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We determine the temperature range over which classical Heisenberg spin models closely reproduce the
zero-field susceptibility of the corresponding quantum Heisenberg models for a finite number N of interacting
quantum spins s. Using mostly quantum and classical Monte Carlo methods, as well as analytical methods
where applicable, we have explored a variety of geometries, including polygons, open chains, and all Platonic
and several Archimedean polytopes. These systems range in size from N=2 to 120, and we have considered
values of s from 1/2 to 50 for both antiferromagnetic and ferromagnetic exchange. Particular attention is
devoted to quantifying the slow convergence of the large s quantum data to the limiting classical data. This is
motivated by the desire to define conditions where classical Monte Carlo methods can provide useful predic-

tions for finite quantum Heisenberg spin systems.
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I. INTRODUCTION

In the treatment of magnetic systems, a classical spin
model is frequently used, though the microscopic moments
are actually quantum in character. For example, this practice
is sometimes followed in the field of magnetic molecules! in
order to circumvent severe computational difficulties that
arise in a quantum treatment. A classical model can, at times,
be both conceptually illuminating and provide sufficiently
accurate results. However, the accuracy of a classical mod-
el’s results are generally not known, when compared to those
for the quantum spins that are being represented. For that
reason, the goal of the present work is to determine the cir-
cumstances under which classical models will provide a
good approximation to finite systems of interacting quantum
spins. In so doing, we are not only able to provide clear
“rules of thumb” for specific systems; we also explore the
approach to the classical limit for large values of intrinsic
spin s. In order to ensure the accuracy of these comparisons,
we have compared only quantum model systems and their
classical counterparts; we have not included comparisons
with experimental data, whose underlying Hamiltonian may
be in question.

To this end, we have performed calculations using the
Heisenberg model, describing a finite number N of interact-
ing spins. Within this model, there are clearly a number of
properties that one could calculate when trying to answer the
loosely defined question, “When does a classical model ac-
curately simulate the corresponding quantum model?” To se-
lect a suitable metric, and hence clarify this question, there
are two requirements that we impose. (i) We consider a prop-
erty that is of relevance to experiments, and (ii) the property,
for simplicity reasons, depends on only one physically rel-
evant parameter, such that two regimes exist—In one regime,
the classical and quantum models give results that coincide
to within some small prescribed error, while in the other
regime they produce significantly different results. Both re-
quirements are met by choosing to calculate the zero-field

1098-0121/2006/74(5)/054413(8)

054413-1

PACS number(s): 75.10.Jm, 75.10.Hk, 75.50.Xx, 75.40.Mg

susceptibility y as a function of temperature 7" and determin-
ing the minimum temperature 7,,(s) above which the classi-
cal and quantum results for y(7) meet a prescribed accuracy
criterion for a given choice of s. The details of this corre-
spondence are described in Sec. II A.

In order to explore the dependence of 7,, on s, we have
performed calculations for a variety of systems ranging in
size from N=2 to 120 sites, with intrinsic spin quantum
numbers ranging from s=1/2 to, in some cases, as large as
s=50. The classical counterpart to each quantum system is,
of course, also considered, as we describe in Sec. II A. Some
of these systems, specifically with s <5/2, are relevant to the
study of magnetic molecules.! Additionally, the large s cal-
culations allow us to glean valuable information regarding
the approach to the classical limit; and by studying many
different sizes and geometries, we are able to judge the uni-
versality of our conclusions. While we do find certain gen-
eral trends and useful rules of thumb, the diversity of the
results appears to preclude a precise universal description in
terms of properties of the lattices, e.g., connectivity, frustra-
tion, or symmetries.

The calculations that are necessary to explore the depen-
dence of T,, on s pose a considerable challenge, and neces-
sitate the use of a variety of methods. To illustrate this, for
many existing magnetic molecules, matrix diagonalization of
the Hamiltonian is not feasible due to the very large dimen-
sionality of the Hilbert spaces, given by D=(2s+1)". For
example, {Fe;,} (s=5/2 and N=12) (Ref. 2) has D=2.2
% 10°, which is already pushing the current limitations of
Lanczos diagonalization, while {Mos,Fes} (s=5/2 and N
=30) (Ref. 3) has an associated D=~2.2X 103, Instead we
use classical and quantum Monte Carlo methods that allow
us to circumvent the obstacles that large Hilbert spaces and
complex multidimensional integrals pose to quantum and
classical calculations, respectively. We review these methods
in Sec. II C. This is preceded in Sec. II B with a discussion
of the few special cases where the spectra of energy eigen-
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values can be derived analytically, and matrix diagonaliza-
tion is unnecessary.

In Sec. III, we present our results for a wide variety of
geometries including spin chains, polygons, and a number of
Platonic and Archimedean polytopes, where, for each poly-
tope, each vertex represents a spin site and each edge con-
nects a pair of interacting spins. We consider both antiferro-
magnetic (AFM) and ferromagnetic (FM) interactions,
finding that for AFM interactions a classical approximation
is typically valid down to a substantially lower temperature
T,, than for the corresponding FM case. Furthermore, we
present numerical values of 7,, and explore its functional
dependence on s; and to demonstrate the usefulness of these
results, we compare quantum and classical calculations of
x(7) for the {Fe,,} magnetic molecule? in Sec. III C. Finally,
in Sec. IV we summarize our findings.

II. MODELS AND METHODS
A. Quantum and classical spin models

In order to compare the results of classical and quantum
spin models, we use as our starting point the quantum
Heisenberg model. We assume all spins to share a common
quantum number s, and further assume that if a distinct pair
of spins (represented (i, j)) interact with one another, they do
so with the same strength J; as any other pair of interacting
spins. This Hamiltonian is then given by (Ref. 4)

N
H=J,2 55 +gmsH - 2 5, (1)
(i.j) i=1

where the spin operators §; are given in units of #, g is the
spectroscopic splitting factor, up is the Bohr magneton, and

H is an external magnetic field. Following Fisher,’ the clas-
sical analog to this quantum Hamiltonian is constructed by
first defining rescaled spin operators ¢;(s)=s,;/s(s+1), in
the nature of unit vector operators, whose components satisfy
the commutation relation

e;(s)e](s) —e](s)e; (s) =iej(s)/\s(s + 1)

and the cyclic permutations thereof. With this replacement,
and introducing the parameters, J.=Js(s+1) and pu,.
=gup\s(s+1), Eq. (1) is rewritten

N
H =02 es) - i(s) + mcH - 2 ), )
(i) i=1
allowing us to consider a sequence of Hamiltonians (2) for
each geometry, where the members of a sequence differ only
in s, sharing a common value of J.. Since the commutators
between the ¢,(s) vanish in the limit of very large s, each of
these sequences converge with increasing s toward a classi-

cal Hamiltonian, (Ref. 6),

N

H=JCEé)i.e_)j+Iu‘CH'EE[7 (3)
(i.j) i=1

where all ¢; operators are replaced by classical unit vectors

€;.
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We focus in this article on the comparison between re-
sults, derived from Egs. (2) and (3), for the zero-field sus-
ceptibility, x(7) ElimHHO%, where M is the magnetization
induced by the magnetic field H. At sufficiently high tem-
peratures, Egs. (2) and (3) give the same values of x(7),
while at low temperatures the values of y(7) diverge from
one another. Specifically, x(0)=0 for quantum systems
having a ground state with total spin S=0, and x(7) «exp(
—A/kgT) for sufficiently small 7, where A is the energy gap
between the ground state and the first excited state for which
§>0. Classical models, by contrast, do not have a corre-
sponding gap in their energy spectra. As a result, an infini-
tesimal external magnetic field would induce a proportional
(infinitesimal) magnetization, so Eq. (3) gives values of x(7T)
that are nonzero in the limit 7—0. For a system whose
ground state has $>0, y(T—0) diverges proportional to
1/T, as we describe in Sec. III B.

With this high temperature correspondence (and deviation
of classical and quantum results at low temperatures) in
mind, we are now prepared to explicitly state the question to
be answered in this article: “What is the minimum tempera-
ture T,,(s) for which Egs. (2) and (3) produce the same zero-
field susceptibility x(7) to within some predetermined factor,
e.g., 2%7” This question is answered in detail in Sec. III
using the methods of Secs. I B and II C, where in all cases
x(T) is obtained using the fluctuation formula x(7)
=(g2,u%/ 3kpT){S*)s, where (S?); denotes the ensemble aver-
age of S2.

B. Analytical methods

For a few special geometries, it is possible to calculate the
zero-field energy eigenvalues E analytically by expressing
them in terms of the total spin quantum number S and addi-
tional spin quantum numbers described below. Given these
energies, if one is able to calculate the degeneracy vy for
each E, it is then straightforward to calculate the zero-field
susceptibility. These special geometries can be grouped into
two categories. The first category includes systems in which
all spins interact equally with all other spins (sometimes re-
ferred to as “pantahedra”). In this case, the energies are given
by

E(S,s)=%[S(S+ 1)=Ns(s+1)]. (4)

It is also possible to write down the energies in the more
general case that the spin lattice can be decomposed into two
or more sublattices, such that each spin of a given sublattice
(whose total spin is labeled S4, Sg, etc.) interacts with the
same strength with all spins of the other sublattices, but no
spins of its own sublattice. To illustrate this, we consider two
special cases, whose resulting energy spectra are very similar
to Eq. (4). For a ring of four spins with nearest-neighbor
interactions only, there are two sublattices, each of which
consists of a pair of spins that do not interact with one an-
other. In terms of these two sublattices, the energy spectrum
is given by
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B(S.54,85) = ZT8(5+ 1) = $,(S+ 1) = 55+ D], (6)

while for the octahedron there are three sublattices, resulting
in

J. J.
E(S,S4,58,5¢) = EAS(S +1)- g[SA(SA +1)+Sp(Sp+ 1)

+Sc(Sc+ 1] (6)

The calculation of y(7) for these systems then reduces to
enumerating all of the ways in which the individual spins of
each sublattice can couple together to yield a given energy,
hence providing the values of vg. Using these data, we are
able to calculate y(7) for very large values of s and D, which
are well beyond the current limitations of matrix diagonal-
ization. To compare with classical data, we use the results of
Ref. 7, as well as additional results that have been derived
for the classical N=5 pantahedron.?

C. Monte Carlo methods

For both the quantum and the classical model Hamilto-
nians that were shown in Sec. II A, the analytic calculation
of x(T) is not feasible for general geometries of spins. In
both cases, this calculation involves an ensemble average
which becomes very challenging with increasing N. For
quantum spins, the value of the Hilbert space dimensionality
D can become so large (=107) that it is impractical to at-
tempt to compute all of the energy eigenvalues, while the
classical versions often involve intractable 3/N-dimensional
integrals.

Both classical and quantum Monte Carlo methods exploit
the following idea. Instead of seeing it as a hindrance that
one cannot include the contributions from all of the quantum
eigenstates and all of the classical phase space, one can in-
stead recognize that it is often unnecessary to include all of
the states and use this to our advantage. When the excitation
energy of a state is large relative to the thermal energy kg7,
the state will not contribute significantly to the ensemble
average, and can hence be ignored. In this spirit, one can use
the method of importance sampling to perform the necessary
averaging, whereby the states that make large contributions
are accurately sampled, and the states that make negligible
contributions are ignored. (See, for example, Ref. 9.) While
there are statistical errors involved in this approach, the er-
rors can be made arbitrarily small by performing longer sam-
pling runs. Very importantly, no systematic errors are intro-
duced, and the statistical errors are accurately estimated
during the course of a calculation.

For the quantum calculations, we use the method that was
introduced in Ref. 10 and has been recently used to study
similar finite systems.!""!? The idea of this method is that a
high-temperature expansion can be used to express the par-
tition function in terms of two-spin matrix elements, which
are easily evaluated.!? The trade-off is that, in order to con-
sider the full range of temperatures, many complicated terms
must be sampled, and the Monte Carlo updating becomes
very involved. However, this updating can be efficiently per-
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formed using the so-called “directed-loop” equations'? to si-
multaneously satisfy detailed balance, and ergodically
sample the relevant phase space. For the classical Monte
Carlo calculations, importance sampling is carried out using
the standard Metropolis method.'#

Using these methods we have considered a great variety
of geometries in Sec. III, with sizes ranging up to N=120.
For this largest system, we considered quantum spins up to
$=9/2, with dimension D=10'?". However, as impressive as
this is, the quantum Monte Carlo (QMC) method also has a
serious limitation. For classical systems that have frustrated
ground states,' the quantum analogs suffer from the infa-
mous negative sign problem,'® and results can only be ob-
tained for relatively high temperatures.!' As a result, for such
frustrated systems QMC calculations are sometimes able to
provide a more complete description of experimental data
than one would obtain from classical Monte Carlo. In other
situations, QMC calculations are limited to temperatures that
are greater than 7,,, in which case QMC offers no additional
information beyond that which is given by classical Monte
Carlo. This issue is addressed in greater detail in the Appen-
dix.

II1. RESULTS
A. AFM interactions

In this section we present and discuss x(7) and T,,(s) data
for systems of spins that interact via AFM interactions. As
was described in Sec. IT A, the quantity T,,(s) is defined only
in terms of some prescribed discrepancy, which we choose
here to be a 2% difference between the values of y for quan-
tum spins s and classical spins. This value is chosen simply
because a 2% difference is just visible to the eye; choosing a
different number, such as 5%, does in fact lead to the same
conclusions, only with a different numerical prefactor.

In Fig. 1 we show x(7) for the square and tetrahedron
with quantum spins ranging from s=1/2 to s=20 as well as
classical spins. For values of s>5/2 we display only the
results for s=5, 10, 15, and 20, but calculations were per-
formed for all s=<50, and we observe the same trends for all
values of s. Note that in both plots an arrow indicates the
temperature at which a 2% difference occurs between the
classical and the s=1/2 data, hence providing the corre-
sponding values of Tm(s=%) in terms of J,.. For both geom-
etries we find that kBTm(%)/ch}S, and the values of
kgT,(s)/J, clearly decrease toward zero with increasing s.
These same trends were also found for the other structures
described in Sec. II B, and thus the corresponding x(7) data
are not shown.

In Fig. 2 is shown the susceptibility per spin, x(7)/N,
obtained using Monte Carlo methods, for a ring of N=20
spins and an Archimedean solid of N=120 spins, with s
ranging from 1/2 to 9/2 as well as classical data. In both
Figs. 1 and 2, the classical limit is indeed being approached
with increasing s, but only slowly. Specifically, for s=5 the
quantum and classical results differ noticeably when kzT
=<J./2; and in Fig. 1 the s=20 results clearly diverge from
the classical curves for kg7 0.01J.. We seek to quantify this
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FIG. 1. Zero-field susceptibility in units of ,uf/JC, where w. and
J.. are defined in Sec. II A, for the AFM (a) square and (b) tetrahe-
dron. In both cases, results are shown for intrinsic spins s
=1/2,1,3/2,2,5/2,5,15,20, and classical spins. The s=1/2 and
s=1 curves are labeled, and the larger values of s proceed system-
atically toward the classical results, which are the uppermost
curves. In the inset the same data are plotted with a logarithmic
temperature scale, and, as described in the text, the arrows indicate
where a 2% difference is reached between the s=1/2 and s= data.

approach to the classical limit, and have thus determined
kT, (s)/J,, which equals s(s+1)kgT,,/J., for many
geometries.!” One could instead analyze kzT,,(s)/J., but, as
we will show, by plotting kzT,,(s)/J, the functional depen-
dence of T,, on s is easily extracted.

In Fig. 3(a), we plot kzT,,(s)/J, for the geometries de-
scribed in Sec. II B, including values of s extending up to
s=20. For all of these structures, there are clearly two dis-
tinct regimes of s values. For small s (<5/2) the data in-
crease linearly with s, and for large s (=5) the kzT,,(s)/J;
data saturate. In the intermediate range, 5/2=<s=<35, the be-
havior is crossing over between the two limiting cases. [For
the square, larger values of s (=40) are needed to reach
saturation, but kzT,,(s)/J; eventually approaches a constant
value, =9.0.] These data immediately imply that, although
kgT,,(s)/J, decreases monotonically with s, its functional de-
pendence is different for large and small s: For small s,
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FIG. 2. Zero-field susceptibility per spin in units of ,uf/]c,
where u,. and J, are defined in Sec. II A, for the AFM (a) N=20
ring and (b) N=120 Archimedean solid (great rhombicosidodecahe-
dron). In both cases, results are shown for intrinsic spins s
=1/2,1,...,9/2, and classical spins. The s=1/2 and s=1 curves
are labeled, and the larger values of s proceed systematically toward
the classical results, which are the uppermost curves.

kgT,(s)/J s, or equivalently, kgT,,(s)/J, o 1/(s+1); while
for large s, kgT,,(s)/J.%1/5>.

In order to formulate a useful rule of thumb, we must
include not only the s dependence, but also the proportion-
ality constants. For large s there are clearly two proportion-
ality constants that are relevant for the geometries shown in
Fig. 3(a). For the dimer and square kzT,/J,=~9, while
kgT,,/J,~4.5 for the pantahedra and octahedron. In Fig. 3(b)
we have included data for s<<5 for many additional struc-
tures, calculated using the Monte Carlo methods described in
Sec. II C. Again, we find that in all cases, kzT,,/J, increases
linearly with s for small s, and then approaches saturation for
larger s. For the pantahedra and octahedron this saturation is
already reached by s =2, while kzT,,/J, continues to increase
for the other structures. In fact, other than the pantahedra and
octahedron, all of these data for s=<3 can be described to
within 30% by the function kgT,,(s)/J,~2(s+1), giving
the very simple rule of thumb, kzT,,/J.=~2/s for this interval
of s.

B. FM interactions

The same systems (described in the Appendix) but with
FM interactions were also studied in the same manner as was
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FIG. 3. T, vs s for systems with AFM interactions. In (a) data
are included up to s=20 for the dimer ([J), triangle (O), square (x),
tetrahedron (A), N=5 pantahedron (V), and octahedron (+). The
same symbols also apply in (b), where data are plotted for all of the
geometries that have been considered. As a guide to the eye, lines
connect successive data points. For additional details regarding
these data and geometries, see the Appendix.

described for AFM systems. There are, however, some dis-
tinct differences between the AFM and FM results. When all
interactions are FM, the ground states of the classical sys-
tems are realized by aligning all spins; similarly, the ground
states of the quantum systems have S=Ns. As a result, x(7)
diverges at low T proportional to 1/7 in all cases, so instead
of plotting x(7), it is more instructive to plot Tx(7) as is
shown in Fig. 4. Moreover, the limiting 7— 0 values of T,
henceforth referred to as (Ty),, converge with increasing s to
the classical result.'® Consequently, there will be some value
of s=s" which, when exceeded, will give results that differ
by less than 2% even at T=0. Therefore, T,,=0 for s>s", so
for large s we do not obtain the AFM result, i.e.,
kgT,,(s)/J,1/5* Note however that the value of s* is typi-
cally quite large (e.g., s"=45 for N=10), and there is still a
large region of s values, shown in Fig. 5(a), for which
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FIG. 4. The product of temperature times zero-field susceptibil-
ity per spin in units of u’/kp for the FM (a) icosahedron and (b)
icosidodecahedron. In both cases, results are shown for intrinsic
spins s=1/2,1,...,9/2, and classical spins. The s=1/2 and s=1
curves are labeled, and the larger values of s proceed systematically
toward the classical result, which are the uppermost curves.

kgT,/J; is independent of s, or equivalently, kzT,(s)/J,
o« 1/s%.

As shown in Fig. 5, kgT,,/J, indeed decreases for large s
as 5" is approached, but the data are nonetheless quite similar
to those obtained for the AFM systems. For s <3, kgT,,/J, is
increasing, and this increase is again linear with s. The most
striking feature of Fig. 5 is perhaps that kzT,,/J, can be quite
large, exceeding 30 for the case of the N=5 pantahedron and
the octahedron, and exceeding 10 for almost all of the sys-
tems when s =5/2. There is a very large variation in the data
between the geometries, but the median values of 7,, can be
roughly described by k3T, /J,~5s for s<5. Comparing with
the AFM rule of thumb, for small s these values of T,, are
similar to those found for AFM interactions, but for large s,
T,, is much larger when the interactions are FM.

C. An application: Fe;,

To illustrate the applicability of the data presented here (in
Figs. 3 and 5) to the analysis of experimental results, we now
compare quantum and classical calculations of the zero-field
susceptibility for an existing system for which the quantum
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FIG. 5. T,, vs s for systems with FM interactions. In (a) data are
included up to s=20 for the dimer (OJ), triangle (O), square (X),
tetrahedron (A), N=5 pantahedron (V), and octahedron (+). The
same symbols also apply in (b), where data are plotted for all of the
geometries that have been considered. As a guide to the eye, lines
connect successive data points. For additional details regarding
these data and geometries, see the Appendix.

calculations are challenging. The {Fe,,} magnetic molecule”
is comprised of a ring of 12 Fe** ions (s=5/2), such that
D=62=22x10°, which is too large to allow the full
Hamiltonian to be diagonalized using current computers. By
analyzing the measured!® high-field magnetization of {Fe,}
using QMC calculations, we have recently!? estimated the
exchange constant for this system to be J,/kz=35.2 K, as-
suming g=2.0. Given this estimation, we now compare the
temperature dependence (in Kelvin) of x(7), as calculated
using a model {Fe,} Hamiltonian, assuming Heisenberg in-
teractions, for both quantum (s=5/2) and classical (s— =)
spins, shown in Fig. 6.

Upon inspecting Fig. 3, one finds that 7,,~7J,/ky for an
AFM ring, which gives a value of T,,~7 X 35.2 K for {Fe,,},
which is slightly less than 250 K. In Fig. 6 we present the
corresponding theoretical curves for y(7), with the precise

PHYSICAL REVIEW B 74, 054413 (2006)

.*é'
S
©
S
E
8
5
£
£
L
=
0.02 1
000 1 1 1 1
0 100 200 300 400 500

T (Kelvin)

FIG. 6. Calculated molar susceptibility vs T for the {Fe,,} mag-
netic molecule (Ref. 2). Data are included for both the quantum
(s=5/2) Hamiltonian (solid), as calculated using QMC, and the
classical Hamiltonian (dashed). Both calculations assume J,/kg
=35.2 K, as estimated in Ref. 12, and g=2.0. The arrow indicates
the temperature 7,, above which these two data sets differ by less
than 2%.

value of T,, indicated by an arrow. It is interesting to note
that for this system the quantum and classical results differ
significantly over most of the temperature range of experi-
mental interest (77< 300 K). Furthermore, for T< 150 K, the
results diverge from one another, such that the use of these
classical results for the analysis of experimental data would
introduce significant systematic errors into one’s estimation
of the exchange parameters. However, for systems with
smaller values of J,, classical results can potentially be used
to much lower temperatures, the values of which can be ac-
curately estimated from Figs. 3 and 5.

IV. SUMMARY

In this article we have utilized a combination of quantum
Monte Carlo, classical Monte Carlo, and analytical methods
to study and quantify how, with increasing intrinsic spin s,
the results of quantum Heisenberg model systems approach
the results of the corresponding classical Heisenberg models.
To this end, the zero-field susceptibility was calculated for
many geometries, and from these data we have extracted the
minimum temperature 7,,(s) at which the quantum (spin s)
results differ by less that 2% from the corresponding classi-
cal results. In terms of the exchange constants J, and J,.
(defined in Sec. I A) we have found for small s that
kgT,/J;xs, or equivalently kgT,,/J.«1/(s+1), while for
large s we found that k3T, /J, saturates, and thus kzT,,/J.
o 1/s2. In addition to these general trends, the precise depen-
dence of T, has been obtained for many specific systems and
can be found by inspecting Figs. 3 and 5. We have also
attempted to find a universal dependence of 7,, on s in terms
of various properties of the lattices (e.g., connectivity, frus-
tration, or symmetries), which would allow one to describe
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T,(s) in terms of a single function, applicable to all geom-
etries. However, such universality does not appear to be
present, given the diversity of the results in Figs. 3 and 5.
Nevertheless, it is possible to formulate certain “rules of
thumb” that are precise enough to be of value when attempt-
ing to formulate a rough estimation of the temperature range
for which a classical model will be useful. In particular, for
almost all of the AFM systems that we have studied, 7, can
be described to within 30% by the rule-of-thumb kz7T',/J.
~2/s, which is valid for s =3 and should therefore be rel-
evant to the analysis of experimental susceptibility data.
When FM interactions are present we have found that, to
within a factor of two, the rule-of-thumb kgT,,/J.~5/(s
+1) applies for s=<35.

The application of these results to the analysis of a real
system of interacting quantum spins would be straightfor-
ward, provided one had some estimate of the relevant energy
scale J,. For example, inspection of Fig. 3(b) shows that a
classical model will accurately reproduce the results of quan-
tum spins s=3/2 for temperatures 7= (5+1)J,/kg. A more
specific example has also been provided in Sec. IIIC,
wherein we show that a classical Hamiltonian will accurately
describe the {Fe,,} magnetic molecule only for 7=250 K.
Additionally, the present large s results [shown in Fig. 3(a)]
also underscore the fact that a huge value of s does not
automatically imply that a classical spin model is valid. For
example, a spin triangle with an exchange constant J,/kp
=10 K could accurately be described by a classical model
only for 7=40 K, even if s=50. Finally, we remark that
these results are only meant to provide information about
static properties. Obtaining classical and quantum time-
correlation functions and comparing them in an analogous
manner should provide interesting and useful results and
would be a worthy avenue for future study.
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APPENDIX: DESCRIPTION OF GEOMETRIES

The various geometries studied here can almost all be
placed into one of three general categories: Open chains,
closed rings (polygons), or three-dimensional polytopes. For
the chains and rings, we find that with increasing N the re-
sults for T,(s) rapidly converge to a single curve that is
essentially independent of N and is valid for both even and
odd N. The data labeled “chains” and “rings” in Figs. 3(b)
and 5(b) are hence averages over these data with N varying
from 10 to 20. (For the classical open chains, the exact sus-
ceptibility has long been known,> and these exact results are
used here.) The category of chains also includes the simplest
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possible case, which is one pair of interacting spins (dimer),
while the rings include the triangle and square. Data for these
three systems each appear separately in Figs. 3 and 5.

The polytopes that were studied include four of the 13
Archimedean solids (AS) and all five Platonic solids (PS). (A
complete description of all of these polytopes can be found
in Ref. 20.) Of these AS, three of the structures were chosen
because they are the only nonfrustrated AS that exist (i.e.,
they are bipartite lattices), and hence allow QMC calcula-
tions to proceed down to arbitrarily low 7, even for AFM
exchange. They are the truncated octahedron (N=24), great
rhombicuboctahedron (N=48), and great rhombicosidodeca-
hedron (N=120). They also share an additional property: As
is the case with large N chains and rings, these three AS
produce the same values of T,,(s), independent of N, so their
averages also appear in Figs. 3(b) and 5(b), labeled
“Archimedean solids.”

Recall from Sec. III B that s* depends on N, which im-
plies for s=<s" that T,, must also depend on N. For s<5
however, we find that the variation of 7,, with N is always
smaller than the associated error bars for the chains, rings,
and nonfrustrated AS. For small s, these error bars are
smaller than the symbols that appear in Figs. 3(b) and 5(b),
while for s=9/2 the uncertainties in k3T, /J; are roughly +1.
In Figs. 3(a) and 5(a), the errors are considerably smaller
than the associated symbols for all s.

The remaining AS that we studied is the icosidodecahe-
dron, whose structure is adopted by multiple species of mag-
netic molecules.>!'!?1:22 For this geometry, AFM interactions
give rise to a classical ground state configuration that is
frustrated,”> so the QMC calculations are restricted to rela-
tively high T.'° Specifically, these QMC calculations for T'
<T,, were possible only with s=1/2, 1, and 3/2. Frustration
also occurs for four of the five PS, the cube being the one
exception. Two of the PS, the tetrahedron and octahedron,
although being frustrated, were calculated using the method
of Sec. II B; while for the other two PS, the icosahedron and
dodecahedron, QMC calculations were used. For the icosa-
hedron, we were able to proceed to temperatures below 7,
for s=<2, and, for the dodecahedron, could handle all s
<5/2. Consequently, data for larger s do not appear in 3(b)
for the icosidodecahedron, icosahedron, and dodecahedron.

There are two other geometries for which y(7) and T,
have also been calculated: The N=5 pantahedron and the
deltoidal icositetrahedron.?’ The pantahedra were described
in Sec. II B, and the deltoidal icositetrahedron is a polytope
which is unfrustrated and of lower symmetry than the PS or
AS. For both of these structures, the resulting kzT,,/J, data
appear in Figs. 3(b) and 5(b). In order to obtain the 7, data
that have been presented here, a great deal of additional x(7)
data were obviously calculated which have not been shown;
these data are available from the authors for all of the struc-
tures.
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