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The rotational property of a quantum liquid at the vicinity of the � point T� is examined. In a liquid helium
4 just above T�, under the strong influence of Bose statistics, the coherent many-body wave function grows to
an intermediate size between a macroscopic and a microscopic one, which is of a different nature from the
thermal fluctuations. It must affect the rotational properties, such as the moment of inertia. Beginning with the
bosons without the condensate, we make a perturbation calculation of its susceptibility with respect to the
repulsive interaction, and examine how, with decreasing temperature, the growth of the coherent wave function
gradually changes the rotational behavior of a liquid: The moment of inertia slightly decreases just above T�.
This means that at the vicinity of T�, the mechanical superfluid density does not always agree with the
thermodynamical one. We compare the result to the experiment by Hess and Fairbank �Phys. Rev. Lett. 19, 216
�1967��. An interpretation of the shear viscosity just above T� is given from this viewpoint.
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I. INTRODUCTION

A natural way to discuss superfluidity in a confined sys-
tem is to focus on its rotational properties. When a liquid
helium 4 is rotated at a temperature far above the � point T�,
it makes a rigid-body rotation with a uniform vorticity rotv
�0 owing to its viscosity. The angular momentum around z
axis has a form of Lz

cl= Iz
cl�, where Iz

cl is a classical moment
of inertia and � is a rotational velocity of a container. Figure
1 schematically shows the � dependence of the angular mo-
mentum. When it is cooled to a certain temperature below
T�, it shows two different behaviors according to the value of
�. Below the critical velocity �c, it abruptly stops rotating
just as the system passes the � point, and rotv=0 is satisfied
over the whole volume of the liquid. On the other hand,
under a faster rotation than �c, the uniform vorticity abruptly
concentrates to certain points, forming vortex lines and leav-
ing other areas to satisfyrotv=0. These phenomena instilled
us with the notion that superfluidity abruptly appears at the �
point.

The basis of our phenomenological understanding is the
two-fluid model, the foundation of which at T�T� has been
established by microscopic theories. The basic assumption of
the two-fluid model is that it completely separates the system
into the normal and superfluid part from the beginning, and
assumes that the latter abruptly emerges at T�.1 Furthermore,
it assumes that the superfluid density defined in the mechani-
cal properties completely agrees with that defined in thermo-
dynamics.

Here we must make a clear definition of superfluidity. Just
above T�, anomalies in thermodynamical or mechanical con-
stants of a liquid, such as the � shape of specific heat or the
softening of sound propagation, has been observed; these
anomalies are normally considered to arise from thermal
fluctuations giving rise to the short-lived randomly oriented
coherent wave functions. For superfluidity, however, the
long-lived collective motions of particles in a stable specific
direction are necessary. London2 stressed that superfluidity is
not merely the absence of viscosity, but the occurrence of
rotv=0, and proposed an experiment to confirm this point,

which was later performed by Hess and Fairbank.3 This
means that the complete disappearance of shear viscosity is
attributed to rotv=0 over the whole volume of a liquid.
Hence, the thermal fluctuations, being a collection of inde-
pendently growing and decaying wave functions, do not lead
to superfluidity. �The relaxation time of thermal fluctuations
is far shorter than the characteristic time of the macroscopic
rotational experiments. Hence, they decay long before they
affect the moment of inertia.�

This paper will examine the foundation of the two-fluid
model at the vicinity of the � point. Just above T�, particles
experience the strong influence of Bose statistics, and there-
fore, the thermal-equilibrium coherent many-body wave
function satisfying rotv=0 grows to a large but not yet mac-
roscopic size. In contrast to thermal fluctuations, these long-
lived wave functions have a possibility of affecting a me-
chanical property of the whole liquid, such as the moment of
inertia. Specifically, they may slightly reduce the moment of
inertia Iz just above T�, a possible Lz��� of which is sche-
matically illustrated by a dotted line d in Fig. 1. This is
qualitatively different from precursory phenomena owing to
thermal fluctuations in that it requires a stable specific direc-

FIG. 1. The schematic �-dependence of the angular momentum
Lz. A solid straight line a is Lz= Iz

cl� at T�T�, and a horizontal line
b and a series of steps c is Lz��� at T�T�. A dotted curve d is a
subject of this paper, a size of which is exaggerated for clarity.

PHYSICAL REVIEW B 74, 054501 �2006�

1098-0121/2006/74�5�/054501�11� ©2006 The American Physical Society054501-1

http://dx.doi.org/10.1103/PhysRevB.74.054501


tion of motion. If it is true, it allows us to redefine the su-
perfluid density in the mechanical phenomena. This means
that at the vicinity of T�, the mechanical superfluid density
does not always agree with the thermodynamical superfluid
density.

The rotational properties of a liquid helium 4 has been
subjected to considerable experimental and theoretical
studies.4 These studies, however, mainly focus on the dy-
namics of the quantized vortices in the superfluid phase in
situations where the rotational velocity is not so small that
the number of vortices are large. After the pioneering work
by Hess and Fairbank3 and by Packard and Sanders,5 the
regimes in which only a few vortices are present have rarely
been explored. Hence, it is not surprising that almost no
precise measurement has been made on Iz just above the �
point.

A similar reason exists in theoretical studies as well. In
theories of superfluidity, the infinite-volume limit is often
assumed. In V→�, the only significant distinction between
states is that between the microscopic and macroscopic one,
and therefore there is no room for the intermediate-sized
wave functions in the theory. �In V→�, “large but not yet
macroscopic” is substantially equivalent to “microscopic.6”�
This clear-cut distinction lies behind the two-fluid model and
leads us to the preoccupied notion that superfluidity appear
in a mathematically discontinuous manner at the Bose-
Einstein condensation �BEC� temperature TBEC. For the real
system, however, the overall transformation occurs more or
less continuously. For the rotation of confined system, one
cannot ignore the existence of the center of rotation and the
boundary of the system, and therefore, one must take into
account the size of the system. Hence, the validity of the
limit V→� is worth examination, and the magnitude of phe-
nomena hidden in the V→� limit must be estimated by ex-
periments.

When one views previous experiments of a liquid helium
4 from this point, one notes in the data by Hess and
Fairbank3 an experimental sign suggesting a slight decrease
of Iz just above T� �see Sec. IV A�. The trapped atomic Bose
gas opens a possibility of precise measurements of Iz just
above Tc. The measurement of the angular momentum using
the precession of a Bose-Einstein condensate of 87Rb atoms
was performed,7 which is analogous to the experiment by
Hess and Fairbank3 and by Packard and Sanders5 in a bulk
liquid helium 4. It gives a data of Lz��� like b and c in Fig.
1 �Fig. 2 of Ref. 7�. Since the trapped Bose gas is a small
system ��4 �m�, its �c is 104 times larger than that of a
liquid helium 4 in Refs. 3 and 5, which enables us to realize
a situation in which only a few vortices are present. Whereas
studies in this field are now centered on the anomalous be-
haviors at T�Tc, it has the potential for showing a slight
change of Iz just above Tc.

Although the deviation of the moment of inertia Iz just
above T� from its classical value may be small, the essence
of superfluidity is revealed in a primitive form in such a
regime, which constitutes the necessary condition for dis-
criminating a quantum fluid from a classical fluid. To con-
sider these problems, we will make a somewhat different
approach from conventional ones. At T�T�, the existence
of the macroscopic coherent wave function 	�r�

= �	 �exp�iS�r�� �r is a center-of-mass coordinate of many
helium 4 atoms� leads to rotv=0 geometrically, because the
condensate momentum p is expressed by p= �
 /m��S. Since
we will focus on the continuous change of the system around
T�, we cannot assume from the beginning the sudden emer-
gence of 	�r� at T�. Rather, considering the Bose system
above and below T� on a common ground will enable us to
study the intricacy underlying the onset of superfluidity. We
begin with the Bose system without the condensate, make a
perturbation calculation of its susceptibility with respect to
the repulsive interaction by taking peculiar graphs reflecting
Bose statistics, and examine how the formation of the coher-
ent wave function gradually changes the rotational behavior
of the system. As a result, we derive a nonclassical rotational
behavior that we normally think comes from rotv=0, with-
out assuming rotv=0 from the beginning. Specifically, we
will derive the decrease of Iz like d in Fig. 1 in the rotating
repulsive Bose system just above T�, and compare it to the
data in a liquid helium 4.

This paper is organized as follows. Section II recapitulates
the definition of the moment of inertia and explains the
physical reason of the nonclassical rotational behavior. Sec-
tion III develops a formalism of the linear response of the
system. �For the difference between this formalism and the
thermal fluctuation theories, see the Appendix.� Using the
result in Sec. III, Sec. IV reexamines the experiment by Hess
and Fairbank,3 and estimates the size of the intermediate-
sized wave function and the strength of repulsive interaction
in a liquid helium 4. Section V considers the nonlinear re-
sponse. From this viewpoint, Sec. VI gives an interpretation
of the observed decrease of shear viscosity just above T� in a
liquid helium 4 and discusses some other examples.

II. MOMENT OF INERTIA OF THE REPULSIVE
BOSE SYSTEM

A. Moment of inertia

Consider bosons in a uniform rotation around z axis. For a
liquid helium 4, the repulsive particle picture is not so unre-
alistic as it would be for any other liquid. Hence, as its sim-
plest model, we use

H = �
p

��p��p
†�p + U�

p,p�
�

q

�p−q
† �p�+q

†
�p��p �U  0� ,

�1�

where �p denotes an annihilation operator of a spinless bo-
son.

The Hamiltonian in a coordinate system rotating with a
container is H−� ·L, where L is the total angular momen-
tum. The rotation is equivalent to the application of a probe
acting on a sample.8,9 The perturbation Hex=−� ·L is cast in
the form −�i���r� ·p, in which ��r�vd�r� serves as the
external field. Figure 2 shows a part of the Bose system in a
cylindrical container. When the origin of r is put on the cen-
ter of rotation, vd�r� has a concentric-circle structure illus-
trated by curved arrows in Fig. 2. �In the rigid-body rotation,
vd�r� agrees with the drift velocity at point r.� We define a
mass-current density J�r� and express the perturbation Hex as
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− � · L = −	 vd�r� · J�r�d3x . �2�

Because of divvd�r�=0, Eq. �2� says that vd�r� acts as a
transverse-vector probe to the excitation of bosons. This fact
allows us the formal analogy that the response of the system
to vd�r� is analogous to the response of the charged Bose
system to the vector potential A�r� in the Coulomb gauge.
Hence, J�r� in Eq. �2� has the following form in momentum
space being similar to that in the charged Bose system:

J��q,�� = �
p,n


p +
q

2
�

�

�p
†�p+qe−i�n� �3�

�
=1 and �= it�. vd�r� is a macroscopic external field causing
the spatial inhomogeneity in the container, whereas J�r� con-
tains both microscopic and macroscopic information of the
system.

As the simplest susceptibility to vd�r�, we often use the
mass density �=nm �n is the number density of particles� as
J�r�=�vd�r�. Microscopically, however, one must begin with
the generalized susceptibility consisting of the longitudinal
and transverse part ��=x ,y ,z�

����q,�� =
q�q�

q2 �L�q,�� + 
��� −
q�q�

q2 ��T�q,�� . �4�

By definition, the mass density � is a longitudinal response to
an external force, �=�L�0,0�. As illustrated in Fig. 2, how-
ever, the rotational motion of particles is perpendicular to the
radial direction, along which the influence of the wall motion
extends into the container. Hence, in principle, one must use
the transverse susceptibility �T�q ,�� for vd�r�, such as
J�r�= �limq→0�T�q ,0��vd�r�.

Using �= �0,0 ,�� in the left-hand side of Eq. �2� and the
above J�r� and vd=��r= �−�y ,�x ,0� in its right-hand
side, one obtains the angular momentum Lz as

Lz = �T�0,0�	
V

�x2 + y2�d3x� . �5�

In a normal fluid, the susceptibility satisfies �T�0,0�
=�L�0,0� and, therefore, the ordinary use of � is justified.
The classical moment of inertia is given by

Iz
cl = mn	

V

�x2 + y2�d3x = �L�0,0�	
V

�x2 + y2�d3x . �6�

In a superfluid, however, the above argument must be al-
tered. For the later use, we define a term proportional to q�q�

in ��� by �̂��

����q,�� = ����T�q,�� + q�q�
�L�q,�� − �T�q,��
q2 �

� ����T�q,�� + �̂���q,�� , �7�

where �̂�� represents the balance between the longitudinal
and transverse susceptibility.10 Comparing Eq. �5� to Eq. �6�,
one writes the moment of inertia Iz=Lz /� using �̂��

Iz = Iz
cl
1 −

1

�
lim
q→0

� q2

q�q�

�̂���q,0�� . �8�

For the occurrence of nonclassical moment of inertia, the
balance between the longitudinal and transverse low-
energy excitation must be destroyed. In Eq. �8�,
limq→0��q2 /q�q���̂���q ,0�� corresponds to the superfluid
density �s.

Consider ��� of the ideal Bose system. Within the linear
response, it is defined as

���
�1��q,�n� =

1

V
	

0

�

d� exp�i�n���0�T�J��q,��J��q,0��0� ,

�9�

where �0� is the ground state of �p��p��p
†�p. The term pro-

portional to q�q� has a form of

�̂��
�1��q,�� = −

q�q�

4

1

V
�

p

f„��p�… − f„��p + q�…
� + ��p� − ��p + q�

, �10�

where f(��p�) is the Bose distribution.
If bosons would form the condensate, f(��p�) in Eq. �10�

is a macroscopic number for p=0 and nearly zero for p�0.
Thus, in the sum over p in the right-hand side of Eq. �10�,
only two terms corresponding to p=0 and p=−q remain,
with a result that

�̂��
�1��q,0� = �s�T�

q�q�

q2 , �11�

where �s�T�=mnc�T� is the thermodynamical superfluid den-
sity and nc�T� is the number density of particles participating
in the condensate. Equation �8� with Eq. �11� leads to

FIG. 2. Schematic pictures of a part of the rotating bosons in a
cylindrical container. White circles represent a initial distribution of
particles. The rotation by long arrows moves white circles on a
solid-line radius to black circles. �a� At T�T�, the permutation
symmetry holds over the whole liquid. �b� Just above T�, it holds
only within limited areas enclosed by a dotted lines, a size of which
is exaggerated for clarity.
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Iz = Iz
cl
1 −

�s�T�
�

� . �12�

When bosons form no condensate, the sum over p in Eq.
�10� is carried out by replacing it with an integral, and one
notes that q−2 dependence disappears as in the result. Hence,
using such a �̂��

�1��q ,�� in Eq. �8� leads to Iz= Iz
cl at q→0.

This means that, without the interaction between particles,
BEC is the necessary condition for the nonclassical moment
of inertia.

Under the repulsive interaction, however, the above argu-
ment is seriously affected. To see this, we must begin with a
physical argument.

B. Bose statistics and repulsive interaction

We have a physical reason to expect the decrease of the
moment of inertia in bosons at low temperature. The rela-
tionship between the low-energy excitations and Bose statis-
tics dates back to Feynman’s argument on the scarcity of the
excitation in a liquid helium 4,11 in which he explained how
Bose statistics affects the many-body wave function in con-
figuration space. To the rotating bosons, we will apply his
explanation.

In Fig. 2�a�, a liquid �white circles� is in the BEC phase,
and the wave function has permutation symmetry every-
where in the container. Assume that the rotation of a con-
tainer �depicted by curved arrows� moves white circles on a
solid-line radius to black circles on a one-point-dotted-line
radius �a transverse excitation�. At first sight, these displace-
ments seem to be a large-scale configuration change, but this
result is reproduced by a set of slight displacements �de-
picted by short thick arrows� from positions in the initial
configuration to black circles after rotation. For any particle
after rotation, it is possible to find a particle being close to it
in the initial configuration. In Bose statistics, owing to per-
mutation symmetry, one cannot distinguish between two
types of particles after rotation, one moved from the neigh-
boring position by the short arrow, and the other moved from
distant initial positions by the long arrow. Even if the dis-
placement made by the long arrows is a large displacement
in classical statistics, it is only a slight displacement by the
short arrows in Bose statistics.

Let us imagine this situation in the 3N-dimensional con-
figuration space. The above feature of Bose statistics means
that in the configuration space, the excited state driven by
rotation lies close to the ground state. Since the excited state
is orthogonal to the ground state, the wave function corre-
sponding to the excited state must spatially oscillate. Accord-
ingly, the many-body wave function of the transversely ex-
cited state oscillates within a small distance in configuration
space. Since the kinetic energy of the system is determined
by the 3N-dimensional gradient of the wave function, this
steep rise and fall of the amplitude means that the energy of
the transverse excitation is not small even at q=0, leading to
the scarcity of the low-energy transverse excitation. This is
the reason of �T�q ,0�→0 at q→0 below T�, whereas the
particle conservation asserts that �L�q ,0�=� is valid both
above and below T�. Hence, �̂���q ,0� in Eq. �7� changes to

�q�q� /q2 at q→0, leading to Iz=0 in Eq. �8�. �This mecha-
nism underlies the geometrical condition rotvs=0.�

At high temperature, the coherent wave function has a
microscopic size. If a long arrow of vd�r� takes a particle to
a position beyond the coherent wave function including that
particle, one cannot regard the particle after rotation as an
equivalent of the initial one. The mechanism below T� does
not work for the large displacement extending over two dif-
ferent wave functions. Hence, we obtain �T�q ,0�=�L�q ,0� at
q→0, and Iz= Iz

cl.
Figure 2�b� shows the boson system at the vicinity of T�

in the normal phase, in which the coherent many-body wave
function grows to a large but not yet a macroscopic size
�regions enclosed by a dotted line�. The permutation symme-
try holds only within each of these regions. When particles
are moved from a region A to another region A�, the mecha-
nism below T� does not work.

The repulsive interaction U between particles, however,
affects this situation. In general, when one moves a particle
in the interacting system, it induces the motions of other
particles. In particular, the large-distance displacement of a
particle in coordinate space causes the excitation of many
particles and, therefore, it needs a large excitation energy.
This means, in the low-energy excitation of the system, one
observes mainly the short-distance displacement of particles.
When applying this tendency to the low-energy excitation of
repulsive bosons, one knows that excited particles are not
likely to go beyond a single coherent wave function, but
likely to remain in it, and therefore, the mechanism working
below T� works just above T� as well. This view will be
tested as follows. If we increase the strength of U in
����q ,0�, the excited bosons get to remain in the same co-
herent wave function, and therefore, the low-energy trans-
verse excitation will raise its energy owing to Bose statistics
as discussed earlier in this section. Hence, the condition of
�L�q ,0�=�T�q ,0� at q→0 will be violated at a certain criti-
cal value of U. Alternatively, if we decrease the temperature
at a given U, the above condition will be violated at a certain
temperature Ton.

A geometric feature inherent in the rotation will play an
important role in the above mechanism. The external field
vd�r� has the structure of concentric circle; hence, the center
of rotation is a fixed point. The displacements of particles
near the center is so small that they do not go beyond a
single coherent wave function �region B in Fig. 2�b��. The
center of rotation is the most probable point for the mecha-
nism discussed above to work. Hence, the region near the
center is most likely to decouple from the motion of con-
tainer. With decreasing temperature, this decoupling will ex-
tend from the center to the wall, which depends on the rota-
tional velocity �.

To formulate these mechanisms, we consider the pertur-
bation expansion of ��� with respect to U in Sec. III. After
comparing it to the experiment in Sec. IV, we extend it to the
nonlinear response to vd�r� in Sec. V.

III. LINEAR RESPONSE

We will formulate the moment of inertia in the repulsive
Bose system at the vicinity of T�. In the integrand of Eq. �9�,
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one must use, instead of �0�, the ground state �G� of Eq. �1�
as follows:

�G�T�J��x,��J��0,0��G�

=

�0�T�Ĵ��x,��Ĵ��0,0�exp�− 	
0

�

d�ĤI����0�

�0�exp�− 	
0

�

d�ĤI����0�
,

�13�

where HI
ˆ ��� represents the repulsive interaction. Figure 3�a�

illustrates the current-current response tensor Ĵ��x ,��Ĵ��0,0�
�a lower bubble� in the medium: Owing to exp(−�ĤI���d�) in
Eq. �13�, scatterings of particles frequently occur in �G� as
illustrated by an upper bubble with a dotted line U in Fig.
3�a�. �The black and white circle represents a coupling to
vd�q� and to U, respectively.� The state �G� includes many
interaction bubbles like the upper one in Fig. 3�a� with vari-
ous momentums p� and p�+q�. A solid line with an arrow
represents

G�i�n,p� =
1

i�n − ��p� − � + �
�14�

�� is a chemical potential implicitly determined by
V−1��exp�����q�+�−���−1�−1=n�. Owing to the repulsive
interaction, the boson has a self energy � �0� �we ignore its
� and p dependence by assuming it small�. With decreasing
temperature, the negative � at high temperature approaches a
small positive value of �, finally reaching Bose-Einstein
condensation satisfying �=�.

When the system is just above T� in the normal phase,
particles in the ground state �G� are under the strong influ-
ence of Bose statistics. Hence, the perturbation must be de-
veloped in such a way that, as the order of the perturbation
increases, the susceptibility gradually includes an effect ow-
ing to Bose statistics. Specifically, the lower bubble

Ĵ��x ,��Ĵ��0,0� and the upper bubble in Fig. 3�a� form a co-
herent wave function as a whole. When one of the two par-
ticles in both the lower and upper bubbles have the same

momentum �p= p��, and the other in both bubbles have an-
other same momentum �p+q= p�+q�� in Fig. 3�a�, a graph
made by exchanging these particles must be included in the
expansion. Such a transformation in Fig. 3�a� takes place
as follows. The exchange of two particles having p
and p��=p� by thick white arrows yields Fig. 3�b�. Further-
more, the interchange of two particles having p+q and
p+q��=p+q� in Fig. 3�b� by thick white arrows yields Fig.
3�c�. The result is that two bubbles with the same momentum
are linked by the repulsive interaction, the contribution of
which to ��� is given by

U
1

V�
p

p +

q

2
�

�

p +

q

2
�

�

��−
f���p� + �� − f���p + q� + ��

� + ��p� − ��p + q� 2

. �15�

1. With decreasing temperature, the coherent wave func-
tion grows to a large size, and the interchange of particles
owing to Bose statistics like Fig. 3 occurs many times.
Hence, one cannot ignore the higher-order terms in Eq. �13�,
which become more significant with the growth of the coher-
ent wave function.

2. Among many particles contributing to Eq. �15�, par-
ticles stationary to a container play a dominant role. Specifi-
cally, a term with p=0 in Eq. �15� corresponds to an excita-
tion from the rest particle, and that with p=−q corresponds
to a decay into the rest one.

These two considerations, 1 and 2, lead to the following
form of �̂��

�1��q ,0� at the vicinity of T�:

�̂��
�1��q,0� =

q�q�

2

1

V
�
l=0

�

UlF��q�l+1, �16�

where

F��q�

=
�exp���� − ��� − 1�−1 − �exp�����q� + � − ��� − 1�−1

��q�
,

�17�

is a positive monotonously decreasing function of q2, which
approaches zero as q2→�.

At a high temperature ����0� in which F��q� is small, a
small F��q� guarantees the convergence of an infinite series
in �̂��

�1��q ,0� of Eq. �16�, with a result that

�̂��
�1��q,0� =

q�q�

2

1

V

F��q�
1 − UF��q�

. �18�

With decreasing temperature, however, the negative � gradu-
ally approaches �, hence �−�→0. Since F��q� increases as
�−�→0, it makes the higher-order term significant in Eq.
�16�. An expansion form of F��q�=F��0�−aq2+¯ around
q2=0 has a form such as

FIG. 3. �a� The first-order Feynman diagram of a current-current
response tensor J�J� �a lower bubble� and an excitation owing to
the repulsive interaction U �an upper bubble with a dotted line�. The
black and white small circle represents a vector and scalar vertex,
respectively. The exchange of particle lines between the excitation
and the response tensor yields �b�. Similarly, the interchange of
particle lines in a deformed square yields �c�.
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F��q� =
�

4 sinh2
����T� − ��
2

�
��1 −

�

2

1

tanh
 �����T� − ���
2

�
q2

2m
+ ¯ � .

�19�

At q→0, the denominator 1−UF��q� in the right-hand side
of Eq. �18� has a form of �1−UF��0��+Uaq2. In �−�→0,
UF��0� increases and finally reaches 1; that is,

U� = 4 sinh2
����T� − ��U��
2

� . �20�

At this point, the denominator in the right-hand side of Eq.
�18� gets to begin with q2, and �̂��

�1��q ,0� therefore changes to
a form of q�q� /q2 at q→0. This means that a nonzero coef-
ficient F��0� / �2VUa� of q�q� /q2 appearing in Eq. �18� gives
a nonzero value of �L�q ,0�−�T�q ,0� in Eq. �7�; hence, the
moment of inertia shows the nonclassical behavior in Eq. �8�.
From now, we call T satisfying Eq. �20� the onset tempera-
ture of the nonclassical moment of inertia Ton.12

At the vicinity of T�, Eq. �20� is approximated as
U�=�2���T�−��U��2 for a small �−�. This condition has
two solutions ��T�=��U�±�UkBT. It is generally assumed
that the repulsive Bose system undergoes BEC as well as a
free Bose gas. Hence, with decreasing temperature, ��T� in
the presence of repulsive interaction U should reach ��U� at
a finite temperature, during which course the system neces-
sarily passes a state satisfying ��T�=��U�−�UkBT.13 One
concludes that the nonclassical rotational behavior always
occurs prior to BEC in the repulsive bosons, that is,
TonT�.

The chemical potential �, hence �−� as well, determines
the size of the coherent many-body wave function,14,15 which
corresponds to the size of regions enclosed by a dotted line
in Fig. 2�b�. The emergence of q−2 singularity in �̂��

�1��q ,0� in
the process of �−�→0 is a mathematical expression of the
instability mechanism induced by the growth of the coherent
wave function. When U is small, this instability occurs after
the wave function grows to a large size corresponding to a
small �−�. When U is large, this instability already occurs
at a larger �−� in which the wave function is smaller than
the former one.

At the onset temperature Ton, substituting Eq. �19� into
Eq. �18�, we find �̂��

�1� at q→0

�̂��
�1��q,0� =

2m

U�on

1

V
tanh
 ��on���Ton� − ���

2
�q�q�

q2 ,

�21�

and with the aid of Eq. �20�

�̂��
�1��q,0� =

1

V

m

sinh��on���Ton� − ���
q�q�

q2 . �22�

�̂��
�1��q ,0� is given by

�̂��
�1��q,0� = mc�Ton�n0�Ton�

q�q�

q2 , �23�

where

n0�T� =
1

V

1

exp�− ����T� − ��� − 1
�24�

is the number density of p=0 bosons and

c�T� =
2

exp�����T� − ��� + 1
�25�

is a Fermi-distribution-like coefficient. For the finite system
just above T�, n0�T� has a large but not yet macroscopic
value. In the theoretical limit V→�, this quantity is normally
regarded to be zero. In real finite system, however, its mag-
nitude must be estimated by experiments �see Sec. IV�. Us-
ing Eq. �23� in Eq. �8�, we obtain

Iz�Ton� = Iz
cl
1 − c�Ton�

n0�Ton�
n

� � Iz
cl
1 −

�s
ˆ �Ton�

�
� .

�26�

where �s
ˆ �T��mc�T�n0�T� is the mechanical superfluid den-

sity.

�s
ˆ �T� reflects the intermediate-sized coherent wave func-

tion. “Intermediate” means that it does not play the role of
order parameter characterizing the thermodynamical phase
but affects mechanical properties of the system. At T=Ton,
the system shows a small but finite jump from Iz

cl to Iz, which
is proportional to n0�Ton�. Since c�Ton� has an order of 1, the
magnitude of this jump is determined mainly by the nonmac-
roscopic n0�Ton� and the moment of inertia therefore only
slightly decreases from the classical value. �This does not
mean that the thermodynamical quantities show a finite
jump.� At T�Ton, the moment of inertia varies with T fol-
lowing Iz�T� in Eq. �26�. Equation �26� determines an initial
slope of the dotted curve d at �=0 in Fig. 1. When the
system reaches T=T�, the condition of �=� makes

�s
ˆ �T��=�s�T�� because of c�T��=1, n0�T��=nc, which shows
a natural connection of Eq. �26� to Eq. �12� with the thermo-
dynamical �s�T�. While the thermodynamical �s�T� satisfy
�s= �m2kBT /
2� �	�2 at T�T�, one can expect no simple re-

lation of the mechanical �s
ˆ �T� with the thermodynamical

quantities at T��T�Ton.

IV. COMPARISON TO EXPERIMENTS

A. Experiment by Hess and Fairbank revisited

Hess and Fairbank, after they confirmed that a superfluid
4 below T� remained at rest under the extremely slow rota-
tion, made another type of experiment in their classic paper.3

First, at an initial temperature T1 below or above T�, they
rotated a liquid helium 4, contained in a small cylinder of
radius R=0.44 mm, at �=1.13 rad/s. Later they heated
it up to the temperature as it comes into rigid-body
rotation and precisely measured a small change �� of the
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angular velocity. Using Eq. �12�, the rotational energy before
heating is 1 /2� Iz

cl�1−�s /���2, whereas it changes to
1/2� Iz

cl��−���2 after heating. By the conservation of en-
ergy, the former must be equal to the latter, with a result that
2�� /���s /�. Below T�, a fraction of liquid does not par-
ticipate in the rotation, whereas after heating it does. The
rotation after heating therefore always becomes slower, and
2�� /���s /� is positive. They plotted �� /� as a function
of initial temperature T1 �Fig. 2 of Ref. 3�.

When the initial temperature T1 was lower than T�,
�� /� was properly explained by the theoretical value
of �s�T1� /�. If the two-fluid model is exactly valid near
T�, �s must vanish at TT�. Hence, �� /� measured
under the condition of T1T� must be exactly zero. For
T1=T�+0.03 K and T�+0.28 K; however, the measured
�� /� in Ref. 3 were not exactly zero. Although the error
bars were large compared with its absolute values, its
central values were significantly different from zero:
�� /��4�10−5at T1=T�+0.03 K, and 1.5�10−5 at
T�+0.28 K. A natural interpretation of this result is that these
T1’s were lower than the onset temperature Ton of the
nonclassical moment of inertia, and at such T1’s, Iz was al-
ready slightly smaller than its classical value. If it is true,

instead of Eq. �12�, Iz�T�= Iz
cl�1−�s

ˆ �T� /�� �Eq. �26�� must be

used, and we obtain 2�� /���s
ˆ �T1� /�.16 Hence, we

obtain �s
ˆ �T�+0.03 K� /��8�10−5, and �s

ˆ �T�+0.28 K� /�
�3�10−5. Since the number density of atoms in a
liquid helium 4 is n�2.2�1022 atoms/cm3, we have
n0�1018 atoms/cm3. This is an experimental estimation of
the number of helium 4 atoms participating in the inter-
mediate-sized coherent wave function in a bulk helium
4 just above T�. Two temperatures, T�+0.03 K and
T�+0.28 K, are situated within the temperature region
�T��T�2.8 K� in which the viscosity begins to decrease
above T�. In Ref. 3, the author’s focus was on the rigidity of
a superfluid against the rotation �the result was later named
the Hess-Fairbank effect�, and they did not mention the small
nonzero value of �� /� above T�. Although this point did
not attract the interest of many people, it is worth studying
closely in the future.

B. Estimation of repulsive interaction U

Let us make an estimation of the repulsive interaction U
using the approximate form of Eq. �20�, U�on=�on

2 ��−��2.
�i� For the present, we suppose Ton=2.8 K by assuming that
the decrease of viscosity just above T� has a relation to the
emergence of the intermediate-sized coherent wave function
�see Sec. VI A�. �ii� We assume that ��T�−��U� in Eq. �20�
follows the formula

��T� − ��U� = − 
g3/2�1�
2��

�2

kBT��
 T

T�
�3/2

− 12

, �27�

�ga�x�=�nxn /na� on the assumption that the particle interac-
tion U and the particle density of a liquid helium 4 are renor-
malized to T�=2.17 K �an approximation that dates back to
London�. Hence, we obtain a rough estimation of U as
0.5�10−17 erg. This value is approximately close to the re-

pulsive interaction Uc obtained by Bogoliubov’s spectrum
c= �
 /m��4�na, but somewhat smaller than it. �The velocity
of ordinary sound c=220 m/s of a liquid helium 4 near T�

gives a scattering length a=0.7 nm, hence Uc�
2 / �ma2�
=3.4�10−17 erg.� It is a difficult problem to relate these val-
ues to the realistic potential between helium 4 atoms, such
as the Lennard-Jones potential U�r�=4���2.556/r�12

− �2.556/r�6�, with �=1.41�10−15 erg.

V. NONLINEAR RESPONSE

When the precise measurement of Iz is performed, the
dynamic response of Iz��� will become a next subject, which
appears in the nonlinear response of the system. As discussed
in Sec. II, J contains both microscopic and macroscopic in-
formation, whereas vd�r� is a macroscopic external field, and
therefore the susceptibility connecting J and vd appears as
J�r�= �limq→0�T�q ,0��vd�r�. Hence, we consider not a gen-
eral form of the nonlinear susceptibility, but a
correction term �T,non�vd� to the linear response, such as
J= ��T,�1�+�T,non�vd��vd. Since �T,non�vd� does not depend on
the direction of vd, it includes only even powers of vd=�r,
which leads to the spatial inhomogeneity and the dynamic
response.

For the dynamic response, we define some quantities. The
current J�r�=�T�0,0�vd�r� in Sec. II A is replaced by
J�r�=�T�0,0 ,� ,r�vd�r�, where r=�x2+y2 is a distance from
the center of rotation. Correspondingly, instead of Eqs. �5�
and �8�, we define

Lz = 	
V

�T�0,0,�,r�r2d3x� , �28�

and

Iz��� = Iz
cl − lim

q→0
	

V
� q2

q�q�

�̂���q,0,�,r�r2d3x . �29�

The position-dependent rotational velocity is defined as

�0�r� = 
1 −
1

�
lim
q→0

� q2

q�q�

�̂���q,0,�,r��� . �30�

We extend the mechanical superfluid density �s
ˆ �T� in Eq.

�26� so that it has � and r dependence and satisfies

�s
ˆ �T ,��=��s

ˆ �T ,� ,r�2�rdrdz as

�s
ˆ �T,�,r� = lim

q→0
� q2

q�q�

�̂���q,0,�,r� . �31�

Let us consider the first approximation of the above quan-
tities. We begin with

�J��x,t�� = �G�S†Ĵ��x,t�S�G� , �32�

where S=T exp�−i�−�
t dt�Ĥex�r , t���. Using Hex�r�

=−vd
��r�J��r�, the analytical continuation t→�= it is per-

formed in the higher-order expansion terms in the right-hand
side of Eq. �32�.17 As the simplest nonlinear susceptibility for
J�, we consider the third-order term ��,���

�3� vd
�vd

�vd
� with re-
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spect to Hex and extract a correction term to the linear sus-
ceptibility ���

�3��vd�vd from ��,���
�3� vd

�vd
�vd

�. This ���
�3��vd� is il-

lustrated as a square in Fig. 4�a�, in which we choose only
one vertex out of three vertices for the coupling to vd�q� and
make the others couple to the coarse-grained external field
vd�r�. The lowest-order dynamic response of Iz��� is ob-
tained through ���

�3��vd�. �From now, we express ���
�3��vd� by

���
�3��q , i��.�

Comparing Figs. 3�a� and 4�a�, we find that p in the lower
bubble of Fig. 3�a� splits into p and p1 in Fig. 4�a�. We obtain
a formula corresponding to the square in Fig. 4�a�

���
�3��q,i�� = �n0�vd�r��2

1

�2�
n,m

1

V2 �
p,p1


p +
q

2
�

�

�
p1 +
q

2
�

�

p + p1

2
� · 
p + p1

2
+ q�

�G�i�n + i�,p + q�G�i�n,p�

�G�i�m + i�,p1 + q�G�i�m,p1� , �33�

where ��p+p1� /2� · ��p+p1� /2+q� comes from the coupling
to the upper and lower vd�r� in Fig. 4�a�. In general, a loop
with four vertices has three inner frequencies �n ,�m, and �l.
For the susceptibility like Fig. 4�a�, however, the q ,� in
����q , i�� enters at one of the four vertices and leaves at
another, thus leaving only two frequencies �n, �m as internal

ones in Eq. �33�. The remaining Ĥex in �0
�d�Ĥex, correspond-

ing to �l, appears as �Ĥex�=�n0 �vd�r��2�, since the macro-

scopic v̂d�r� in Ĥex slowly varies with �.
�a� With decreasing temperature, the coherent wave func-

tions gradually grow, and therefore the particle interchange
owing to Bose statistics frequently occurs in ���

�3�. By apply-

ing Eq. �13�-like formula for the product of four currents, we
obtain a perturbation expansion of ���

�3� with respect to the
repulsive interaction HI. Figure 4�a� illustrates the square
surrounded by a bubble in �G� �an analog of Fig. 3�a��. The
particle interchange at one of three vertices yields Fig. 4�b�.
Figure 4�c� shows a horizontal and vertical extension of
bubble chains.

�b� With decreasing temperature, particles stationary to a
container get to play a dominant role. Comparing Fig. 3�c�
and Fig. 4�b�, we apply the argument above Eq. �15� to Eq.
�33�, knowing that p=0 and p=−q plays a dominant role in
the sum over p. In the sum over p1 as well, the dominant
process comes from p1=0 and p1=−q. At first sight, there
seems to be four combinations in �p , p1�. Owing to
�p+p1� /2 and �p+p1� /2+q in Eq. �33�, however, only
�p , p1�= �0,−q� and �−q ,0� are possible. In Fig. 4�a�, the
coupling to vd�q� is possible on the upper or lower vertex as
well. Although this case has a different expression of
���

�3��q , i�� from Eq. �33�, the particle interchange and the
dominance of p=0 or p=−q particles derive the same for-
mula from its ���

�3��q , i��, giving the final result the symmetry
factor 2. Hence, one obtains the term representing the bal-
ance between the longitudinal and transverse susceptibility
for the square in Fig. 4�a�

�̂��
�3��q,0,�,r� = − q�q�

1

V2
q2

4
��F��q��2��r�2�n0�T� .

�34�

The process from Fig. 4�a� to 4�c� changes Eq. �34� as
follows. Using Eq. �13�-like formula for the product of four
currents, bubble chains in Fig. 4�c� are extended to infinity.
Among these terms, to derive the nonclassical Iz��� in Eq.
�29�, we pick up only terms that give a factor proportional to
q�q� /q2 at q→0 limit because other terms vanish in the
q→0 limit of Eq. �29�. Hence, we get

�̂��
�3��q,0,�,r�

= −
q�q�

2

q2

2
� 1

V2

1

n2

�F��q��2

�1 − UF��q��2 ��r�2�n0�T� .

�35�

Similar to Eq. �18�, the instability occurs in Eq. �35� when
the condition of Eq. �20� is satisfied because the denominator
in the right-hand side of Eq. �35� gives q−4, and therefore, the
coefficient of q�q� diverges as q−2 at q=0. At T=Ton, the
same procedure as that from Eq. �18� to �21� yields

�̂��
�3��q,0,�,r� = −

1

V2
 2m

U�on
�2

�on
1

n2 tanh2
�on���Ton� − ��
2

�
���r�2n0�Ton�

q�q�

q2 , �36�

and with the aid of Eq. �20�

FIG. 4. �a� The third-order Feynman diagram of the current-
current response tensor accompanied by the bubble excitation. �The
definition of symbols is same as in Fig. 3.� The exchange of par-
ticles at one vertex yields �b�. Similar exchanges at the other verti-
ces yield �c�.
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�̂��
�3��q,0,�,r�

= −
mn0�Ton�

V2 
m��r�2

kBTon
� 1

n2

1

sinh2��on���Ton� − ���
q�q�

q2 .

�37�

Using �s
ˆ �T�=mc�T�n0�T� as in Eq. �23�, we obtain

�̂��
�3��q,0,�,r� = − mn0�Ton�
�s

ˆ �Ton�
�

�2
m��r�2

kBTon
�q�q�

q2 .

�38�

Substituting Eqs. �23� and �38� to Eq. �30� and using

mn0 /�=c−1��s
ˆ /�� from the definition of �s

ˆ , we get at
T�Ton

�0�r� = �1 −
�s
ˆ �T�

�
+

1

c�T�

�s

ˆ �T�
�

�3
m��r�2

kBT
� . �39�

Using Eq. �39�, we obtain a velocity field v0�r�=�0�r��r,
and a vorticity field

rotv0�r� = 2��1 −
�s
ˆ �T�

�
+

2

c�T�

�s

ˆ �T�
�

�3
m��r�2

kBT
ez.

�40�

This form shows a little change from rotv=2�ez to rotv
=0, that is, from a normal fluid to a superfluid. These results
are summarized in the mechanical superfluid density

�s
ˆ �T,�,r� = �s

ˆ �T��1 −
1

c�T�

�s

ˆ �T�
�

�2
m��r�2

kBT
 . �41�

In a liquid helium 4, m /kB�2.13�10−8 s2 /cm2. Hence, the
� dependence of Eq. �41� is negligibly small.

When the container is rotated in the normal phase, a liq-
uid makes the rigid-body rotation satisfying vd�r�=��r. In
the superfluid phase, a quantum vortex appears and a liquid
makes a peculiar rotation satisfying v�r�= �
l /m�ez�r /r2 �l
is an integer� being independent of �. At T��T�Ton, how-
ever, while a liquid follows the rotation of a container, a
region around the center of rotation slightly reduces its rota-
tional velocity. Hence, the velocity field in a container takes
an intermediate form between the velocity near the center
and at the boundary. One can call it a differential rotation.18

�i� Near the boundary, vd�r�=��r becomes a large external
field, and more higher-order terms than ��3� will contribute to
Iz���. Presumably, this will suppress superfluidity, and
v0�r�=�0�r��r with Eq. �39� will approach vd�r�=��r of
the rigid-body rotation. �ii� When one increases the rotational
velocity � of a container, one can expect a similar result.
With increasing �, the region rotating more slowly than the
container will shrink to the center of rotation, and therefore
the nonclassical Iz will approach the classical one as illus-
trated by a dotted line d in Fig. 1. �iii� As T→T�, the region
near the center of rotation, which has a smaller vorticity, will
enlarge toward the wall. �To describe such a growth and
shrink, the effect of the wall must be taken into account as a
boundary condition.� �iv� At T�T�, the nonclassical behav-

ior discussed in this paper is masked by the quantum jump of
Lz owing to the emergence of the quantum vortex. If the
quantum vortex could be suppressed, one would see the hid-

den behavior of Lz���, that is, Eq. �39� with �s
ˆ �T� /�=1.

VI. DISCUSSION

A. Shear viscosity at the vicinity of T�

In a classical liquid, with decreasing temperature, the
shear viscosity gradually increases. The shear viscosity of a
liquid is inversely proportional to the rate of a process in
which a hole in a liquid propagates from one point to another
over the energy barriers. With decreasing temperature, this
rate decreases, thus increasing the viscosity. In a liquid he-
lium 4, however, it reaches a maximum value at 2.8 K and
begins to reduce its value, finally dropping at the � point
�2.17 K�. Figure 5 illustrates this temperature dependence
taken from the data at TT� in Ref. 19. In view of some
precursory phenomena observed in a liquid helium 4, it is
natural to explain it in terms of the thermal fluctuations giv-
ing rise to the short-lived wave function.

From the viewpoint of this paper, however, one must
point out two other aspects of this phenomenon. �i� Under
the strong influence of Bose statistics just above T�, the large
but not yet macroscopic long-lived coherent wave function
must affect the response of the system. One must have a
microscopic theory describing the influence of superfluidity
on the coefficient of viscosity �, irrespective of whether the
decrease of � is caused by the fluctuations or by the long-
lived wave functions. For such a theory, �a� one must apply
the linear-response theory not to the mechanical, but to the
thermal perturbation.20 The formulation of the latter pertur-
bation includes more subtle points than that of the former
one owing to the thermal dissipation. �b� The mechanism of
shear viscosity in a liquid, which has similarities with the
motion of dislocations in a solid, is considerably different
from that of shear viscosity in a gas. Hence, the quasiparticle
approximation, which is often used for the excitations in a
liquid helium 4, is questionable for the shear viscosity in a
liquid. The microscopic theory of the influence of superflu-
idity on � is a future problem.

�ii� The viscosity appears in the Navier-Stokes equation as
��v, which has a form of −� ·rot�rotv� in an incompressible
fluid. The decrease of the viscosity comes from either the
decrease of � or that of rotv as London stressed.2 The former

FIG. 5. The temperature dependence of the shear viscosity of a
liquid helium 4. �The data at TT� are taken from Fig. 3 of Ref.
19. The data at T�T�, which strongly depend on the experimental
method, is written schematically.�
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is owing to the microscopic change of the system, whereas
the latter arises from the macroscopic transformation of the
velocity field v�r� in a container. At T�T�, the temperature
dependence of the shear viscosity strongly depends on the
experimental methods, such as �i� a Poiseuille flow method
�a lower horizontal line at T�T� in Fig. 5�, �ii� an oscillating
disk viscometer method �an upper curve at T�T��, and �iii�
a rotation viscometer method. Since the microscopic mecha-
nism determining � is not sensitive to the types of the mac-
roscopic measurements, this fact suggests that the shear vis-
cosity at T�T� is strongly dependent on the macroscopic
change of rotv induced by the measurements. Above T�,
however, since the coherent wave function has not yet grown
to a macroscopic size, it is natural to attribute the decrease of
viscosity at first to that of�. Just above T�, however, we have
another possibility in −� ·rot�rotv� that the emergence of the
intermediate-sized coherent wave functions contributes to
the decrease of rotv, because they are irrotational. This
means that the microscopic mechanism of a liquid affects not
only the coefficient �, but also the macroscopic velocity field
v�r�. This is a peculiar case in fluid mechanics. In fluid me-
chanics, the velocity field v�r� is a solution of the equations
of motion with given coefficients made of mechanical or
thermodynamical constants of a liquid. In the system such as
a liquid helium 4, one cannot clearly distinguish between the
microscopic and macroscopic phenomena and, therefore, this
clear separation of coefficient and solution of the equation is
not obvious in contrast with a classical liquid. One must
make a different approach that will examine the foundation
of the two-fluid mechanics at the vicinity of T�.

B. Various manifestations of superfluidity

Superfluidity is a complex of phenomena and therefore
has some different manifestations, such as �i� persistent cur-
rent without friction, �ii� the Hess-Fairbank effect, �iii� quan-
tized circulation, �iv� almost no friction on moving objects in
the system below the critical velocity, �v� peculiar collective
excitations, and �vi� the Josephson effect. The conventional
thermodynamical definition of superfluid density �s�T� has
been proved to be useful for describing various mechanical
manifestations of superfluidity. The result of this paper im-
plies that the superfluid density in the mechanical phenom-
ena does not always agree with the thermodynamical �s�T�
and that the interplay between Bose statistics and the repul-
sive interaction sometimes require us to define the mechani-

cal superfluid density �s
ˆ �T�. This �s

ˆ �T� may have some dif-
ferent definitions, each of which is specific to each

manifestation of superfluidity, such as �s
ˆ �T� in Eq. �26� for

the rotation. Hence, we must consider the existence or non-

existence of �s
ˆ �T� in each manifestation on a case-by-case

basis. Here we make a comment on three examples.
1. The Meissner effect in the charged Bose system is a

counterpart of the nonclassical rotational behavior in the
neutral Bose system.8,9 �The enhanced diamagnetism above
TBEC appears as the precursory phenomenon owing to ther-
mal fluctuations.21� The phenomenon like the decrease of Iz,
not owing to fluctuations but requiring a transformation ex-

tending to the whole system, occurs just above TBEC in the
Meissner effect as well: With decreasing temperature, the
charged Bose gas with short-range repulsion begins to ex-
clude the magnetic field prior to the BEC.22 In contrast with
the enhanced diamagnetism, the exclusion of the applied
magnetic field just above TBEC implies that the large but not
yet macroscopic wave functions cause a change extending to
the whole system. This means that Bose statistics is essential
for the Meissner effect, but the existence of the macroscopic
condensate is not the necessary condition. The same form of
the mechanical superfluid density �s

ˆ �T� is useful for the
Meissner effect as well.

2. The nonclassical rotational behavior above T� will be-
come more realistic in superfluidity of small systems. Re-
cently, a helium 4 droplet consisting of about 104 helium 4
atoms is found to show a sign of superfluidity. The infrared
rotational spectrum of small molecules attached to the he-
lium 4 droplet, such as oxygen carbon sulfide, shows a signal
indicating a significant change of its moment of inertia
around a molecular axis at T�T�, which suggests a transi-
tion occurring in the surrounding helium 4 environment.23

Although the experimental condition, such as the tempera-
ture or the rotational velocity, cannot be freely controlled
until now as in the bulk helium 4, it will open a probability
of superfluidity of small systems. If the same experiment as
in Sec. IV could be made for a liquid helium 4 droplet, one
would see a larger role of the intermediate-sized coherent

wave function �s
ˆ �T1� /� in the rotational properties.6 When

the number of atoms in a droplet is too small, however, the �
transition will become obscure. Hence, there may be an op-
timum size of the system for detecting the nonclassical rota-
tional behavior just above T�.

3. Solid helium 4 has been termed a quantum crystal.
Recently, an abrupt drop in the moment of inertia was found
in the tortional oscillation measurements on solid helium 4
confined in a porous media24 and on a bulk solid helium 4.25

This discovery leads us to reconsider the definition of super-
fluidity and that of solids.26 The fundamental feature of crys-
tals is their periodicity in density that is, diagonal long-range
order. One has to face a serious question whether crystals
remain stable while showing superfluidity that violates their
periodicity. Phenomenologically, this discovery shares the
following point with the subject of this paper: The nonclas-
sical decrease of the moment of inertia occurs even in the
system in which the existence of the macroscopic Bose con-
densate is not expected. There is, however, the following
difference. In a normal liquid helium 4 at the vicinity of T�,
helium 4 atoms actually exist, and the size of their coherent
wave function with zero momentum is a subject of the prob-
lem, whereas in a solid helium 4, the existence of a hypo-
thetical moving boson, a zero-point vacancy, has not been
firmly established, although it is normally assumed to exist.
There are a number of problems to be clarified in a solid
helium 4.

APPENDIX: COMPARISON TO THE THERMAL
FLUCTUATION

Compared to the thermal-fluctuation theories, the formal-
ism in Sec. III has the following differences: �i� In the fluc-
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tuation theory of a quantity x in question, the correlation
function of deviations x− x̄ from a mean value x̄ gives the
susceptibility, an average of which is taken with the Gauss
distribution. Owing to the flatness of the minimum of the
thermodynamic potential near Tc, the susceptibility has
�1−T /Tc� dependence. �Alternatively, the introduction of
Green’s functions representing thermal fluctuations leads to
the similar �1−T /Tc� dependence.� On the other hand, the
susceptibility in Sec. III is given as the correlation function
of total quantities x as in Eq. �9�. Its average is taken with
the Bose-Einstein distribution. Hence, the result has no
�1−T /Tc� dependence. �ii� Since thermal fluctuation is essen-
tially a local phenomenon, one notes its influence already in

the low-order terms of the perturbation expansion in which
only a few particles participate. On the other hand, the
change of the moment of inertia Iz requires a transformation
extending to the whole liquid. Hence, the higher-order terms
in which many particles participate plays a significant role.
Only after the perturbation expansion is summed up to the
infinite order as in Eq. �18�, one notes the change of Iz at a
temperature in which Eq. �20� is satisfied. �iii� Thermal fluc-
tuations gradually increase as T→Tc, finally diverging at Tc.
For the change of the moment of inertia, however, no physi-
cal relevant quantity diverges at Tc, and Iz smoothly agrees
with the conventional value of Iz

cl�1−�s /�� as in Eq. �26�.
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