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Dynamic magnetization states of a spin valve in the presence of dc and ac currents:
Synchronization, modification, and chaos
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We present analytical and numerical calculations of dynamic magnetization states of a spin valve in the
presence of dc and ac currents. Three distinct dynamic phases, synchronization, modification, and chaos, are
identified within the experimental parameter space. A particularly interesting result is the appearance of the
synchronization-chaos boundaries. In the region of synchronization, our results agree with experiments. In the
modification and chaos regions, we predict experimentally observable power spectra.
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I. INTRODUCTION

The phenomenon of current-driven steady-state preces-
sional motion of magnetization in nanometer-scale magnetic
devices has been understood in terms of spin transfer
torques: the nonequilibrium conduction electrons pump in a
magnetic energy that exactly compensate the damping loss in
a precessional cycle.' The stabilized magnetization oscilla-
tors open new application capabilities in electrical control of
nanosized microwave devices. Recently, it is found experi-
mentally that the precessional motion can be either synchro-
nized by an ac current® or mutually synchronized by another
nearby similar oscillator.”® The successful synchronization
of the oscillators greatly enhances the power output and re-
duces the noise compared to a single oscillator, and thus it is
more desirable for an effective application. However, there is
a lack of systematical understanding on the nature of the
current-driven phase-locking phenomenon. In the nonlinear
theory,”!! the most important parameters in synchronization
are the amplitude of the ac current and the detune frequency
(v) which is defined as the difference between the frequency
of the original dc current-driven oscillation and the fre-
quency of the applied ac current. When the parameters are
outside the region of synchronization, complicated dynamic
phases are expected to appear.

In this paper, we consider a simple spin valve as a model
system to study the problem of synchronization and other
dynamic phases. Specifically, it is desirable to determine
what are the dynamic phases outside the synchronization re-
gion for the experimentally available parameter space. The
model spin valve consists of a pinned layer whose magneti-
zation is fixed at x axis and a single-domain free layer whose
magnetization vector [m|=1 is the subject of our calculation.
The dynamics of the free layer magnetization is determined
by the standard Landau-Lifshitz-Gilbert (LLG) equation with
the addition of a spin transfer torque,’

om < oot % Jm
e o+ am X —
o ym eff o

+ (age + a,. cos wt)m X (m X e,), (1)

where a4, and a,. are the amplitudes of the spin torque due to
dc and ac currents, respectively, w is the frequency of the ac
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current, and the effective field is H y=H.e,+Hm.e,
—4m7M m.e,. This field consists of the external field and an-
isotropy, both along the x axis, and a demagnetization field
along the z axis. The remainder of the paper is to solve the
dynamic phases from Eq. (1). In Sec. II we numerically in-
tegrate Eq. (1) and describe several distinct dynamics phases
in detail. In Sec. III we provide an analytical proof for the
existence of chaos. It is found that the perturbative determi-
nation of the corresponding Melnikov integral gives excel-
lent agreement with our numerical results. We discuss our
results in Sec. IV.

II. NUMERICAL DETERMINATION
OF DYNAMIC PHASES

For our macrospin model where the free layer is a single
domain, the numerical integration of Eq. (1) can be straight-
forwardly carried out. We choose the parameters in Eq. (1)
similar to those of a permalloy film: the damping constant
a=0.02, the anisotropy field is zero, the demagnetization
field is 47M=8400 Oe, and gyromagnetic ratio is y=1.7
X 107 (Oe)~! s~!. First we identify precessional steady state
(also known as the limit cycle) solution without the ac
current.'> The relation between the frequency of the limit
cycle and the dc current density is shown as the dotted line in
Fig. 1. Note that the decreasing and increasing branches rep-
resent two distinct magnetization trajectories known as in-
plane and out-of-plane precessional motion.> We then con-
sider the magnetization dynamics when an ac current, whose
frequency is different from those of the limit cycles, is turned
on. We find that the magnetic states appear to have three
dynamic phases: synchronization, modification, and chaos.
For a fixed amplitude of the ac current, the limit cycle is
always synchronized with the external frequency as long as
the detune frequency is small. When the detune frequency is
not small, two other phases appear: modification and chaos.
In Fig. 1, we show the complete dynamic phase diagram for
a fixed ac amplitude. We describe each of these phases be-
low.

A. Synchronization

As expected, the synchronization regions, labeled by S of
the green stripe, are confined in the vicinity of the original
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FIG. 1. (Color online) Magnetization dynamic phase diagram
driven by dc and ac currents. The external field is fixed at 200 Oe
and the amplitude of the ac current a,.=20 Oe. Three phases are
synchronization (S), modification (M), and chaos (C). The dotted
line is the frequency of the limit cycle in the absence of the ac
current. The analytical results from the Melnikov criterion of chaos
are shown in the two nearly vertical dashed lines.

frequency of the limit cycle (shown as the dotted line in Fig.
1). When synchronization occurs, the spectrum peak is ex-
actly at the external frequency and consequently the peak is
higher but narrower compared to the original spectrum of the
limit cycle without the ac current. We take the point “x;”
(ag.=420 Oe, w=32 GHz) in Fig. 1 to illustrate the time
trace and power spectrum for the typical synchronization
shown in Fig. 2(a). When we increase the amplitude of the ac
current, the width of the synchronization stripe in Fig. 1
increases, i.e., the synchronization region expands. The area
of synchronization on the plane of parameters of the detune
frequency and the ac amplitude for a fixed dc current is
shown in Fig. 2(b). The straight lines of the synchronization
boundaries indicate that one can treat the external ac current
as a perturbation and analytically determine the phase
boundaries as we will show in the next section. Therefore,
the experimental observation of synchronization®® can be
explained by the general synchronization theory valid for the
whole class of nonlinear oscillating systems.” We note that
an explicit calculation for the synchronization region was
also carried out previously in a different content.!®!4

B. Modification

The loss of exact synchronization occurs where the detune
frequency v increases to a critical value v,. In this region, the
time trace of the magnetization shows fast and slow oscilla-
tions; the latter are known as the “beat phenomenon.” In Fig.
2(c), we depict the time trace and power spectrum for the
typical modification. The frequency where the power spec-
trum is peaked is different from the external frequency and
their difference is defined as the beat frequency. It is noted
that the beat frequency in this modification region is not the
beat frequency of a linear system which is simply the differ-
ence between the nature frequency and the driving fre-
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FIG. 2. (Color online) Synchronization and modification of
magnetization dynamics. (a) The power spectrum and time trace
(inset) for the point “x;” (a4.=420 Oe, =32 GHz) of Fig. 1 in the
synchronized region. (b) Synchronization and modification bound-
aries in the plane of the detune frequency v and the amplitude of the
ac current a,, for a fixed dc current. (c) The power spectrum and the
beat phenomenon (inset) for the point “x,” (ag.=500 Oe, w
=32 GHz, see Fig. 1) in the modification region. (d) The beat fre-
quency as a function of the detune frequency for fixed amplitudes
of the dc and ac currents.

quency. For the point “x,” (a4,=500 Oe, w=32 GHz) in Fig.
1, the beat frequency is about 2.2 GHz. We show in Fig. 2(d)
the beat frequency as a function of the detune frequency.
When the detune frequency is smaller than v, the beat fre-
quency is exactly zero, i.e., exact phase locking. When |v|
> v,, the nonzero beat frequency begins to appear. One may
analytically investigate the relation of the beat frequency as a
function of the detune frequency for a weakly perturbed non-
linear oscillator.” In general, the beat frequency is propor-
tional to \|v|— v, when the detune frequency v is just outside
the synchronization region. Both the prediction of the syn-
chronization area and of the linear dependence of v and a,.
are in excellent agreement with experiments.®

C. Chaos

The most interesting dynamic phase is the ac current-
driven chaos. One immediately notices from the phase dia-
gram of Fig. 1 that the chaos occurs in a narrow stripe where
the frequency of the dc current is near the vicinity of the
frequency minimum of the limit cycle. Solving inequality
Eq. (7) or Eq. (8) to be described later, one can obtain the
chaos boundary shown in the two nearly vertical dashed lines
shown in Fig. 1. The agreement of our analytical and numeri-
cal predictions of chaos in the stripe is almost perfect. The
time trace of magnetization shown in Figs. 3(a) and 3(b)
clearly displays the chaotic bouncing between the two origi-
nal limit cycles: one above and one below the layer plane for
the same parameters. Without the ac current, these two de-
generate limit cycles are independent. For a given initial
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FIG. 3. (Color online) Chaotic magnetization dynamics. (a) The
power spectrum and the time trace (inset) of the point “x3” (ag.
=258 Oe, w=32 GHz, see Fig. 1) at the chaotic region. (b) The
two-dimensional plot of the chaotic magnetization orbital showing
typical chaotic motion.

magnetization vector, only one of these two limit cycles is
able to attract the magnetization trajectory. In the presence of
the ac current, the magnetization jumps back and forth from
one to the other. Another key difference between the chaos
phase and the other two phases is that the power spectrum of
the chaos phase shows no well-defined peaks shown in Fig.
3(a). We have also performed a numerical evaluation of the
Liapunov characteristic exponents to support our notion that
the dynamics is a true chaos."

We point out that the chaos driven by the periodic ac
current is fundamentally different from the magnetization
chaos due to spatially nonuniform magnetization dynamics
reported in the micromagnetic simulation by Lee et al.'® In
the latter case, the dc current alone generates spin waves
with different wavelengths due to nonuniform magnetostatic
interaction. The nonuniform magnetization appears spatially
chaotic, or enhanced noise. It is nearly impossible to analyze
the characteristics of these chaotic dynamics since the
sample size and geometry play the key roles. When the
sample size is sufficiently small, the nonuniform magnetiza-
tion induced chaos (or noise) will be completely suppressed.

D. Windows and weaker chaos

Although we have proved rigorously below the existence
of chaos in the stripe by treating the Gilbert damping and the
spin torque as perturbations, the stability of the chaos is a
challenging issue that cannot be dealt with mathematically.
From numerical simulations, often chaos can lose and regain
its stability over small parameter intervals. The small param-
eter interval where chaos loses its stability and another sim-
pler attractor gains stability, is called a window. With small
increments of the dc current, the power spectra change from
chaotic to modification and then back to chaotic, as shown in
Fig. 4. Indeed, a small variation of the parameters (e.g., dc
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FIG. 4. (Color online) The window of magnetization dynamics.
With small increments of ag., the power spectra change from cha-
otic [(a) ag.=259.47 Oe] to modification [(b) ay.=259.48 Oe], then
from modification [(¢) ay4.=259.53 Oe] back to chaos [(d) a4
=259.54 Oe].

current or damping parameter) may produce different phases
in the regions of C/M or C/M/S, our numerics found sev-
eral windows in the chaos stripe as shown in Fig. 5(a). Inside
the window, a modification or synchronization state is the
attractor. Near the boundaries of the window, the modifica-
tion or synchronization often undergoes a Hopf bifurcation'’
before it enters the chaos region. Sometimes such an initial
chaos region supports chaos around only one of the two
loops. The chaos in the stripe is generated from a separatrix
(also loosely defined as fixed points) which exists even when
the Gilbert damping and the spin torque are dropped. On the
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FIG. 5. (Color online) (a) Magnetic phase variation across C/M
and C/M/S regions. Solid red circles, solid green squares, and hol-
low white circles represent dynamics of chaos, synchronization and
modification, respectively. (b) The power spectrum and the time
trace (inset) of the point (a4,=269 Oe, w=32 GHz) at the weaker
chaotic window. (c) The two-dimensional plot of the magnetization
orbital showing the weaker chaotic motion.
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other hand, the ac current can generate parametric instabili-
ties which can lead to weaker chaos. Our numerics has in-
deed detected such weaker chaos outside the chaos stripe
[not shown in Fig. 5(a)]. A complete understanding of win-
dows and weaker chaos may require further investigation
and we do not have an analytical determination of when and
how these phases appear in this region. In Figs. 5(b) and
5(c), we depict the time trace, the power spectrum, and the
two-dimensional magnetization orbital for the typical weaker
chaos.

III. MATHEMATICAL PROOF OF THE EXISTENCE OF
CHAOS

While both synchronization and modification are expected
for any nonlinear oscillator with a periodic driven force, the
presence of chaos is not a universal property of nonlinear
oscillators. In the following, we provide a rigorous math-
ematical proof of the existence of chaos for our simple spin
valve system. For the notational simplicity, we rewrite Eq.
(1) in terms of dimensionless parameters normalized by
47M  for the external field, anisotropy field, and currents,

_ Hexl Hk Adc

b h: 9 = b
Eami P P

- aac
47M,
2)

Setting =0 and B, ,=0, the magnetization orbit given by
the first term in Eq. (1) conserves the magnetic energy (nor-
malized by 47M?), E0=—hemx—hkmi/2+m§/2. It is noted
that there may exist more than one orbit for a given energy
E,.

Calculating separatrices connected to a saddle point (m,
=—1, m,=0, m.=0), one can obtain a pair of homoclinic
orbits in the parameter range of h,<h,<h;+1,

4C1€_T
(7= Cy)*-4C,C5’

mx=M0—1=

my= £ NMo[2(h+ 1 = h,) = (e + 1)M],

m,= £ \M[2(h, = hy) + M), (3)
where

T= \/C_l(t1 +1), t=47TMyt,
Cy=4(h, = h)(h+1=h,),
Cy=2[h(hy+ 1 =h,) = (hy = h) (b + 1)],

C3=—Iy(h;+ 1)

in which 7, is a real parameter. It is found that the pair of
homoclinic orbits are asymptotic to the saddle point when ¢
— £,

When we include the other terms in Eq. (1), the energy of
the orbit is no longer a constant. To prove that the pair of
homoclinic orbits persist when a# 0 and B, , # 0, one needs
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to build a Melnikov integral (Melnikov theorem'8),

hk_he

G=Ey+ (m§+m§+m§) 4)

The Melnikov integral is given by

Wiy
U=-aU,+ BU,+ B, cos U
alU;+ B U, + 5, (477M§y> 3

2l )04, (5)

+ 3, sin
Pz (47TMS’)/

where

U1=f VG[mX(mXHeff)]dT,

—o0

U2=f VG-[mX (m X e,)]dr,

+00
U3=—f cos (w—T,—)VG[mX(mXex)]dT,
o 47M N C,

i oT
U=—f sin(—)VG-[mX(mXex)]dT
¢ —oo 47TMS’)/\"E

are evaluated along the homoclinic orbits to Eq. (3).

In general, the simple zero of the Melnikov integral im-
plies the existence of a homoclinic orbit. Around the ho-
moclinic orbit, chaos is often generated.

Setting U=0, one obtains that

cos(w—to - ) = —auﬂ, (6)
4mMy BNU3+ U
where
Us . Uy
cos = \"Ug " Ui’ sin = \’m

thus as long as

laU, - BiU,| < |B,NU3 + UL, (7
U has zeros. Direct calculation shows that the zeros of U lie
in the vertical band region in Fig. 1. The standard arguments
of existence of a pair of transversal homoclinic orbits lead to
the following theorems.

A. Homoclinic orbit theorem

There exists a 6 (0<8<1), such that whenever « and
B, » are small, and

aU,- B,U
| 12 '8122|+5 )
VU3 + Uj

1B =

there is a pair of transversal homoclinic orbits to Eq. (1).
Let P be the Poincaré period 27 map, P: S+ S2, where
5% is the 2-sphere. Under the map P, the pair of transversal
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homoclinic orbits turns into a pair of discrete transversal ho-
moclinic orbits. Using shadowing lemma technique, one can
prove the following chaos theorem. The proof is
standard.'8:1

B. Chaos theorem

In the neighborhood of the pair of transversal homoclinic
orbits, there is a Cantor subset A of S2. A is invariant under
the Poincaré period 27 map P. P restricted to A is topologi-
cally conjugated to the Bernoulli shift on two symbols.'31?

IV. DISCUSSIONS AND CONCLUSIONS

We have shown that there are three distinct dynamic
phases driven by an external ac current. The external peri-
odic force can be in other forms. For example, one can apply
an ac magnetic field instead of the ac current. A similar phase
diagram would be obtained. In fact, we suggest that dynamic
phases driving by the ac magnetic field are easily experimen-
tally accessible since the ferromagnetic resonance which
uses a rf field and a large static field to probe the magneti-
zation relaxation has been routinely done for many decades.
Thus we propose that a study of dynamic phases by a rf field
would test the spin torque theory quantitatively.

The most interesting dynamic phase is chaos. We have
calculated the chaos at zero temperature. An immediate con-
cern is the chaos at the finite temperature. As the thermal
fluctuation can make the transition from one orbital to
another®® and thus lead to the spectrum similar to Fig. 3, one
wants to distinct the chaos driven by an external periodic
force with that due to thermal fluctuation. Experimentally,
one can readily separate these two chaos by following hypo-
thetical experiments: (1) By varying any amplitude (fre-
quency) of ac, dc currents or magnetic fields, the power spec-
trum would change from nonchaotic to chaotic and back to
nonchaotic; this feature does not exist for thermal driven
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chaos. (2) By varying temperature, the external periodic
force driven chaos is not affected while the thermal driven
chaos is completely changed. (3) The thermal driven chaos
can occur in a wide range of the orbits while the periodic
force driven chaos is confined to rather narrow space of pre-
cessional orbits as shown in our phase diagram, Fig. 1.

Until now, we have only considered the dynamic phases
without including noise or chaos presented in the limit cycle.
The interesting challenge in modern synchronization is the
phase locking for chaotic systems. We may extend our study
in two ways. First, we introduce a finite temperature so that
the dynamics of the limit cycle without the ac current is
chaotic. It will be interesting to study how the phase locking
occurs when an ac current turns on.?! The second interesting
case is to study the phase locking between two chaotic os-
cillators (limit cycles). In this case, the rich dynamic struc-
ture would be expected. For example, the two chaotic limit
cycles have a perfect phase locking but have completely un-
correlated and chaotic amplitudes.?>?* We defer these inter-
esting cases for a further study.

In conclusion, by using both analytical and numerical ap-
proaches, we show that the magnetic states in the presence of
the dc and ac currents have three distinct phases: (a) synchro-
nization when the exact phase locking of the oscillator and
the external ac current occurs, (b) modification when the
oscillator and the external ac frequency show the “beat” phe-
nomenon, and (c) chaos when the trajectory of the magneti-
zation undergoes chaotic motion. Our quantitative theory
provides detailed tests for experimental verification of the
basic spin transfer torque formulation and the magnetic dy-
namic phases can be broadly used for designing emerging
nanomagnetic devices.
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