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We analyze tunneling of Cooper pairs across voltage biased asymmetric single-Cooper-pair transistors. Also
tunneling of Cooper pairs across two capacitively coupled Cooper-pair boxes is considered, when the capaci-
tive coupling and Cooper pair tunneling are provided by a small Josephson junction between the islands. The
theoretical analysis is done at subgap voltages, where the current-voltage characteristics depend strongly on the
macroscopic eigenstates of the island�s� and their coupling to the dissipative environment. As the environment
we use an impedance which satisfies Re�Z�����RQ and a few LC oscillators in series with Z���. The
numerically calculated I-V curves are compared with experiments where the quantum states of mesoscopic
SQUIDs are probed with inelastic Cooper pair tunneling. The main features of the observed I-V data are
reproduced. Especially, we find traces of band structure in the higher excited states of the Cooper-pair boxes as
well as traces of multiphoton processes between two Cooper-pair boxes in the regime of large Josephson
coupling EJ�EC.
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I. INTRODUCTION

A voltage biased small Josephson junction �JJ� has been
shown to be a good probe of mesoscopic physics. In recent
years it has been used, for example, in the detection of reso-
nances in the electromagnetic environment1,2 and noise
spectroscopy.3,4 The theory of inelastic tunneling, known as
the P�E� theory, describes I-V characteristics resulting from
incoherent tunneling of Cooper pairs, or quasiparticles,
across the small JJ and simultaneous energy exchange be-
tween the tunneling particle and its electromagnetic environ-
ment. The standard P�E� theory cannot, however, be used in
the case of a non-Gaussian or anharmonic environment. In
this paper, a suitable model will be constructed to account for
the anharmonic environment consisting of one or several JJs.

This paper gives a quantum description for a system
which is designed to probe the excited states of a Cooper-
pair box �CPB�, or coupled boxes, by a small JJ. We model
the quantum evolution of a voltage biased asymmetric
single-Cooper-pair transistor �SCPT� or a circuit consisting
of three JJs in series with a small middle JJ. The idea is, as in
the P�E� theory, that the small JJ is probing the eigenstates of
the CPBs, which are then seen as current peaks at certain
voltages. This is possible since under the voltage bias well
above the supercurrent peak, but still at subgap region, the
tunneling of a single Cooper pair across the small JJ is pos-
sible �nonvirtually� only if the environment is able to absorb
the energy 2 eV released in the tunneling.

The environment of the small JJ consist of a CPB and a
continuous spectrum of LC oscillators describing dissipative
quantum mechanics induced by high frequency resistive
properties of the leads and possible spurious resonators in the
transmission line or materials nearby the island. In resonant
situations the dynamics involve both excitation and relax-
ation of the CPB eigenstates and one is, in principle, able to
get information of both the energies as well as the relaxation
times of the excited states.

Experimentally, the spectroscopy of the eigenstates using
a small JJ as a probe have been done by Lindell et al. and the

results are reported in Refs. 5–7. In this set of experiments,
traces of excited states, their anharmonicity and expected
band structure were found from the measured I-V character-
istics. However, several unexplained phenomena seen there
were the main motivations for writing this more detailed
description for the system. We show that indeed the main
features of the I-V data can be explained by the quantum
mechanics of asymmetric SCPTs or coupled CPBs. The
model explains, for example, the widening of the I-V reso-
nances as result of a band structure of �coupled� CPBs and
nonconstant peak splitting in the experiment of Ref. 5 as a
result of multiphoton transitions between eigenstates of two
CPBs.

The paper is organized as follows. In Sec. II we build a
theory describing inelastic tunneling across the small JJ
when it has an anharmonic element, i.e., a CPB, in its envi-
ronment. In Sec. III we discuss effects caused by slow relax-
ation and Sec. IV is devoted to a quantitative discussion of
the I-V characteristics in the case of a two CPB environment.
Comparison between numerical calculations and experiments
is presented in Sec. V and conclusions are given in Sec. VI.

II. INCOHERENT TUNNELING OF COOPER PAIRS
ACROSS ASYMMETRIC SCPT

We model an asymmetric single-Cooper-pair transistor by
taking the Josephson coupling across the probe junction into
account perturbatively. The treatment describes incoherent
tunneling of Cooper pairs across the small JJ and simulta-
neous energy exchange between the tunneling Cooper pair,
CPB and the dissipative environment. It is valid if the relax-
ation rates of the excited states are higher than the excitation
rates induced by incoherent tunneling.

A voltage biased SCPT is shown in Fig. 1. We are inter-
ested in the case of strong asymmetry EJ1�EJ2. The charg-
ing energy of the island, defined as EC=e2 /2C�, where C�

=C0+C1+C2, can, however, have an arbitrary value. Disre-
garding the Cooper pair and quasiparticle tunneling across
the probe �the former is taken into account as a perturbation�,
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the Hamiltonian of the environment of the probe can be writ-
ten formally as

Henv = HCPB + HEE + Hint, �1�

where the CPB Hamiltonian is8,9

HCPB =
�Q + Q0�2

2C�

− EJ1 cos��1� , �2�

and Q0=C0U− �C2+C0 /2�V is the quasicharge, Q the island
charge, a conjugated variable to the phase difference �1. The
Hamiltonian HEE models dissipative electromagnetic envi-
ronment and possible spurious fluctuators in the system. Its
characteristics are fully described by an impedance Z���, so
formally it consist of an infinite number of harmonic oscil-
lators. The interaction term Hint describes linear coupling be-
tween the CPB and the electromagnetic environment leading
to dissipative quantum mechanics.10

To account for the anharmonicity and the band structure
of the CPB, we will proceed slightly differently than is done
in the P�E� theory. The idea is to take the anharmonic parts
into account separately. This is possible in the limit
Re�Z�����RQ, where the interaction between the CPB and
the dissipative environment is weak and one can use the
Born-Markov approximation when describing the evolution
of the CPB under the Hamiltonian �1�. In this limit the effect
of the operator HEE+Hint for the CPB can be described by a
transformation V→V+Vf in Eq. �2�, where Vf describes fluc-
tuations from the average value V.11,12 Therefore one can use
an effective Hamiltonian for the CPB

HBM = HCPB − QintVf , �3�

where Qint=C2Q /C� �we have assumed that C0�C��. The
autocorrelation function of the fluctuating voltage is related
to the dissipative properties of the impedance Z��� via the
quantum fluctuation-dissipation theorem

�Vf�t�Vf�0��� = �
−�

�

dtei�t�Vf�t�Vf�0��

= 2 Re�Z����
��

1 − exp�− ��/kBT�
. �4�

Since fluctuations are only a small perturbation to the CPB,
their effect is to induce transitions between the unperturbed
states, i.e., the eigenstates of the CPB. The transition rate
between the eigenstates �i� and �f� is obtained by the golden
rule calculation

	 f←i =
2 Re�Z����

�2 ��f �Qint�i��2
Eif

1 − exp�− Eif/kBT�
, �5�

where Eif =Ei−Ef =�� is the difference between the corre-
sponding eigenenergies.

We proceed by noting that the rates �5� define the life-
times, and therefore also the linewidths, of the energy levels
in the Cooper-pair box. The full width at half maximum
�FWHM� 
� of the state ��� is then


� = �	
f

	 f←�, �6�

and the density of the excited states broadens from the sum
of delta-functions to sum of Lorentzians, i.e., the density of
states changes as

	
�

��E − E�� → 	
�

2





�

4�E� − E�2 + 
�
2 . �7�

Finally, we include the Josephson coupling EJ2 cos��2� de-
scribing tunneling of Cooper pairs across the probe junction
and simultaneous excitations of its environment as �another�
perturbation. Using ��=�1+�2+�Z=2eVt /�, where �Z is
the phase difference across the impedance, one finds the time
dependent perturbations for the positive and negative direc-
tion tunneling M±=EJ2 exp�±i��1+�Z−2eVt /��� /2.

For Re�Z�����RQ, the transition rates between the eigen-
states of Henv due to perturbations M± are effectively de-
scribed by transition rates between the states ����EE�, which
consist of two independent parts: broadened CPB states ���
and the eigenstates �EE� of the Hamiltonian HEE. The opera-
tor exp�i�1� acts to the ��� states and exp�i�Z� to the �EE�
states. Therefore, the LC environment can be traced out simi-
larly as in the P�E� theory and the golden rule transition rates
between the CPB states �i� and �f� become then

� f←i
± =

EJ2
2

�
�

−�

+�

dE�P�±2 eV − E����f �e±i�1i���2

�

i + 
 f

4�Ef − E0 − E��2 + �
i + 
 f�2 , �8�

where the P�E� function is the same as for a system consist-
ing of a probe junction with a capacitance C12= �1/C1

+1/C2�−1 in series with the impedance Z���. If Z��� is a
constant R��RQ�, the main contribution of the P�E� function
becomes from low energies where it is approximately a
Lorentzian with a linewidth 
env=4
kBTR /RQ centered at
E=0 �2�. Therefore it convolutes the original transition rates
�8� to

FIG. 1. A voltage biased SCPT. We study the case EJ1�EJ2 and
the smaller JJ is called the probe. The superconducting leads �and
the spurious environment of the island� are modeled through an
impedance Z���.
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� f←i
± =

EJ2
2

�
��f �e±i�1i���2


if
total

4�Ef − Ei � 2 eV�2 + �
if
total�2 , �9�

where 
if
total=
i+
 f +
env. We see that there are two sources

of broadening of the resonances: widening due to finite life-
times of the CPB eigenstates �
�’s� and widening due to low
frequency fluctuations of the LC environment �
env�. The
separation of the CPB and its environment holds also for the
case where the environment has several modes which are
nondegenerate with the CPB eigenstates. The degeneration,
or almost degeneration, would lead to similar splitting of the
states as described in Sec. IV.

During each transition there is a transfer of 2e of charge
across the probe. The net current across the system is there-
fore

I = 2e	
fi

Pi�� f←i
+ − � f←i

− � , �10�

where the probabilities Pi for occupancies of the CPB eigen-
states are given by the canonical equilibrium distribution. If
kBT�E1−E0 and Z���=R then

I�V� = 2e	
f

� f←0
+

= 	
f

2eEJ2
2

�
��f �ei�1�0��2 �


 f
total

4�Ef − E0 − 2eV�2 + �
 f
total�2 .

�11�

One sees that I-V peaks can be identified with energy levels
of the environment,2,13 which in this case is the Cooper-pair
box.

We have verified that the I-V characteristics obtained
from Eq. �11� reduce to the ones obtained from the P�E�
theory, if the larger JJ is described as an LC oscillator. How-
ever, Eq. �11� is also valid for the JJ environment with evi-
dent anharmonicity or band structure, and therefore is not
limited to the harmonic approximation.

III. EFFECTS DUE TO SLOW RELAXATION

For the expression �9� to hold, it is vital that the system
relaxes rapidly to the ground state, since the golden rule
calculation is justified only if the excitation rates of the CPB
eigenstates, induced by the probe, are smaller than the relax-
ation times, caused by the CPB’s coupling to the dissipative
environment. The irreversible interaction with the dissipative
environment has to “cut” the evolution to the excited state
quickly, otherwise the tunneling across the probe would turn
from incoherent to coherent. On the other hand, in the oppo-
site case of very slow relaxation, one would obtain Rabi
oscillations between the CPB eigenstates �0� and ��� when
initially starting from the state �0� with 2 eV=E�−E0. This
limit can also be analyzed in the Born-Markov
approximation,14 but generally the problem needs an analysis
of the time evolution of the whole density matrix and Mar-
kovian approximation cannot be used.15

To obtain approximative results in all regions, we use the
model derived in Sec. II with modified probabilities for oc-

cupations. We redefine the diagonal elements of the density
matrix by the ones obtained from the equilibrium master
equation

	
f�i

�Pf��i←f + 	i←f� − Pi�� f←i + 	 f←i�� = 0, �12�

for each i. The 	’s are the relaxation rates caused by the
fluctuating voltage across the CPB, Eq. �5�, whereas the �’s
are the rates induced by Cooper pair tunneling across the
probe, Eq. �9�. The method assumes that all the sequential
transitions are independent of each other, which is not al-
ways true. However, the method reduces to the one consid-
ered in Sec. II when the relaxation dominates the excitation
and, according to our numerical calculations, gives similar
results for the first order tunneling processes �single Cooper
pair tunnels across the probe with simultaneous excitation of
the CPB� even in the regime of very slow relaxation, as long
as the SCPT is highly asymmetric. Therefore it is safe to
assume that the first order processes are well approximated
by Eq. �10� with the equilibrium probabilities obtained from
Eqs. �12�. Also, there is no experimental evidence of higher
order resonances, which might be due to their weak nature to
be washed out by the so-called Zeno effect.15

IV. TWO CAPACITIVELY COUPLED CPBS

To generalize the treatment of the preceding sections, we
do a perturbative treatment for three JJs in series, where the
middle one acts as a probe. The configuration can be seen to
consist of two capacitively coupled Cooper pair boxes,16

where the capacitive coupling is in parallel with a small tun-
neling element. Since we use similar models for analyzing
the experiments in Sec. V, we concentrate on the character-
istics of this model a bit deeper. We also note that one of the
larger JJ’s could as well be an LC oscillator describing spu-
rious resonance at frequency �p=1/
LC in the environment.
If the energy quantum ��p is almost the same as any exci-
tation energy En−Em between two relevant eigenstates of the
CPB, or the state is long living, it cannot be modelled by the
P�E� function in Eq. �8�, but the following treatment is valid.

The system in consideration consists of three JJs in series
connection with the voltage source and the smallest junction
is in the middle, Fig. 2. Following the steps done in Sec. II,

FIG. 2. Three Josephson junctions in series with the voltage
source. One of the large JJs could as well as be an LC oscillator,
modeling the effect of a spurious resonance.
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we first neglect the Josephson coupling energy of the probe
and write down the Hamiltonian of two capacitively coupled
Cooper pair boxes

H2CPB =
�QL + Q0�2

2CL
+

�QR + Q0��
2

2CR
− EJ1 cos��1�

− EJ3 cos��3� +
C123QLQR

C1C3
, �13�

where �1 and QL are conjugated variables and similarly for
�3 and QR. The capacitances of the islands are �assuming
that Cgi�Ci, where Cgi is the capacitance of the gate i� CL
=C1+C23, where C23= �1/C2+1/C3�−1, CR=C3+C12, and
C123= �1/C1+1/C2+1/C3�−1. The quasicharges become then
Q0�Cg1Ug1+Cg2Ug2C2 /CR−C2V and Q0��−Cg2Ug2
−Cg1Ug1C2 /CL−C2V. One sees that the Hamiltonian consist
of two CPB Hamiltonians, which are then coupled by the last
term in Eq. �13�. Similarly as in Sec. II, we first calculate the
linewidths of the eigenstates of the coupled system �but now
Qint=QLC2 /CL+QRC2 /CR�, then use the fact that the phase
difference �� is a classical variable and take the tunneling
across the probe into account perturbatively by considering
the broadened states of the coupled CPBs and the environ-
mental states separately. The current is obtained from Eq.
�10�, similarly as before.

The behavior of the eigenstates and energies of the Hamil-
tonian �13� can be analyzed analytically in the limit EJ1,
EJ3�e2 /2CL ,e2 /2CR. For simplicity let us assume that EJ1
=EJ3=EJ and CL=CR�C1=C3=C. Two “splitting” effects
contribute to the final energy level structure of the coupled
CPBs. First, in the harmonic approximation of Eq. �13� the
CPB:s behave as LC oscillators. The degeneracy of the iden-
tical LC oscillators is removed by the interaction term
C123QLQR /C1C3�C2QLQR /C2 �presuming that C2�C�, and
diagonalizing the quadratic Hamiltonian one sees that the
system behaves as it would consist of two independent os-
cillators with the original inductances but with capacitances

C̃±=C2 / �C±C2�. For small C2 /C this leads to mode frequen-
cies �p±�pC2 /2C. Secondly, if one takes into account the
first nonharmonic terms −EJ�i

4 /4! in the Hamiltonian �13�
and sets C2QLQR /C2=0, one obtains also energy level split-
ting effects due to combined energy levels of two anhar-
monic oscillators. The energy levels of single CPBs become
E1=��p−EC, E2=2��p−3EC, E3=3��p−6EC , . . .. New lev-
els appear due to simultaneous excited states of the boxes

�2*� = �1��1� , �14�

�3*� =
1

2

��1��2� + �2��1�� �15�

with the corresponding eigenenergies E2* =2��p−2EC and
E3* =3��p−4EC. The energy level 2��p therefore “splits”
into two nearby energy levels E2 and E2*.

When both of the above effects are included, more mixing
of the states is obtained. The nth excited state splits into n
+1 states and, for example, the state �1� splits into states
�using the first order perturbation theory�

�1s� =
1

2

��1��0� + �0��1�� , �16�

�1a� =
1

2

��1��0� − �0��1�� �17�

with the eigenenergies E1s=��p−z−EC and E1a=��p+z
−EC, where z=C2��p /2C. Similarly for the state �2�

�2s� = c1��2��0� + �0��2� + c+�1��1�� , �18�

�2a� =
1

2

��2��0� − �0��2�� , �19�

�2*� = c2��2��0� + �0��2� + c−�1��1�� , �20�

where E2s=2��p−5EC /2−z�, E2a=2��p−3EC, E2* =2��p

−5EC /2+z�, c±= �−EC /2±z�� /
2z, z�=
EC
2 +16z2 /2 and ci

are normalizing factors. These states give both behaviors dis-
cussed in the preceding paragraph as the limiting cases of
EC→0 and z→0, respectively. The states �1a� and �2a� do
not lead to current peaks since they contain antisymmetric
combination of the states and therefore the elements
��f �exp�±i��L+�R���0�� vanish. We still pick up the energies
of the states E3s=3��p−5EC−z−
EC

2 +4z2−2ECz and E3*

=3��p−5EC−z+
EC
2 +4z2−2ECz.

For higher anharmonicity �EJ�EC�, where the band
structure will become evident for the eigenstates and the per-
turbative treatment of the cosine potential is no longer valid,
we have to resort to numerical solution. We calculate the
eigenstates by diagonalizing the Hamiltonian in a product
basis of two noninteracting CPBs, for given values of gate
voltages �quasicharges�. The lowest eigenstates can be ob-
tained quite accurately from an economical sized matrix
equation, since the eigenstates are usually close to the states
of this basis �due to small capacitive coupling�, justifying
also the “product state labeling” of the final states. After the
Hamiltonian is diagonalized �and the transition rates have
been calculated� one has to solve Eqs. �10� and �12� for each
value of V to obtain the I-V characteristics for given Ugi.

In Sec. V B we model experiments using a similar circuit
but including also two extra LC oscillators in series with the
three JJ system. The previous I-V characteristics of the
coupled CPBs are still preserved but multiphoton transitions
with the external LC oscillators are also obtained, which is
the motivation for this procedure. In practice, the extra LC
oscillators can be modelled as JJs and the Hamiltonian of the
system can be written as

H = 	
k,l

1

2
�C−1�klqkql − 	

i

EJi cos��i� , �21�

where qk=Qk−Qk+1, Qk is the charge gone through the kth
JJ, a conjugate variable to �i, C is a capacitance matrix.1

This Hamiltonian fully determines the energy bands, i.e., the
ranges where peaks can occur in I-V characteristics. In order
to determine further details such as the peak positions for
given gate voltages, one has to complete the Hamiltonian
with linear terms in charge. Such terms result from voltage
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sources and can be deduced from single tunneling events.1,18

However, it turns out that in the experiments to be analyzed,
the quasicharge is averaged over all values and the resonance
positions become immune to these terms.

The relaxation rates due to photon emission to the elec-
tromagnetic environment Z��� are also determined by linear
terms, through the fluctuating operator QintVf =	iaiQiVf. For
the LC oscillators this relaxation channel does not lead to
observed rates and must be enhanced by introducing resistors
in parallel with L and C. An analogous procedure is to take
the coefficients aLC as fitting parameters and use the operator
	iaLCiQLCiVLCi as a perturbation, where the fluctuations VLCi
are uncorrelated but have the original properties. For the
large JJs ai’s are theoretically defined by the ratios C2 /CL/R,
as was seen in the beginning of this section. The ratios are
locked when fitting the observed energy level structure of the
coupled system. But in real systems the capacitive coupling
of CPBs can be effectively reduced by decoherence effects,
for example by thermal fluctuations or dissipation, leading to
a decrease in the “observed” C2. Also effects related to ma-
terials nearby the CPB islands seem to be able to increase
relaxation.17 Therefore in modeling the relaxation rates of
coupled CPBs, one is forced to take the corresponding coef-
ficients ai as independent fitting parameters.

V. COMPARISON TO EXPERIMENTS

The I-V characteristics of similar systems as discussed
above were measured experimentally by Lindell et al. and
reported in Refs. 5–7. In these experiments, different kind of
environments for the probe junction, consisting of one or
several SQUIDs and two or four leads, were used under dif-
ferent magnetic fields and gate voltages. Using SQUIDs as
the large JJs, the system could be studied in situ from the
harmonic behavior �EJ1�EC� to the region where the anhar-
monicity and band structure become crucial �EJ1�EC�, by
applying magnetic flux to the SQUID loops. This property
also helped in the analysis of the data, since resonances com-
ing from the spurious environment did not react to the ap-
plied magnetic field, at least not in the same way as the
resonances coming from the CPBs.

The probe junction current as a function of voltage and
external flux is shown in Fig. 3 as a 2D-surface plot. The
dominant current peaks show periodicity as a function of the
flux � through the SQUID loop with the period of the flux
quantum �0=h /2e. This clearly points that they are originat-
ing from the SQUIDs and allows the identification of the
different SQUID excitation states from the more complicated
I-V structure due to the rest of the electromagnetic environ-
ment. In addition to the periodic structures due to the SQUID
environment, one can see additional states with longer and
nonconstant periods. It is likely that these are due to large,
additional, Josephson junctions that are created in the two-
angle evaporation technique used to fabricate the sample.
The patterns have the Fraunhofer/Airy behavior as expected
for a large Josephson junction that is penetrated by a mag-
netic field.18

A. The 1-SQUID experiment

We begin by studying the sample that has the configura-
tion of the asymmetric SCPT �Fig. 1�. The first thing in the

fitting procedure is to identify which of the resonances in the
I-V characteristics are coming from the CPB eigenstates,
which from spurious fluctuators and which from simulta-
neous excitations of both. The I-V peaks in this “1-SQUID
experiment” consist of a set of flux dependent double peaks
and several static resonances, from which the most important
is at VLC�13 �V, i.e., �0 /2
�6.3 GHz, see Fig. 4. Its sec-
ond excited state is seen at 2VLC�26 �V �not shown in Fig.
4� and therefore it is not a two-state fluctuator. The resonance
is important since it explains the double structure of the first
two flux-dependent double peaks: the lower resonance of
each double peak is due to tunneling of a Cooper pair across
the probe and simultaneous excitation of the CPB and the
higher resonance of each double peak is due to tunneling and
simultaneous excitations of the CPB and the LC resonance �a
multiphoton transition�. Two observations support this idea.
First, the peak splitting is constant as a function of EJ1���
=EJ1 cos�
� /�0� and this constant is the same for the first
and the second double peaks and also equals VLC, reflecting
the same excitation energy difference 2eVLC, see Fig. 4. Sec-
ondly, when compared to the first peak of a double peak, the
relative area of the second one is approximately the same for
the first two double peaks, indicating a similar extra factor
�matrix element� related to the latter resonance of a double
peak. The theoretical model used in fitting is the same as in
Sec. IV except that one of the JJs is replaced by an LC
oscillator.

The third double peak is not, however, consistent with
similar interpretation, since the peak splitting is smaller than
the previous ones at �=0 and increases with increasing �.
Also, the two resonances of the double peak have almost
equal areas, but the multiphoton transition to the external LC

FIG. 3. �Color online� A 2D-surface plot of the measured probe
junction current as a function of voltage and flux through the
SQUID loop. The resonances originating from the SQUIDs show
�0-periodicity. The figure also shows a resonance of Fraunhofer/
Airy type with weaker dependence on � �pointed by the left arrow�,
and multiphoton transitions between the SQUID and the fluctuator
behind this resonance �the right arrow�. The I-V characteristics of
this 4-SQUID sample are analyzed more quantitatively in Sec. V B.
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oscillator should have almost vanishing area and should not
even be seen. The peak splitting can be explained by the
band structure of the CPB’s third excited state, assuming that
the observed I-V curves are certain averages of the
quasicharge-space and band edges are highlighted due to van
Hove–like singularities. The observed splitting indeed fol-
lows the resonances obtained from band edges, as seen in
Fig. 4. Still, the physical reason for the “escape” of the qua-
sicharge is unknown. One possibility is a fluctuating back-
ground charge Q00, which then mixes the effective quasi-
charge Q0+Q00. No gate dependence for the positions of the
I-V peaks is seen in the experiments when EJ1�Ec, support-
ing the idea of the running polarization charge. It is, interest-
ingly, returned in the limit EJ1�Ec at higher voltages as
charging effects, when the quasicharge dependence of the
ground state energy becomes observable.

Indications of the band structure of �2,0� and even �1,0�
excitations are seen in the experiment for ��0.3�0 and �
�0.4�0, respectively, but instead of clear splitting the reso-
nances widen and become fluctuating. This broadening is
also expected theoretically, as shown in Fig. 4, and looks to
be caused by random quasicharge fluctuations. Unfortunately
the noise induced by the environment exceeds these current
peaks for ��0.35�0 and therefore no clear evidence of
these bands is obtained.

Finally, we note that the linewidths of the resonances are
similar for the lowest resonances �8 �V, which can be fit-
ted using the values R0=200 �, T=0.2 K �leading to

env/2e�3.5 �V� and the independently measured value
EJ2=8.5 �eV. This “effective” temperature is higher than the
experimental value �0.1 K. The model indicates that the
lowest resonances are in the slow relaxation regime, which is
consistent with the observation that the maximum current of
the �1.0� resonance decreases when the magnetic flux is in-
creased, see Fig. 5.

B. The 4-SQUID experiment

The second sample to be studied consists of four leads,
four SQUIDs and a probe junction, see left side of Fig. 6.
Since the two SQUIDs on the same side of the probe behave
as a SCPT and the phase difference � across this component
relaxes to the minimum energy value �=0 �its classical dy-
namics is highly damped and no bias is present�, the two
SQUIDs behave as a single JJ and one arrives at an equiva-
lent circuit of two JJs and a probe in series connection; the
model discussed in Sec. IV.

Also for this sample, the I-V characteristics consist of flux
dependent double peaks and a few static resonances. The
noise of the environment in the limit EJ1�EC is, however,
much smaller than in the 1-SQUID sample, probably due to
smaller EJ2 or better symmetry of the experiment. Again, the

FIG. 4. The positions of the resonances in the 1-SQUID experi-
ment �data points� compared with those resulting from the model of
a SQUID and an LC oscillator in series with the probe junction
�lines�. The resonances have been labeled by the corresponding
transitions behind them. For example, �1,0� means that the reso-
nance occurs due the transition from the ground state to the product
state, in which the CPB is in its first excited state and the LC
oscillator stays in its ground state. The energy levels of the CPBs
are actually bands �shaded�, meaning that the levels are quasicharge
Q0=C0U− �C2+C0 /2�V dependent. The resonances due to the band
edges Q0=0, Q0=e have been plotted explicitly. The parameters in
the numerical modeling are summarized in Table I.

FIG. 5. The maximum current of the resonance �1,0� in the
1-SQUID experiment �triangles� compared with that resulting from
the model of a SQUID and an LC oscillator in series with the probe
junction. The I-V curves of the model were averaged over all values
of the quasicharge. Different from Fig. 4, the LC oscillator �“LC2”
in Table I� describes a small I-V peak seen at a voltage �90 �V
�not shown in Fig. 4�. In the region ��0.3�0 the state �1,0� suffers
from a slow relaxation and the current is determined by the photon
emission to the Ohmic low frequency environment. A resonance
occurs nearby �0.2�0 when the states �1,0� and �0,1� are coupled,
the latter having a faster relaxation to its ground state. The current
between �=0 and �=0.1�0 seems also to be enhanced, probably
due to further entanglement with the environment. In the calculation
of the relaxation rates we have used a perturbation
C2QSQUIDVf / �C1+C2�+0.13QLCVf� �Sec. IV�.
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first static resonance is seen at VLC�11 �V, i.e., �0 /2

�5.3 GHz, see Fig. 7, and its second excited state is seen at
2VLC �not shown in Fig. 7�. We include also a resonance seen
at VR�123 �V to the model as another LC oscillator. The
first flux dependent double peak can again be explained a as
a plain excitation of the CPB, and a multiexcitation of the
CPB and the �smaller frequency� LC oscillator. The second

double peak, however, is not consistent with this assumption
since the peak splitting is much smaller than VLC, 8.5 �V,
and the relative areas of the peaks 1:0.4 differ essentially
from the ones observed for the first double peak 1:0.13. In-
stead, a better explanation for the second double peak is the
energy level structure of two coupled CPBs in the anhar-
monic region �Sec. IV�; the peak splitting occurs due to reso-
nances of the �2,0,0� and �2* ,0 ,0� excitations, and using the
parameters given in Table I one obtains a peak splitting
8.5 �V and an area ratio 1:0.25. The resonances correspond-
ing to the multiphoton transitions �2,1,0� and �2* ,1 ,0� are
also seen as weak peaks in agreement with the model. The
third double peak splitting is then automatically explained as
excitations to the states �3,0,0� and �3* ,0 ,0�, giving the peak
splitting 13.2 �eV and area ratio 1:1. The experimental val-
ues are 15.0 �eV and 1:1. Note, that in this sample the band
structure of the state �3,0,0� is neglible at �=0, and therefore
it does not explain the third double peak. The multiexcitation
�1,0,1� is also seen in Figs. 3 and 7, justifying generally the
multiphoton interpretation.

We conclude that the area ratio and the peak splitting of
the first double peak can be fitted by changing the properties
of the external LC oscillator but at the same time the reso-
nance at V=VLC has to be fitted also, whereas the other split-
tings and areas are determined by the charging energy EC of
the island�s� and the capacitance of the probe junction C2
�Sec. IV�. Also adding a slight asymmetry between the two
SQUIDs can “fine-tune” these values and we have used here
a 1% difference. From Fig. 8 one can see that, not only the
calculated positions of the resonance peaks, but also the cor-
responding areas are quite similar for the model and experi-
ment for this choice of fitting parameters.

It is interesting to study the effect of band structure in
this experiment. Again, a change in the gate voltage did not
result in a change of the resonance positions, even in the
region EJ1–EC. Instead, the resonances originating from
SQUIDs widened and changed from smooth Lorentzians to
fluctuating lines. Therefore, we again assume that the mea-

FIG. 6. Left: Schematic drawing of the 4-SQUID experiment.
The SQUIDs are drawn as JJs. In this situation, the two SQUIDs �at
the same side� behave as a single JJ, but with double the coupling
energy EJ and capacitance C compared to the individual SQUIDs.
Right: The resulting theoretical model of the system.

FIG. 7. The positions of the resonances in the 4-SQUID experi-
ment �data points� compared with the edges of the energy bands
�lines� and the band structure �shaded� calculated from the model of
two SQUIDs and two LC oscillators in series with the probe junc-
tion. The experimental data is based on I-V curves of which two
examples are shown in Fig. 8. Also shown is a schematic diagram
of the model circuit and the code used for labelling the states. The
parameters in the numerical model are summarized in Table I.

TABLE I. Parameter values used to fit the experimental I-V
curves. The values resulting from independent measurements�Ref.
5� are given in parentheses. We note that the experimental value for
EJ1 in the 1-SQUID experiment, obtained via a normal state resis-
tance measurement, is unreliable because it was obtained after the
probe was accidentally broken. When modeling the 1-SQUID
sample, we used an asymmetry factor d=0.12 for EJ1, i.e., the Jo-
sephson coupling energies of the two JJs inside a SQUID satisfy
�EJJ1−EJJ2� /EJ1=0.12.

Sample
EJ1

��eV�
EJ2

��eV�
C1

�fF�
C2

�fF�
T

�K�

1-SQUID 390 �188� 8.5 �8.5� 4.8 �5.7� 0.5 �0.8� 0.2�0.1�
4-SQUID 483 �544� 3.6 �3.6� 6.45 0.15 �0.5� 0.2�0.1�

Z�0���� L1 �nH� L2 �nH� CLC1 �fF� CLC2 �fF�
1-SQUID 200 3.1 0.13 240 100

4-SQUID 100 3.8 0.3 240 24
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sured I-V curves are a result of some kind of averaging over
the qu-sicharge space, which is now two dimensional be-
cause of two quasicharges Q0 and Q0�. The theoretical and
experimental I-V curves are compared at �=0.45�0 in the
inset of Fig. 8. One can see that they compare fairly well,
even though the peak heights for show little disagreement. In
this sample the band structure does not lead to strong peak
splitting in contrast to the 1-SQUID sample. The reason for
this is that the van Hove singularities in two dimensional
quasicharge space are weaker than in one dimension. This is
not the case for single excitations �1,0,0�, �2,0,0�, and �3,0,0�,
and indeed the band edges of the latter two are seen as sepa-
rate peaks in the theoretical I-V curve. We have used uniform
quasicharge distribution, which is the simplest guess as the
physics of the average processing are unknown.

The experimental and theoretical peak broadening are
compared in Fig. 9 for three of the transitions. The theoreti-
cal width is obtained by summing up the peak width at �
=0 and the increase due to broadening of the bands. The
peak width at �=0 is �10 �eV and the best fit is obtained
by using R0=100 �, T=0.2 K, and the independently mea-
sured value EJ2=3.6 �eV. The experimental temperature is
T�0.1 K. There is a good agreement between the theory and
experiment. For example, the �2,0,0� resonance broadens
faster than the �2* ,0 ,0� resonance which is consistent with
the theoretical model. The width of the �3,0,0� resonance is
not analyzed since it rapidly becomes unobservable due to
strong broadening.

VI. CONCLUSION

We have carried out a theoretical study of Cooper pair
tunneling across a voltage biased asymmetric SCPT and a
system consisting of three JJs in series, where the middle one
acts as a probe, and applied the models in analyzing the
experimental findings of Ref. 5. The treatment of the prob-
lem was done in the weak coupling regime, where the Coo-
per pairs tunnel incoherently across the probe, and was based
on the idea of extending the well known P�E� theory into the
regime where the anharmonicity and band structure are taken
into account. We pointed out, that the nature of the tunneling
across the probe turns from incoherent to coherent when the
golden rule tunneling times exceed the relaxation times in-
duced by the dissipative environment. Furthermore, we dis-
cussed that a simple master equation correction to the popu-
lation of the eigenstates in the incoherent calculation leads to
a good approximation for the current for arbitrary values of
the voltage and for different flux values.

In the last part of this paper we showed that a detailed
theoretical understanding of experimental data can be
achieved. In particular, the multiphoton processes between
different mesoscopic elements and spurious LC resonators as
well as the band structure of the Josephson junction can be
probed by a small Josephson junction coupled to SQUID�s�.
Especially, the detection of energy bands of higher excited
states is confirmed by the fact that the observed widening of
the resonances was in good accordance with the linewidths
obtained from the model.
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FIG. 8. The current across the 4-SQUID sample when �=0
�main frame� and �=0.45�0 �inset�. The solid line is the experi-
mental and the dashed line the theoretical I-V curve. For the theo-
retical fit we have averaged over all values of Q0 and Q0� and the
widths of the bands are indicated as arrows. In the inset one can see
that the �1,0,0� resonance has widened and centers at �32 �V. The
�2* ,0 ,0� resonance lies almost at the same point as the upper edge
of the �2,0,0� resonance, making the overall structure asymmetric.
The �3* ,0 ,0� resonance lies between �88 and �108 �V, and the
�3,0,0� resonance lies between �78 and �112 �V. In the calcula-
tion of the relaxation rates we have used Qint=0.2�Q1+Q3+QLC1

+QLC2� �Sec. IV�.

FIG. 9. Experimental linewidths �data points� compared with
theoretical linewidths �lines� for three of the resonances as a func-
tion of the magnetic flux. The theoretical values are obtained by
adding a constant term 10 �eV to the widths of the bands.

LEPPÄKANGAS et al. PHYSICAL REVIEW B 74, 054504 �2006�

054504-8



*Electronic address: juha.leppakangas@oulu.fi
1 G.-L. Ingold and Y. V. Nazarov, Single Charge Tunneling, edited

by H. Grabert and M. H. Devoret �Plenum, New York, 1992�.
2 G. L. Ingold, H. Grabert, and U. Eberhardt, Phys. Rev. B 50, 395

�1994�.
3 E. B. Sonin, Phys. Rev. B 70, 140506�R� �2004�.
4 R. K. Lindell, J. Delahaye, M. A. Sillanpää, T. T. Heikkilä, E. B.

Sonin, and P. J. Hakonen, Phys. Rev. Lett. 93, 197002 �2004�.
5 R. Lindell, J. Penttilä, M. Sillanpää, and P. Hakonen, Phys. Rev.

B 68, 052506 �2003�.
6 R. Lindell, J. Penttilä, M. Paalanen, and P. Hakonen, Physica E

�Amsterdam� 18, 13 �2003�.
7 R. Lindell, Ph.D. thesis, Helsinki University of Technology, Hel-

sinki 2005.
8 D. V. Averin, A. B. Zorin, and K. K. Likharev, Sov. Phys. JETP

61, 407 �1985�.
9 K. K. Likharev and A. B. Zorin, J. Low Temp. Phys. 59, 347

�1985�.
10 U. Weiss, Quantum Dissipative Systems, 2nd ed. �World Scien-

tific, Singapore, 1999�.
11 A. Maassen van den Brink, A. A. Odintsov, P. A. Bobbert, and G.

Schön, Z. Phys. B: Condens. Matter 85, 459 �1991�.
12 A. Maassen van den Brink, G. Schön, and L. J. Geerligs, Phys.

Rev. Lett. 67, 3030 �1991�.
13 T. Holst, D. Esteve, C. Urbina, and M. H. Devoret, Phys. Rev.

Lett. 73, 3455 �1994�.
14 J. Leppäkangas and E. Thuneberg �unpublished�.
15 A. Shnirman and Yu. Makhlin, JETP Lett. 78, 447 �2003�.
16 Yu. A. Pashkin, T. Yamamoto, O. Astafiev, Y. Nakamura, D. V.

Averin, and J. S. Tsai, Nature �London� 421, 823 �2003�.
17 O. Astafiev, Yu. A. Pashkin, Y. Nakamura, T. Yamamoto, and J. S.

Tsai, Phys. Rev. Lett. 93, 267007 �2004�.
18 M. Tinkham, Introduction to Superconductivity, 2nd ed.

�McGraw-Hill, New York, 1996�.

TUNNELING OF COOPER PAIRS ACROSS VOLTAGE-¼ PHYSICAL REVIEW B 74, 054504 �2006�

054504-9


