solving the eigenvalue problem, Eq. �C7�, the second
derivatives of the eigenvalues can be obtained.
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