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A superconducting quantum interference device and Faraday rotation technique are used to study dipolar
interacting nanoparticles embedded in a polystyrene matrix. Magnetization isotherms are measured for three
cylindrically shaped samples of constant diameter but various heights. Detailed analysis of the isotherms
supports Tsallis’ conjecture of a magnetic equation of state that involves temperature and magnetic field
variables scaled by the logarithm of the number of magnetic nanoparticles. This unusual scaling of thermody-
namic variables, which are conventionally considered to be intensive, originates from the nonextensivity of the
Gibbs free energy in three-dimensional dipolar interacting particle ensembles. Our experimental evidence for
nonextensivity is based on the data collapse of various isotherms that require scaling of the field variable in
accordance with Tsallis’ equation of state.
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INTRODUCTION

Systems with long-range interactions cause important
amendments to thermodynamics and statistical mechanics
that are not yet fully explored.1,2 Among them are the en-
semble inequivalence3 and problems involved in the absence
of a well-defined thermodynamic limit.4 Although these dif-
ficulties are widely recognized in the field of self-gravitating
systems, for instance,5 they are also present but obtain less
attention in three-dimensional �3D� magnetic dipolar inter-
acting systems. In conventional bulk magnetic materials,
quantum mechanical short-range exchange usually domi-
nates the much weaker dipolar interaction. In accordance
with this hierarchy of interactions, dipolar long-range contri-
butions typically give rise to minor logarithmic corrections
of the critical behavior6 and contribute to the magnetic order
only on a mesoscopic scale via domain formation.

Nowadays, advanced micromagnetic simulations success-
fully model the complex problem of ferromagnetic domain
formation.7 The combination of micromagnetic methods on
the mesoscopic scale with the canonical ensemble approach
dealing with the statistical physics of short-range interactions
is a very successful approximation, which masks, however,
the fact that fundamental problems still challenge the con-
cepts of thermodynamics and statistical mechanics. This be-
comes obvious when long-range interactions are the domi-
nating forces in an ensemble of spins. Gross et al. suggest
the exclusive use of the microcanonical ensemble when
small systems or systems with long-range interactions or
phase separations are studied.8 The necessity of this ap-
proach is justified when carefully reconsidering the founda-
tion of the canonical ensemble, which is derived from the
microcanonical ensemble. This derivation mandates exten-
sivity of the energy, a requirement that is not met in the case
of interacting magnetic dipoles in three dimensions. In fact,
violation of ensemble equivalence between the microcanoni-
cal and the canonical ensemble has been shown explicitly in

the antiferromagnetic mean-field XY model and in the
infinite-range Blume-Emery-Griffiths model.9,10 In addition,
breaking ergodicity in systems with long-range interactions
can manifest themselves in unusual dynamic features, such
as logarithmically diverging relaxation times.11 Extensive
theoretical work exists in the field of long-range interacting
systems, but there is a paucity of experimental work apart
from recent attempts to measure the controversial nonexten-
sive entropic parameter q of Tsallis entropy.12,13

Magnetic systems serve as important benchmarks in the
field of statistical physics.14 Superparamagnetic blocking and
the impact of dipolar interaction on various types of collec-
tive magnetism, such as superspin-glass behavior and super-
ferromagnetism, have been widely studied in magnetic
single domain nanoparticles embedded in a nonmagnetic
matrix,15–20 but none of these studies focused on the impact
of long-range interaction on system size-dependent scaling.
We believe that nanoparticle ensembles serve as interesting
model systems for studying the influence of long-range in-
teractions on fundamental thermodynamic quantities. The
large magnetic moment of several thousand Bohr magnetons
��B� of magnetic single domain nanoparticles enhances the
long-range particle-particle interaction in comparison with
conventional atomic paramagnetic systems, even when
atomic spacings are replaced by average particle distances of
a few 10 nm. A rough estimate suggests that two neighboring
nanoparticles of 2�104�B separated by 80 nm have about a
20 times higher dipolar interaction energy than atomic mo-
ments of about 3�B separated by 0.6 nm, which is similar to
properties of the Co Tutton salt. Thus, we reasoned that en-
sembles of magnetic nanoparticle systems might serve as
ideal candidates for the study of thermodynamics of long-
range interacting systems. The Co Tutton salt is well known
from adiabatic demagnetization applications. Despite being
in a 4F spectroscopic state, the Co2+ ions in this salt have an
effective spin 1/2 in the crystal field, a parallel Landé-factor
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of g=6.45, and a nearest-neighbor spacing of 0.624 nm.21

SAMPLE PREPARATION

Our samples are prepared using the technique of thermal
decomposition of metal carbonyls in the presence of appro-
priate surfactants. The resulting nanoparticles are highly uni-
form and can be self-assembled into monolayers and multi-
layers. Such procedures were first developed by Thomas22

and were later popularized and refined by Puntes et al.,23 and
by Wang et al.24 Figure 1 shows a transmission electron mi-
croscopy �TEM� image of a typical two-dimensional �2D�
self-assembled �-Fe2O3 structure that we assembled from
nanoparticles prepared using the carbonyl decomposition
technique. In this example, self-assembling originates from
geometrical constraints that are controlled by the length
of the surfactant molecules attached to the surfaces of the
�-Fe2O3 nanoparticles. The length of the surfactant deter-
mines the particle-particle distance in a closed packed 2D
structure, which is indicated in Fig. 1 by eye-guiding lines.
The particle sizes follow a very narrow log-normal size dis-
tribution with an average diameter of 12 nm. Very similar
results are obtained for the 3D samples studied here where
�-Fe2O3 nanoparticles produced by the same synthetic strat-
egy are randomly dispersed in a polystyrene matrix such that
the average spacing is much larger than the length of the
surfactant. The particle sizes of the nanoclusters in our 3D
samples have the mean diameter of 11.6 nm. The standard
deviation of the diameters is 0.3 nm. These values are based
on two different diameter measurements on each of 50 dif-
ferent nanoclusters. For these dilute 3D systems, the average

particle separation is �80 nm, which excludes any type of
exchange mediated interaction between the particles. Hence,
these systems are clearly governed by long-range dipolar in-
teractions.

In two dimensions, the dipolar interaction energy per par-
ticle, U�N ,T=0� /N, has an upper bound in the limit of a
large particle number N→�. The situation changes in 3D
systems where U�N ,T=0� /N scales logarithmically accord-
ing to25–27

U�N,T = 0�
N

� �
1

N1/3 4�r2

r3 dr � ln N . �1�

This simple result has various important implications. For
example, a careful reconsideration of the thermodynamic
limit N→� is required. The nonextensivity of the internal
energy suggests that other thermodynamic quantities—
quantities normally considered to be extensive for systems
dominated by short-range interactions—might no longer
scale linearly with the sample size when 3D dipolar interac-
tions are involved. From Eq. �1�, it can be concluded that
renormalization of U /N allows one to recover convergence
according to U / �N ln N�→const for N→�. Tsallis extended
this reasoning to the Gibbs free energy, G. For a 3D system
with dipolar interactions, Tsallis’s scaling approach reads26,28

G

N ln N
=

U

N ln N
−

T

ln N

S

N
−

�0H

ln N

m

N
+

P

ln N

V

N
, �2�

where the entropy S, the magnetic moment m, and the vol-
ume V, scale with the system size N. The temperature T, the
magnetic field H, and the pressure P, scale with ln N, despite
the fact that they are usually considered to be intensive vari-
ables in conventional thermodynamics treatments. For our
magnetic nanoparticle system, this scaling implies an equa-
tion of state of the type28

M = M� T

ln N
,

H

ln N
� , �3�

where M =m /V is the magnetization of the sample.
The primary focus of the research effort described here is

to provide experimental evidence regarding the validity of
Eq. �3� by carefully examining 3D magnetic nanoparticle
systems for which there are appreciable dipolar interactions.
To check for the scaling behavior predicted by Eq. �3�, we
sought data collapse when plotting M vs �T / ln N ,H / ln N� in
accordance with the suggestion made by Tsallis.28

EXPERIMENTAL RESULTS

Figure 2 shows the typical temperature behavior of the
magnetic moment m after zero field cooling �ZFC� the
sample and measuring m vs T on field heating ��FH�, solid
triangles� for temperatures 5�T�242 K in an applied field
of �0Ha=25 mT. The subsequent field cooling curve ��FC�,
open triangles� separates from the FH branch at the blocking
temperature TB	127 K, indicating the onset of nonequilib-
rium behavior. The fact that m vs T of the FC branch stays
constant at T	TB establishes the absence of exchange inter-

FIG. 1. Transmission electron microscopy image of a 2D self-
assembled array of �-Fe2O3 nanoparticles. The arrows indicate a
particle diameter of 12 nm. Eye-guiding lines stress the hexagonal
dot arrangement controlled by the length of the organic molecules
attached to the dot surfaces.
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action that would otherwise modify the superparamagnetic
blocking.

Superparamagnetic blocking is dominant when the time
scale for thermally activated magnetization reversal of the
nanoparticles exceeds the typical time scale of the measure-
ment determined by our superconducting quantum interfer-
ence device ��SQUID�, Quantum Design MPMS XL-7�. In
contrast to this simple freezing scenario, ferromagnetic �an-
tiferromagnetic� exchange should cause an increasing �de-
creasing� m vs T dependence with decreasing temperature.

To overcome any experimental complications involving
nonequilibrium behavior, we analyze only those magnetiza-
tion isotherms m vs H that are measured at temperatures
T
TB. We compare three samples hereafter called samples
A, B, and C. All samples have cylindrical shape with identi-
cal radii RA,B,C=2.64 mm and heights h�A�=4.85, h�B�
=2.64, and h�C�=1.33 mm. Hence, they built a descending
sequence of volumes V�A�=106.2, V�B�=57.8, and V�C�
=29.1 mm3. Magnetic fields were applied along the cylinder
axis of the sample, respectively, and the applied fields, Ha,
were corrected for demagnetizing fields according to H
=Ha−NdM, where H is the internal field, M =m /V is the
magnetization, and Nd is the geometry dependent demagne-
tizing factor. Appropriate values for Nd were calculated using
the analytic result for oblate spheroids given by Osborn29

Nd =
m̃2

m̃2 − 1

1 −

1

�m̃2 − 1
arcsin

�m̃2 − 1

m̃
� , �4�

which is a good approximation for our cylindrically shaped
samples when using m̃=2R /h. From Eq. �4�, we obtain
Nd�A�=0.356, Nd�B�=0.527, and Nd�C�=0.702. Note that SI

units are used where 0�Nd�1 holds. The correction for
demagnetizing fields is done to maintain a high level of ac-
curacy, but it is important to note that for our system this
correction is only a minor factor that changes the applied
field by �1%.

Scaling according to Eq. �3� influences both the magnetic
field and the temperature argument; however, when compar-
ing two samples �B and C, for instance, which differ in size
by a factor of about 2�, the logarithmic dependence of the
arguments of the scaling function �3� requires comparison of
isotherms that differ in temperature by relatively small tem-
perature changes of �T /T=ln 2/ ln N where N is on the order
of N	1013. In terms of a zeroth order Taylor series

M� TC

ln NC
, H

ln NC
�=M� TC�1+ln 2/ln NC�

ln NB
, H̃

ln NB
�	M� TC

ln NB
, H̃

ln NB
� of the

first argument, we neglect scaling of the temperature but

scale the magnetic field according to H̃=H ln NB / ln NC when
looking for a data collapse of the m vs H isotherms.

The influence of the dipolar interaction is expected to be
quite small. Consequently, it is reasonable to describe the m
vs H isotherms in zeroth-order approximation using the in-
teraction free Langevin function

m�H,T� = NmdotCoth
�0mdotH

kBT
−

kBT

�0mdotH
� �5�

to estimate the average magnetic moment mdot of an indi-
vidual nanoparticle. In addition, the Langevin fits with Eq.
�5� provide the number of nanoparticles, NA, NB, and NC,
which are dispersed in our samples A, B, and C.

Figure 3 shows the results of the Langevin fits for all
three samples at T=300 K. Within an uncertainty of �3%,
the fits reveal the individual nanoparticle moment m0=2
�10−19 Am2	2�104�B. This is in satisfactory agreement
with an estimation from geometrical considerations. We ob-
tain the geometrical estimate of an individual nanoparticle
moment of about 3�10−19 Am2 by assuming spherical nano-
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FIG. 2. m vs T of �-Fe2O3 nanoparticles interacting magneto-
statically in a random 3D array with an average particle spacing of
80 nm. Solid triangles show the field heating curve �arrow labeled
by ZFC/FH� in �0Ha=25 mT after zero field cooling. Open tri-
angles show the subsequent field cooling curve �arrow labeled by
FC�, which separates from the FH branch at the blocking tempera-
ture TB	127 K �arrow�. The lines connecting the data points are
eye-guiding splines.

0.0 0.2 0.4 0.6
0

1x10-6

2x10-6

3x10-6

4x10-6

5x10-6

m
 [A

m
2 ]

0H [ T ]

FIG. 3. �Color online� Isotherms m vs. H of sample A �squares�,
B �triangles�, and C �circles� measured at T=300 K, respectively.
Note that only 1/5 of the measured data points are shown. Lines are
best fits of the Langevin function given by Eq. �5�.
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particles of 11.6 nm diam. We also assume bulk �-Fe2O3
properties, including a density of =4.8 g/cm3 and a satura-
tion magnetization of Ms	74 Am2/kg.30 The value of mdot
determined via the Langevin fit is �1/3 smaller than the
value obtained by geometrical estimation. This reduction is
likely caused by a noncollinear spin structure at the particle
surface, which, in turn, gives rise to partial spin compensa-
tion and, hence, a reduced moment. The qualitative agree-
ment between the simple geometrical estimate and the more
precise determination of mdot via the fit is nevertheless a
useful confirmation of the presence of single domain par-
ticles. It should be noted, however, that the geometrical es-
timation of mdot does not affect the quantitative scaling
analysis. The number of nanoparticles determined from the
fits are NA=2.88�1013, NB=1.5�1013, and NC=7.8�1012.
These numbers are in good agreement with the volume ratios
of the samples, e.g., NB /NC=1.92	V�B� /V�C�=1.98. This
agreement also demonstrates that the nanoparticles are dis-
tributed at a uniform concentration in all three samples.

Although the fits shown in Fig. 3 seem to be of satisfac-
tory quality, closer inspection of the m vs H data shows that
two isotherms corresponding to different sample sizes do not
collapse when plotting m /N vs H or M vs H. Such a data
collapse would be suggested by Eq. �5� and, more generally,
from conventionally expected extensivity of m and intensi-
tivity of H. The deviation from this conventional picture is
visualized by plotting the ratio mX /mY vs H for X�Y and
X ,Y =A ,B ,C. The fact that mX /mY �const provides evidence
for nonextensive behavior. Note that this statement holds
also in the presence of a diamagnetic or more generally an
extensive background signal. In addition, it is straightfor-
ward to show that deviations from a monodispersive distri-
bution of particle sizes cannot account for mX /mY �const.
Consider the thermal average of the total moment mtot

=�iNimiL� �0miH

kBT
� of noninteracting particles where Ni speci-

fies the number of particles with moment mi and where the
sum includes all groups of particles with a given moment.
The temperature and field dependence of the average mo-
ment of each individual species of nanoparticles is described
by the Langevin function L used in Eq. �5�. When the sample
volume is scaled by a factor �, each Ni is scaled according to

Ñi=�Ni. The total average moment m̃tot of a sample with the

scaled volume is therefore given by m̃tot=�iÑimiL� �0miH

kBT
�

=�mtot. Hence, m̃tot /mtot=const holds for a distribution of
nanoparticle sizes that is not necessarily monodisperse, while
mX /mY �const originates from particle-particle interaction
not included in the Langevin expression. Magnetostatic in-
teractions are the only particle-particle interaction present in
our samples; hence, magnetostatic interactions appear to be
the origin of the nonextensive behavior that we observe.

Subsequently, we estimate the effect of magnetization in-
homogenieties on the scaling analysis. Macroscopic mea-
surements of the magnetization provide M =M�Ha ,T�. Ex-
pressing the applied magnetic field in terms of the internal
and the demagnetizing field, one obtains M
=M�Ha�H ,Nd ,M� ,T�. Here Nd might be considered as an
effective demagnetizing factor if inhomogeneous magnetiza-
tion is taken into account. The relative change �M /M cre-
ated by possible deviations �Nd from the geometrically de-

termined demagnetizing factor Nd can be estimated
according to �M

M 	 �M
�Ha

�Ha

�N

�Nd

M = �M
�Ha

�Nd, where �M
�Ha

�
�M
�H . The

susceptibility can be calculated either by directly differenti-
ating the magnetization isotherms or, with even better accu-
racy, by differentiating Eq. �5�. All parameters in Eq. �5�
have been determined previously from the fits shown in Fig.
3. Differentiation of Eq. �5� and conversion of the total mag-
netic moment m into the magnetization yields �M

�H

=
Nmdot

V � kBT

�0mdotH
2 −

�0mdot

kBT
1

sinh2��0mdotH/kBT��. This susceptibility ex-

pression rapidly reaches zero when H approaches the satura-
tion field. For our subsequent estimation of �M

M , we consider
the maximum susceptibility at H=0, which reads �M

�H �H=0

= 1
3

N
V

�0mdot
2

kBT . Even if we allow for unrealistically large fluctua-

tions �Nd�1, we estimate �M
M �

1
3

N
V

�0mdot
2

kBT . Substituting for
instance the parameters for sample B at T=300 K yields
�M
M �1�10−3. This estimate of the maximum possible rela-

tive magnetization fluctuation is about two orders of magni-
tude smaller than the anomalies observed in Fig. 4. Hence, as
outlined earlier in the text, the correction for demagnetiza-
tion has a minor influence on the analysis of the data; in
particular, fluctuations of the effective demagnetizing field
due to magnetization inhomogeneities are an unlikely source
of the anomalies apparent in Fig. 4. These anomalies are
consistently interpreted in terms of nonextensive behavior.
We will ultimately show �vide infra� that scaling of the field
variable by a scaling factor �X,Y =ln NX / ln NY yields in fact
mX /mY 	const as predicted by Eq. �3�.

SCALING

Instead of using the results NA, NB, and NC of the Lange-
vin fits as input parameters for the scaling procedure, we
determine the scaling factor by an independent least-squares
fit analysis and compare the results of these independent ap-

0.0 0.2 0.4 0.6
0.95

1.00

1.05

m
A
/m

B

0
H[T]

(a)

0.0 0.2 0.4 0.6
0.95

1.00

1.05

m
A
/m

C

0
H[T]

(b)

0.0 0.2 0.4 0.6
0.95

1.00

1.05

m
B
/m

C

0
H[T]

(c)

0.0 0.2 0.4 0.6
0.95

1.00

1.05

m
A
/m

B

0
H[T]

(d)

0.0 0.2 0.4 0.6
0.95

1.00

1.05

m
A
/m

C

0
H[T]

(e)

0.0 0.2 0.4 0.6
0.95

1.00

1.05

m
B
/m

C

0
H[T]

(f)

FIG. 4. Ratios mX /mY vs H of the isotherms of samples A, B,
and C measured at T=280 K �a�–�c� and T=300 K �d�–�f�, respec-
tively. Dashed and solid lines represent the ratios without and with
field-scaling.
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proaches. The least-squares analysis is an optimization for
the collapse of two data sets mX vs H and mY vs H obtained
by minimizing

F��,�X,Y� = �
j

��mX�H�j�� − mY��X,YH�j���2. �6�

Here, � is a simple scaling factor that is used to adjust the
amplitudes of the data sets according to the volume ratio of
the samples; however, �X,Y is the nontrivial scaling factor of
the magnetic field. A value of �X,Y close to the expected
value of 1 indicates that corrections for the dipolar interac-
tion are small. We take advantage of �X,Y 	1 through the
simplifying first-order Taylor series

mY��X,YH� 	 mY�H� +
dmY�H�

dH
H��X,Y − 1� . �7�

We obtain linear equations for � and �X,Y by substituting
expansion �7� into the functional �6� and applying the neces-
sary conditions �F /��=0 and �F /��X,Y =0 for the minimiza-
tion of F�� ,�X,Y�. Their solution reads

�X,Y =
SY�HX�SY�HX − SYX� + SXX�SY�HY − SY�HY�H�

SY�HX
2 − SXXSY�HY�H

. �8�

where SY�HX=� j

dmY�H�j��

dH H�j�mX�H�j��, SY�HY

=� j

dmY�H�j��

dH H�j�mY�H�j��, SY�HY�H=� j
� dmY�H�j��

dH H�j��2
, SYX

=� jmY�H�j��mX�H�j��, and SXX=� j�mX�H�j���2.
Having calculated �X,Y, we obtain

� =
SYX + ��X,Y − 1�SY�HX

SXX
. �9�

Figure 4 shows the ratios mX /mY vs H of the isotherms of
samples A, B, and C measured at T=280 K �Fig. 4�a�–4�c��
and T=300 K �Fig. 4�d�–4�f��, respectively. Dashed and
solid lines are the ratios without and with field scaling. All
isotherm ratios are matched in amplitude by �=1.80, 3.63,
and 2.01 �Fig. 4�a�–4�c�� and �=1.80, 3.62, and 2.02 �Fig.
4�d�–4�f�� obtained from Eq. �9�, respectively. As expected,
the � values are approximately given by the volume ratios or
ratios of the numbers of nanoparticles of the samples as de-
termined from simple geometry or the Langevin fits shown
in Fig. 3.

In plots of mX /mY vs H as shown in Fig. 4 �dashed lines�,
systematic deviations from mX /mY =const	1 are a clear sig-
nature that the m vs H data of the various samples do not
simply scale with the sample size or number of nanopar-
ticles. Note that corrections due to the well-known shape-
dependent demagnetizing fields are already taken into ac-
count when considering m vs H isotherms instead of m vs Ha
raw data. By scaling the field values of mY vs H by the
scaling factors �A,B=1.045, �A,C=1.062, �B,C=1.015 for iso-
therms at T=280 K and �A,B=1.044, �A,C=1.050, and �B,C
=1.006 for isotherms at T=300 K, we obtain mX /mY ratios
that are significantly closer to mX /mY =const	1 �Fig. 4 solid
lines�. These results strongly support the scaling law of Eq.
�3� suggested by Tsallis28 and later observed in Monte Carlo
simulations.26 Although field scaling gives rise to a signifi-

cantly improved data collapse for mA /mB vs H and mA /mC vs
H �Fig. 4�a�–4�e��, there is no significant improvement when
considering mB /mC vs H �Fig. 4�c� and 4�f��. The latter ratio
involves the isotherms of the two thinnest samples, and the
negligible impact of the field scaling might indicate a gradual
crossover into 2D behavior. As pointed out in the Introduc-
tion, in the pure 2D case regular extensive behavior is ex-
pected even for dipolar interacting particles.

The field-scaling factors �X,Y have been determined from
Eq. �8� by optimizing the data collapse for each pair of iso-
therms mX vs H and mY vs H. The equation of state �3�
independently implies �X,Y =ln NX / ln NY. The latter relation
allows for an independent calculation of the scaling factors
from NA, NB, and NC determined via the Langevin fits that
yield �A,B=�B,C=1.022 and �A,C=1.044 remarkably close to
the scaling factors determined by independent optimization
of the data collapse. In fact, �A,C is the largest scaling factor
in accordance with the fact that samples A and C have the
largest difference in volume. Retroactive justification for not
scaling the temperature is provided by the fact that devia-
tions in � by �1% are observed when optimizing the data
collapse for isotherms measured at T=280 K and T=300 K.

FARADAY ROTATION

Finally, to provide independent experimental support for
the proposition that the scaling behavior �implied by Eq. �3�
and substantiated in Fig. 4� originates from long-range inter-
actions, we examined the Faraday rotation � vs Ha of
sample A at room temperature using two different diameters
of a laser beam probe. A polarized beam of an intensity sta-
bilized laser diode ��=670 nm� was transmitted through
sample A along its cylinder axis. The sample was mounted
between the pole shoes of an electromagnet. An iris provided
control over the diameter of the light beam that passed
through the sample and the holes in the pole shoes of the
electromagnet. The Faraday effect rotates the plane of the
polarized light by an angle �, an angle that is proportional to
the magnetization of the sample. An analyzer aligned at 15°
with respect to the polarizer gives rise to a � dependence of
the transmitted light intensity, which is detected by a photo-
diode. Using the Jones matrix formalism, we determine � vs
Ha from the measured field dependence of the light intensity.

In a magnetic system with short-range particle-particle in-
teraction, the illuminated part of the sample can be consid-
ered as an effective sample volume that contributes to the
Faraday signal. Particles outside this volume have no effect
on the Faraday signal. Variation of the laser beam diameter
can be considered equivalent to variation of sample diameter.
If the magnetization is homogeneous, the Faraday rotation is
determined by the thickness of the sample. If the same idea
is transferred to an ensemble of nanoparticles that are
coupled via long-range interactions, one would expect that
the variation of the laser diameter between d1=3.37 mm and
d2=1.97 mm is equivalent to the measurement of two cylin-
drical samples with diameters d1,2. Furthermore, from the
SQUID magnetometry, one might expect ��d1� /��d2� vs
Ha�const. A more careful consideration that takes into ac-
count the long-range interaction of the nanoparticles reveals
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that nanoparticles outside the illuminated region of the
sample interact with nanoparticles within the laser spot, thus
influencing the magnetization and the Faraday signal. Hence,
the concept of an effective volume determined by the illumi-
nated sample volume is not applicable in the case of long-
range interaction. In short, � vs Ha is expected to be inde-
pendent of the diameter of the probing laser beam for a
homogeneously magnetized sample.

Figure 5 shows the Faraday rotation � vs Ha for the laser
beam diameters d1=3.37 mm �squares� and d2=1.97 mm
�circles�. The slope of a best linear fit to the ��d1� vs Ha

data for 0��0Ha�0.02 T provides the Verdet constant
V=4.54 rad T−1m−1 where �=V�0Hah. Similar results have
been found recently when taking into account different
saturation magnetizations for different nanoparticle
concentrations.31 Within the noise level, the isotherms col-
lapse as expected. The same holds for the corresponding ra-
tios of the data sets shown in the inset. The ratio
��d1� /��d2� vs Ha of the Faraday signals fluctuates statisti-
cally around ��d1� /��d2�=1. The fact that the Faraday ro-
tation signal is independent from the diameter of the probing
laser beam is a retrospective indication for the absence of
macroscopic heterogeneity across the sample. If present,
such heterogeneity would diminish the reliability of the scal-

ing analysis of our SQUID data. All samples are cut from a
common master sample that is large in comparison to the
individual samples A, B, and C.

Our study of the Faraday rotation emphasizes the fact that
the dipolar interaction entangles all parts of the sample with
each other. This entanglement also holds for those parts of
the sample that are not directly probed by the laser beam, but
a careful examination of isotherms for different sample vol-
umes is required to assess the possible impact of long-range
interactions on the magnetic equation of state. The indepen-
dence of the Faraday-signal of the laser diameter provides no
information about the nature of the interaction. The Faraday
results are consistent with the presence of long-range inter-
action, but they offer no proof of nonextensive behavior.

CONCLUSIONS

In conclusion, we have provided experimental evidence
for a magnetic equation of state, first proposed by Tsallis,
which involves scaling the temperature and the magnetic
field by the logarithm of the number of magnetic particles
dispersed in the samples. We used SQUID magnetometry to
measure the field dependence of the magnetic moment ex-
hibited by various ensembles of magnetic �-Fe2O3 nanopar-
ticles embedded in a polystyrene matrix. We observe that the
long-range nature of the dipolar interaction gives rise to the
unusual scaling behavior of the isothermal magnetic moment
measured as a function of the magnetic field. Our results
substantiate Tsallis’ approach concerning the phenomenology
of nonextensive thermodynamics. When the magnetic field is
scaled by the logarithm of the number of nanoparticles, the
isotherms for different samples collapse to a common nor-
malized result. The field-scaling factors that allow us to ob-
serve this collapse are determined by two independent meth-
ods that yield consistent results over the lengths scales to
which we have experimental access. The applicability of
similar unusual scaling procedures to various thermody-
namic systems governed by an interaction range which is
comparable to the characteristic length scale of the system
should provide experimentalists and theorists with an inter-
esting and exciting array of scientific challenges for many
years to come.
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