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We report muon spin rotation measurements on a single crystal of the marginal type-II superconductor V.
The measured internal magnetic field distributions are modeled assuming �i� solutions of the Ginzburg-Landau
�GL� equations for an ideal vortex lattice obtained using an iterative procedure developed by Brandt �Phys.
Rev. Lett. 78, 2208 �1997��, �ii� a variational GL method, and �iii� a modified London model. Remarkably the
models yield qualitatively similar results. The magnetic penetration depth � and the coherence length �

determined from the data analysis exhibit strong field dependences, which are attributed to changes in the
electronic structure of the vortex lattice. We find that the zero-field extrapolated value of � is essentially
independent of the assumed model and agrees well with the value obtained by experimental techniques that
probe the Meissner state. On the other hand, only fits to either of the GL models yield reliable values of �.
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I. INTRODUCTION

In order to analyze muon spin rotation ��SR� measure-
ments on a type-II superconductor in the vortex state, it is
necessary to assume a theoretical model for the spatial varia-
tion of the local internal magnetic field B�r�.1 An essential
requirement of the model is that it must account for the finite
size of the vortex cores. Thus far the internal magnetic field
distribution n�B� measured by �SR has been analyzed as-
suming analytical models for B�r� based on London and
Ginzburg-Landau �GL� theories. Since London theory does
not account for the finite size of the vortex cores, a cutoff
factor derived from GL theory must be inserted into the ana-
lytical London expression for B�r� to correct for the diver-
gence of B�r� as r→0. Unfortunately, analytical cutoff fac-
tors are derivable from GL theory only near the lower and
upper critical fields Bc1 and Bc2. At intermediate fields, these
analytical cutoffs deviate substantially from the precise nu-
merical calculations,2 making modified London models inap-
propriate for the analysis of �SR data. There are several
approximate analytical expressions for B�r� that have been
derived from the GL equations.3–6 For example, a variational
solution of the GL equations3,4 has proven to be a reliable
model for analyzing �SR measurements on V3Si �Ref. 7�,
NbSe2 �Ref. 8�, and YBa2Cu3O7−� �Refs. 9 and 10�. How-
ever, this analytical GL model is strictly valid only at low
reduced fields b=B /Bc2 and large values of the GL param-
eter �. Thus, often used analytical models for B�r� have lim-
ited validity and can deviate substantially from the numerical
solutions of the GL equations.

Brandt has developed an iterative method for solving the
GL equations that accurately determines B�r� for arbitrary b,
�, and vortex-lattice symmetry.11 Thus far this iteration
method has not been applied to the analysis of �SR measure-
ments of n�B� in the vortex state. As a first test of this
method we have chosen to study the marginal type-II super-
conductor vanadium �V�. This rigorous analysis method is
expected to be required for V, whose low value of � falls
outside the range of validity of the analytical models. In

addition, the low value of Bc2 ��0.45 T� gives us experi-
mental access to reduced fields which are beyond the range
of validity of the analytical model.

The paper is organized as follows: Theoretical models for
B�r� are described in Sec. II. The experimental procedures
are described in Sec. III. Measurements in zero external
magnetic field are presented in Sec. IV. Measurements in the
vortex state are described in Sec. V, and concluding remarks
are given in Sec. VI.

II. THEORETICAL MODELS

A. Iterative GL solution

Here we briefly outline the iteration method presented in
Ref. 11, and correct some typographical errors contained
therein. The GL equations are written in terms of the real
order parameter �, the local magnetic field B, and the super-
velocity Q, which are expressed as the Fourier series

��r� = �
K

aK�1 − cos K · r� , �1�

B�r� = B̄ + �
K

bK cos K · r , �2�

Q�r� = QA�r� + �
K

bK
ẑ � K

K2 sin K · r , �3�

where aK and bK are Fourier coefficients, ��r�= �	�r��2, B̄ is
the average internal field, and 	�r� is the complex GL order
parameter. The “tail” of the position vector r= �x ,y� is at the
vortex center �0,0�. The local magnetic field B is given in
units of �2Bc �where Bc is the thermodynamic critical field�,
and all length scales are in units of the magnetic penetration
depth �. QA�r� is the supervelocity obtained from Abrikos-
ov’s solution of the GL equations near Bc2:
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QA�r� =
��A � ẑ

2��A
, �4�

where �A�r� is calculated from Eq. �1� using

aK
A = − �− 1�
 exp�− �
�3� . �5�

Here 
=m2+mn+n2, assuming a hexagonal vortex lattice
with vortex positions given by

Rmn = �mx1 + nx2,ny2� , �6�

where m and n are integers, x1 is the intervortex spacing,
x2=x1 /2, and y2=x1

�3/2. The spatial field profile B�r� was
calculated at approximately 950 locations within one-quarter
of the rectangular unit cell shown in Fig. 1�a�. The reciprocal
lattice vectors used in the calculation of B�r� are given by

K 	 Kmn =
2�

S
�my2,nx1 + mx2� , �7�

where S is the unit cell area. The Kmn vectors are restricted to
those indicated in Fig. 1�b�, corresponding to −16�m16
and −16�n16 within a semicircle with Ky �0 �but ex-
cluding vectors with Kx�0 and Ky =0�. It was found that the
calculated field distribution did not change significantly if

the summation was extended to values of �n� and �m� greater
than 16.

The Fourier coefficients aK and bK are calculated from

aK =
4�2
��2 − 2� + �Q2 + g�cos K · r�

K2 + 2�2 , �8�

aK = aK
� − �Q2 − g�/
�2� , �9�

bK =
− 2
��B + �̄�B̄ − B� + p�cos K · r�

K2 + �̄
, �10�

where g= ����2 / �4�2��, �̄ is the spatial average of �, and
p= ����Q�ẑ=Qy

��
�x −Qx

��
�y . We note that the definitions of

p and the �̄�B̄−B� term in Eq. �10� are incorrectly written in
the original article,12 but have been corrected here. As ex-
plained in Ref. 11, solutions to the GL equations are acquired
by first iterating Eqs. �1�, �8�, and �9� a few times to relax �
and then iterating Eqs. �10�, �1�–�3�, �8�, and �9�, and again
�10�, etc., to relax B.

B. Comparison with other models

Here we compare the results of the above iteration
method for B�r� to the widely used modified London and
analytical GL models. The local magnetic field at position
r= �x ,y� in the modified London model13 is

B�r� = B̄�
K

e−iK·re−K2�2/2�1−b�

1 + �2K2/�1 − b�
. �11�

Although this model is considered applicable for reduced
fields b=B /Bc20.25 and ��2, the Gaussian cutoff factor
exp�−K2�2 /2�1−b�� introduced to account for the logarith-
mic divergence of B�r� at the center of the vortex is not
strictly valid.2

The approximate analytical solution of the GL equations
for B�r� is4

B�r� = B̄�1 − b4��
K

e−iK·ruK1�u�
�2K2 , �12�

where

u2 = 2�2K2�1 + b4��1 − 2b�1 − b�2� . �13�

K1 is a modified Bessel function, and � is the GL coherence
length. This analytical GL model is a reasonable approxima-
tion for b�1 and ��1.

Figures 2–4 show comparisons between the solutions for
B�r� from the three different models, plotted along the
straight line connecting nearest-neighbor vortices. The pa-
rameters used to generate the curves in Fig. 2 are character-
istic of the high-� superconductor V3Si �Ref. 7�. While there

FIG. 1. �a� The vortex positions in the hexagonal lattice ��� and
the rectangular unit cell �dotted lines�. Due to symmetry, the theo-
retical probability field distribution n�B� was calculated at approxi-
mately 950 locations �•� within just one-quarter of the rectangular
unit cell. For the sake of clarity, the sampled positions are shown at
1/4 of the density used in the calculations. �b� The points in the
reciprocal space lattice ��� that are included in the K sums of Eqs.
�1�–�3�, Eqs. �11� and �12�.
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is good agreement between the iterative and analytical solu-
tions of the GL equations, the modified London model devi-
ates substantially both in the region of the vortex cores and
midway between the cores. Figure 3 shows that the modified
London and analytical GL models completely break down
for �=1/�2, the limit of type-II superconductivity. For ex-
ample, in the case of the analytical GL model, there is actu-
ally a region between the vortices where the local field
changes direction. In Fig. 4, plots of B�r� are shown for a set
of parameters obtained from �SR measurements on the low-
� superconductor V �see Sec. V�. The value �=5.3 is rather
large for V, but as we explain in Sec. V, � is really an “ef-
fective” fit parameter influenced by the electronic structure
of the vortex lattice. Generally, it can be seen from Figs. 2–4
that the overall agreement between the models improves as �
increases.

III. EXPERIMENTAL DETAILS

The single crystal of the low-� superconductor V mea-
sured in the present study was purchased from Goodfellow
Cambridge Ltd.14 The crystal is a disk, 13 mm in diameter
by 0.35 mm thick, with the 
111� crystallographic direction

perpendicular to the plane of the disk. Magnetization mea-
surements indicate that the crystal has a superconducting
transition temperature of Tc=5.2 K and an upper critical field
of Hc2�4.2 kOe. This value of Hc2 corresponds to a BCS
coherence length of �0�280 Å. A four-probe potentiometric
ac resistivity measurement yielded �=0.7 �� cm just above
Tc, which is 31 times smaller than � at room temperature.
Using the carrier concentration n�9�1028 m−3 obtained
from Hall resistance measurements,15 a
free-electron-theory16 calculation of the mean free path
yields l= �kF /�ne2�900 Å, where kF= �3�2n�1/3 is the
Fermi wave number and e is the electronic charge. Thus our
sample is in the clean limit with l /�0�3. Neutron scattering
measurements performed on our V single crystal showed no
evidence of an intermediate mixed state �i.e., a mixture of
Meissner and vortex-lattice phases�.17

The �SR measurements were carried out on the M15
beamline at the Tri-University Meson Facility �TRIUMF�,
Vancouver, Canada, using a dilution refrigerator to cool the
sample. Measurements of the vortex state were done under
field-cooled conditions in a “transverse field” �TF� geometry,
in which the magnetic field was applied along the z axis
parallel to the 
111� direction of the crystal, but perpendicu-
lar to the initial muon spin polarization Px�0� �which defines
the x axis�. Each measurement was done by implanting ap-
proximately 2�107 spin-polarized muons one at a time into
the crystal, where their spins precess around the local mag-
netic field B�r� at the Larmor frequency �=��B, where ��

=0.0852 �s−1 G−1 is the muon gyromagnetic ratio. The
muons stop randomly on the length scale of the vortex lattice
and hence evenly sample B�r�. The �SR signal obtained by
the detection of the decay positrons from an ensemble of
muons implanted into the single crystal is given by

A�t� = a0Px�t� , �14�

where A�t� is called the �SR “asymmetry” spectrum, a0 is
the asymmetry maximum, and Px�t� is the time evolution of
the muon spin polarization:

FIG. 2. The spatial field profile B�r� along the straight line con-
necting nearest-neighbor vortices, for a hexagonal vortex lattice,

�=25, B̄=3 kG, and �=1000 Å.

FIG. 3. The spatial field profile B�r� along the straight line con-
necting nearest-neighbor vortices, for a hexagonal vortex lattice,

�=1/�2, B̄=753 G, and �=150 Å.

FIG. 4. The spatial field profile B�r� along the straight line con-
necting nearest-neighbor vortices, for a hexagonal vortex lattice,

�=5.3, B̄=1.6 kG, and �=1042 Å.
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Px�t� = �
0

�

n�B� cos���Bt + ��dB . �15�

Here � is a phase constant and

n�B�� = 
�„B� − B�r�…� , �16�

is the probability of finding a local field B in the z direction
at an arbitrary position r in the x-y plane. Further details of
this application of the �SR technique are found in Ref. 1.

IV. ZERO-FIELD MEASUREMENTS

Figure 5�a� shows asymmetry spectra for our V sample in
zero external magnetic field. These spectra contain a 7%
time-independent background contribution from muons stop-
ping outside the sample. The signal coming from muons
stopping inside the sample is well described by a numerical
dynamic Gaussian Kubo-Toyabe function.18 This function is
characterized by a relaxation rate � corresponding to the
width of the internal magnetic field distribution experienced
by the muons and a parameter 
 corresponding to the hop
rate of the muons in the sample. As shown in Fig. 5�b�, the
muon hop rate in our V crystal decreases with decreasing
temperature to 
�0.2 �s−1 at T=15 K �1/T�0.07 K−1�. At
T�15 K, the data are well described by the classical Arrhen-

ius law for thermally activated motion in the presence of
potential barriers:18


 = 
0exp�− Ea/kBT� , �17�

where kB is Boltzmann’s constant, Ea is the activation energy
for thermally assisted muon hopping, and 
0 is a constant.
Fitting the T�15 K data using this expression yields 
0
=1.72 �s−1 and Ea=4.5 meV. Below T=15 K there is per-
haps a slow increase in the hop rate 
, which we speculate is
due to quantum mechanical tunneling as observed in other
metals.19

Assuming that the muon occupies an interstitial site of
tetrahedral symmetry in the V crystal lattice, we can calcu-
late the muon diffusivity D� from the expression18

D� = 

a2

24
, �18�

where a=3.02 Å is the lattice constant. This gives D��9.7
�10−16 m2/s at T=2.5 K. Brandt and Seeger performed a
thorough theoretical study of the effect of muon diffusion on
�SR line shapes in the vortex state.20 They found that muon
diffusion causes significant smearing of the sharp features of
n�B� for values of D� greater than �10−3�� �M �d2, where M
is the sample magnetization and d is the intervortex spacing.
Our measured muon diffusivity is several orders of magni-
tude smaller than this. At H=1.6 kOe, for example, we have
�� �M �d2�2�10−8 m2/s, which means that D���9.7
�10−16 m2/s�=5�10−8�� �M �d2. Thus muon diffusion has
a negligible effect on the �SR linehapes measured here.

V. MEASUREMENTS IN THE VORTEX STATE

A. Comparison of fits

To fit the �SR signals in the vortex state, the field distri-
bution n�B� contained in the theoretical polarization function
Px�t� of Eq. �15� was generated from one of the three theo-
retical models for B�r� described in Sec. II. Recent neutron
scattering measurements on the same V sample17 have al-
lowed us to assume an ideal hexagonal vortex lattice in our
analysis. In addition, Px�t� was multiplied by a Gaussian
function exp�−�2t2 /2�, which is equivalent to convoluting
n�B� with the Gaussian ��� /��2��exp�−��

2 B2 /2�2�. This
accounts for disorder in the vortex lattice,21 and the static
local-field inhomogeneity created by the large 51V nuclear
dipole moments. An additional Gaussian depolarization func-
tion was added to Eq. �14� to account for approximately 20%
of the signal arising from muons that stopped outside the
sample.

A typical asymmetry spectrum at H=1.6 kOe and T
=2.6 K is displayed in Fig. 6. The solid curve through the
data is a fit assuming the solution of B�r� obtained from the
iterative GL method. The parameter values obtained from
this fit were used to calculate the spatial field profiles shown
in Fig. 4. Fourier transforms of typical time domain signals
and fits to both the iterative and analytical GL models are
shown in Figs. 7 and 8. From the Fourier transforms one can
see that both fits capture the main features of the �SR line

FIG. 5. �a� Representative asymmetry spectra �symbols� ac-
quired in V in zero external magnetic field and fits �solid lines� to
the numerical dynamic Gaussian Kubo-Toyabe function. �b� The
temperature dependence of the extracted muon hop rate 
 �circles�.
The solid line is a fit to 
�T�15 K� using an Arrhenius function.
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shape and are of high quality. In particular, for the data in
Fig. 7 the ratio of �2 to the number of degrees of freedom
�NDF� is comparable, being 1.26 for the fit to the iterative
GL solution and 1.30 for the fit to the analytical GL model.
The values of �, �, and � extracted from the two models
differed by 9%, 8%, and 13%, respectively. We note that
despite returning significantly different parameter values in
some cases, fits with both models resulted in similar values
of �2 /NDF for all of the data presented in this article.

Interestingly, the results from the two models are in
slightly better agreement at the lowest temperatures and
magnetic fields. For example, at H=1.2 kOe and T=0.02 K,
the differences in �, �, and � are 7%, 8%, and 2%, respec-
tively. On the other hand, at H=2.9 kOe and T=0.02 K, �, �,
and � differ by 10%, 9%, and 3%, respectively. Even so, the
quality of the fits is about the same for both models. This is
evident from the Fourier transforms shown in Fig. 8. At high
reduced field b, the values of � and � obtained from the
iterative GL method are likely to be more accurate, since at
these high fields the analytical GL model is being applied
outside its range of validity. The fits using the modified Lon-

don model were of similar quality to those using the GL
models.

In the following two sections, complete results for fits
using both the iterative and analytical GL models as well as
the modified London model are presented. There we show
that despite differences in the absolute values of � and �, fits
to the two GL models yield similar temperature and magnetic
field dependences for these length scales. In particular, we
show that the value of � extrapolated to zero field is, within
experimental uncertainty, the same for both GL models and
agrees well with Meissner state measurements on V using
other experimental techniques. In addition, the magnetic field
dependences of � and � obtained from the London model are
very similar to the results from the GL models. However, the
results for the temperature dependences of these length
scales deviate noticeably from those obtained using the GL
models.

B. Temperature dependences of � and �

Fourier transforms of the muon spin precession signal
from V at H=1.6 kOe and temperatures below Tc are shown
in Fig. 9. Magnetization measurements indicate that Tc
=3.65 K at H=1.6 kOe. As the temperature is lowered, the
�SR line shape broadens and the amplitude of the high-field
“tail” decreases. While the high-field cutoff is less obvious at
T=0.02 K, we note that the “true” cutoff in n�B� is smeared
out by the Fourier transform.1 In fact the fits in the time
domain are quite sensitive to the high-field tail, yielding fi-
nite values for �, even at T=0.02 K.

Figures 10 and 11 show the temperature dependences of
1 /�2, �, and � determined from our fits of the muon spin
precession signals at H=1.6 kOe, assuming solutions for
B�r� from the iterative and analytical GL methods and the
modified London model. Despite the differences in absolute
values of 1 /�2, both GL data sets in Fig. 10 are well de-
scribed by BCS weak-coupling 1/�2�T� curves22 for Tc

=3.65 K. 1/�2�T� from the London model, however, is not
well described by a BCS curve and deviates most substan-

FIG. 6. Time evolution of the muon spin polarization �circles� in
V at H=1.6 kOe and T=2.6 K and a fit �solid curve� assuming the
solution of B�r� from the iterative GL method.

FIG. 7. Fourier transforms of the muon spin precession signal in
V at H=1.6 kOe and T=2.6 K �circles�, the fit using the iterative
GL solution �solid curve�, and the fit to the analytical GL model
�dotted curve�. The peak at 1600 G is the background signal origi-
nating from muons that missed the sample.

FIG. 8. Fourier transforms of the muon spin precession signal in
V at H=2.9 kOe and T=0.02 K �circles�, the fit using the iterative
GL solution �solid curve�, and the fit to the analytical GL model
�dotted curve�. The peak near 2900 G is the background signal
originating from muons that missed the sample.
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tially from the expected trend at T�2.4 K. In addition, we
note that a satisfactory fit could not be obtained at T
=3.2 K with the London model. The inset in Fig. 10 shows
that all three models yield similar values for the additional
broadening parameter �. As � becomes longer with increas-
ing temperature, there is a greater overlap of the vortices and
a corresponding reduction in the pinning-induced disorder of
the vortex lattice. This is because the energy associated with
the interaction between vortex lines depends on �.23 For this
reason ��T� roughly follows 1/�2 in Fig. 10.

The temperature dependence of the coherence length � is
shown in Fig. 11. � is a measure of the vortex core size.
Recently, we have demonstrated from �SR and thermal con-
ductivity measurements on BCS superconductors7,8 that the
core size is dependent on the degree of localization of the

quasiparticle bound core states. Thermal depopulation of the
more spatially extended high-energy core states results in a
shrinking of the core size with decreasing temperature. This
is the so-called “Kramer-Pesch effect,”24 which has previ-
ously been observed in NbSe2 by �SR �Refs. 9 and 25� and
shown to be dependent on magnetic field.26 In a clean BCS
type-II superconductor the core size of an isolated vortex is
expected to be temperature independent below TTc /kF�0,
where kF is the Fermi wave number and �0 is the BCS co-
herence length. We see in Fig. 11 that ��T� obtained from the
fits to all models displays the Kramer-Pesch effect, with �
saturating below T�1 K. Compared with the GL models,
however, � obtained from the London model displays a
weaker temperature dependence above T�1.2 K. Using the
free-electron expression kF= �3�2n�1/3 �Ref. 16� and n�9
�1028 m−3 from Hall resistance measurements,15 we obtain
kF�1.4�1010 m−1. Assuming the value of the supercon-
ducting coherence length �0�280 Å estimated from the ex-
trapolated zero-temperature value of Hc2, the core size in our
V crystal is therefore theoretically expected to saturate below
T�10−2 K. The premature saturation of the core size ob-
served in Fig. 11 could result from quasiparticle scattering by
nonmagnetic impurities,27 but this is unlikely given that our
sample is in the clean limit. It is important to note that the-
oretical predictions only exist for isolated vortices.24,27,28 In a
lattice, the core states of nearest-neighbor vortices overlap to
some degree, and this is likely the reason why the strength of
the Kramer-Pesch effect observed by �SR weakens with in-
creasing field.26 The delocalization of core states due to
vortex-vortex interactions and the corresponding reduction in
the core size also explain why the low-temperature value of �
in Fig. 11 is much smaller than �0.

C. Magnetic field dependences of � and �

In Fig. 12, Fourier transforms of the muon spin precession
signal in V at T=0.02 K are shown for different applied
magnetic fields H�Hc2. The changes in the �SR line shape
as a function of H are similar to those previously observed in
NbSe2 �Ref. 29� and result directly from the change in vortex
density. Increasing the vortex density reduces the internal

FIG. 9. Fourier transforms of the muon spin precession signal in
V at H=1.6 kOe and T�Tc�H�=3.65 K.

FIG. 10. Temperature dependence of 1/�2 in V at H=1.6 kOe,
determined from fits using the iterative and analytical GL models
and the modified London model. The solid and dotted curves are
theoretical BCS weak-coupling predictions for Tc=3.65 K.

FIG. 11. Temperature dependence of � in V at H=1.6 kOe, de-
termined from fits using the iterative and anlytical GL models and
the modified London model.
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magnetic field inhomogeneity and increases the degree of
overlap of the wave functions of the core states of neighbor-
ing vortices.

The magnetic field dependence of � in V, as determined
by all three models, is plotted in Fig. 13�a�. For comparison,
our previously published data for V3Si �Ref. 7� and NbSe2
�Ref. 8� are shown in Fig. 13�b�. In V, � is seen to increase as
a linear function of H. The value of � determined by �SR
depends on the radial decay of B�r� outside the vortex cores.
Since the spatial field profile around a vortex core can be
significantly modified by the delocalization of bound core
states, the measured value of � may be strongly dependent
on field. We stress that when this is the case, ��H� is an
“effective” length scale, which in the fits absorbs changes in
B�r� due to changes in the electronic structure of the vortex
lattice. This dominates over the weak field dependence of �
expected for an isolated vortex in an s-wave
superconductor.30 We note that the difference in slope of � vs
H between the models in Fig. 13 suggests that the exact
details of how these changes in electronic structure are ab-
sorbed by ��H� is model dependent. To compare with mea-
surements of � by other experimental techniques, we have
extrapolated the data for ��H� to H→0 kOe. The zero-field
extrapolated value of � in V is 376.3±22.4 Å using the it-
erative GL model, 375.9±17.0 Å using the analytical GL
model, and 356.7±19.0 Å using the London model. Magne-
tization measurements31–33 have determined that � is in the
range 374–398 Å, in excellent agreement with our results
from the GL models. We therefore see that any of the three
models for B�r� can be used to extract a fairly reliable value
of the zero-field magnetic penetration depth.

In V3Si, where the bound core states are highly localized
at low fields,34 � is weakly dependent on field below H
�0.2Hc2 �Ref. 7�. The zero-field extrapolation shown in the

inset of Fig. 13 yields �=1080±17 Å, in good agreement
with the value �=1050 Å determined from Hc2�T� measure-
ments in Ref. 35. Likewise, the zero-field extrapolated value
�=1249±31 Å for NbSe2 agrees well with the value of
1240 Å obtained in Ref. 36 from magnetization measure-
ments. We note that the steep increase in � at low fields in
NbSe2 is due to multiband superconductivity. Due to the
smaller energy gap, at low fields there is significant delocal-
ization of the weakly bound core states. Thus �SR can be
used for accurate measurements of the absolute value of the
magnetic penetration depth in type-II superconductors, pro-
vided there are sufficient data to permit an accurate extrapo-
lation to zero field. This works even in the case of an uncon-
ventional superconductor. Recently, it was shown that zero-
field extrapolated values of � obtained from �SR
measurements on the high-temperature superconductor
YBa2Cu3O6+x agree well with values obtained from accurate
electron spin resonance measurements in the Meissner
phase.37 We note that the linear extrapolations of the data in
Fig. 13 are continuous through the Meissner phase—which
occurs in V below Hc1�0.25Hc2.

The magnetic field dependence of � at T=0.02 K is plot-
ted in Fig. 14. Although the analytical GL model yields
larger values of �, both GL models display a similar field
dependence over the entire field range. Use of the modified
London model, however, results in a stronger field depen-

FIG. 12. Fourier transforms of the muon spin precession signal
in V at T=0.02 K and H�Hc2.

FIG. 13. �SR measurements of the magnetic field dependence
of � in �a� V, �b� V3Si �Ref. 7� and NbSe2 �Ref. 8�. The straight
lines are linear extrapolations of the data to zero field.
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dence. Regardless of the model used, it is seen that immedi-
ately above Hc1, the vortex core size ��� shrinks with in-
creasing field. Fits to either of the two GL models yield a
saturation of ��H� above H�2.4 kOe, while fits to the modi-
fied London model do not. �We note that analysis of a recent
Andreev reflection spectroscopy study of niobium revealed a
similar trend for ��H� over the same range of reduced fields,
0.3b0.7 �Ref. 38�.� We attribute this behavior to an in-
crease in the overlap of the core states of nearest-neighbor
vortices,39 as was found to be the case in V3Si and NbSe2.7,8

Although Kogan and Zhelezina 40 have also successfully
modeled the field dependence of the core size in V3Si and
NbSe2 by weak-coupling BCS theory, their calculations as-
sume a large GL parameter �=� /� and hence are not appli-
cable to V. In an isotropic s-wave superconductor, the delo-
calization of core states is predicted to be significant at fields
above B*�Bc2 /3, although the value of this crossover field
is reduced somewhat by anisotropy.41 Specific heat32 and ul-
trasonic attenuation42 measurements suggest that the aniso-
tropy of the superconducting energy gap in V is approxi-
mately 10%. According to the calculations of Ref. 41,
significant delocalization of the core states and a reduction in
the core size should occur above B*�1.3 kG. Given the un-
certainty in the values of Bc2�T→0� and the anisotropy, the
observed shrinking of the vortex cores at fields H
�1.2 kOe seems reasonable.

Finally, we present the magnetic field dependence of the
GL parameter �=� /� in Fig. 15. The increase in � with field
is due to the field dependences of � and �. It is evident from
Fig. 15 that for all three models, � is roughly a linear func-
tion of H. Significant deviations from this behavior occur for
the values of � at the two highest fields determined from fits
to the analytical GL model. This is perhaps due to the fact
that this model breaks down at high reduced fields b. It was
found that both scatter and uncertainty in the values of � and
� were considerably reduced by fixing � at each field to lie
on a straight line fit �the fits are shown in Fig. 15 for the two
GL models�. The ��H� and ��H� data in Figs. 13 and 14 were
obtained in this way. The zero-field extrapolated values of �
determined from the straight line fits shown in Fig. 15 are
1.26±1.01 for the iterative GL model and 1.30±0.64 for the

analytical GL model. A linear fit �not shown� to the data
obtained from the modified London model yielded ��0�
=0.46±0.58. We note that both of the values obtained from
the GL models agree well with the value �=1.34 calculated
from our estimated values of ��H=0� and �0. Also, within
experimental uncertainty, both extrapolated values of � are
comparable with that obtained by other experimental meth-
ods for samples of similar purity.31 On the other hand, the
zero-field extrapolated value of � obtained from the modified
London model is unreliable, leading to a poor estimate of
��0�.

VI. SUMMARY AND CONCLUSIONS

We have analyzed �SR measurements of the internal
magnetic field distribution in the vortex state of the low-�
type-II superconductor V using Brandt’s iterative GL
method11 and have compared the results to those obtained
from analyses using the more widely used analytical GL
model of Ref. 4 and modified London model of Ref. 13.
Surprisingly, the two GL models produce qualitatively simi-
lar results for both the temperature and field dependences of
� and �. In particular, fits to each GL model yield low-
temperature, zero-field extrapolated values of � and � that
agree with previous measurements of these quantities by
other techniques. We find that the largest difference between
the results using these two models occurs at high fields,
where the analytical GL model is being applied outside its
range of validity. The observed field dependences of � and �
in V are likely due to the delocalization of quasiparticle core
states, as has already been established in other conventional
superconductors. Overall, the results obtained with the modi-
fied London model compare less favorably to those obtained
with the two GL models. For example, 1 /�2�T� is not well
described by the BCS curve and the extrapolated zero-field
value of � does not agree as well with that obtained using
other techniques.

FIG. 14. Magnetic field dependence of � in V at T=0.02 K as
determined from fits using the iterative and analytical GL models
and the modified London model.

FIG. 15. Magnetic field dependence of �=� /� in V at T
=0.02 K as determined from the iterative and analytical GL models
and the modified London model. The solid �dotted� line is a linear
fit to the data obtained from the iterative �analytical� GL model �see
main text�. The fit to the data obtained from the analytical GL
model excludes the points at H=2.65 kOe and 2.9 kOe.
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