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Several puzzling aspects of interplay of the experimental lattice distortion and the magnetic behavior of four
narrow t2g-band perovskite oxides �YTiO3, LaTiO3, YVO3, and LaVO3� are clarified using results of first-
principles electronic structure calculations. First, we derive parameters of the effective Hubbard-type Hamil-
tonian for the isolated t2g bands using newly developed downfolding method for the kinetic-energy part and a
hybrid approach, based on the combination of the random-phase approximation and the constraint local-density
approximation, for the screened Coulomb interaction part. Apart from the above-mentioned approximation, the
procedure of constructing the model Hamiltonian is totally parameter free. The results are discussed in terms
of the Wannier functions localized around transition-metal sites. The obtained Hamiltonian was solved using a
number of techniques, including the mean-field Hartree-Fock �HF� approximation, the second-order perturba-
tion theory for the correlation energy, and a variational superexchange theory, which takes into account the
multiplet structure of the atomic states. We argue that the crystal distortion has a profound effect not only on
the values of the crystal-field �CF� splitting, but also on the behavior of transfer integrals and even the screened
Coulomb interactions. Even though the CF splitting is not particularly large to fully quench the orbital degrees
of freedom �ODF�, the crystal distortion imposes a severe constraint on the form of the possible orbital states,
which favor the formation of the experimentally observed magnetic structures in YTiO3, YVO3, and LaVO3

even at the level of mean-field HF approximation. Particularly, LaVO3 presents an interesting example of the
system where the ODF are well quenched only in one of the monoclinic planes and remain relatively flexible
in the second plane, leaving some room for the orbital fluctuations. It is also remarkable that for all three
compounds, the main results of all-electron calculations can be successfully reproduced in our minimal model
derived for the isolated t2g bands. We confirm that such an agreement is possible only when the nonsphericity
of the Madelung potential is explicitly included into the model. Beyond the HF approximation, the correlation
effects systematically improve the agreement with the experimental data and additionally stabilize the experi-
mentally observed G- and C-type antiferromagnetic states in YVO3 and LaVO3. Using the same type of
approximations we could not obtain the correct magnetic ground state for LaTiO3. However, we expect that the
situation may change by systematically improving the level of approximations for treating the correlation
effects.
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I. INTRODUCTION

The transition-metal perovskite oxides ABO3 �with A=Y,
La, or other trivalent rare-earth ion, and B=Ti or V� are
regarded as some of the key materials for understanding the
strong coupling among spin, orbital, and lattice degrees of
freedom in correlated electron systems.1

According to the electronic structure calculations in the
local-density approximation �LDA�, all these compounds can
be classified as the “t2g systems,” as all of them have a com-
mon transition-metal t2g band, located near the Fermi level,
which is sandwiched between oxygen 2p band and a hybrid
transition-metal eg band, which overlaps with either Y�4d� or
La�5d� bands �see Fig. 1�. The number of electrons donated
by each Ti and V atom into the t2g band is correspondingly
one and two. These electrons are subjected to the strong
Coulomb repulsion. The physics of Coulomb correlations is
greatly oversimplified by LDA and requires some consider-
able improvement of this approximation, which currently
processes in the direction of merging LDA with various
model approaches for strongly correlated systems.2–5 Never-
theless, even for strongly correlated systems, LDA
continues to play an important role as it allows us to combine
the physics of Coulomb correlations with the lattice distor-

tions, and treat the second part of the problem in a fully ab
initio fashion, without any adjustable parameters.

Although the origin of the lattice distortion in the t2g per-
ovskite oxides is not fully understood, it is definitely strong
and exhibits an appreciable material dependence, which can
be seen even visually in Fig. 2. The interplay of this lattice
distortion with the Coulomb correlations seems to be the key
factor for understanding of the large variation of the mag-
netic properties among these perovskite oxides. The differ-
ence exists not only between titanites and vanadates, but also
within each group of formally isoelectronic materials, de-
pending on whether they are built of Y or La. The latter
example seems to be a clear experimental manifestation of
the distortion effect, arising from the different size of triva-
lent ions �smaller Y3+ versus larger La3+�. All these differ-
ences are reflected in the famous phase diagram of the dis-
torted t2g perovskite oxides, where each compound has a
distinct magnetic structure: YTiO3 is a ferromagnet;6–10

LaTiO3 is a three-dimensional �G-type� antiferromagnet;11,12

at the low temperature, YVO3 forms the G-type antiferro-
magnetic �AFM� structure, which transforms to a chainlike �
C-type� antiferromagnetic structure at around 77 K;13–16

while LaVO3 is the C-type antiferromagnet in the whole
temperature range below the magnetic transition
temperature.17,18
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On the theoretical side, the magnetic phase diagram of t2g
perovskite oxides has been intensively studied using both
models �Refs. 19–24� and first-principles electronic structure
calculations �Refs. 25–33�. The problem is still far from be-
ing understood, and remains to be the subject of numerous
contradictions and debates. Surprisingly that at the present

stage there is no clear consensus not only between model and
first-principles electronic structure communities, but even
between researchers working in each of these fields. Presum-
ably, the most striking example is LaTiO3, where in order to
explain the experimentally observed G-type AFM ground
state, two different models, which practically exclude each
other, have been proposed. One is the model of orbital liquid,
which implies that the crystal distortion is small and the
(quasi-) degeneracy of the atomic t2g levels is preserved in
the real crystalline environment.20 Another model is based on
the theory of the crystal-field �CF� splitting, which lifts this
orbital degeneracy and stabilizes one particular type the or-
bital ordering compatible with the G-type AFM phase.23,24

The situation in the area of first-principles electronic struc-
ture calculations is controversial as well. Although majority
of researchers working in this field now agree that, in order
to describe properly the electronic structure of t2g perovskite
oxides, it is necessary go beyond the conventional LDA and
incorporate the effects of intraatomic Coulomb correlations,
this merging is typically done in a semiempirical way, as it
relies on a certain number of adjustable parameters, postu-
lates, and the form of the basis functions used for the imple-
mentation of additional corrections on the top of LDA.2–4

There are also certain differences regarding both definitions
and approximations used for the CF splitting in the electronic
structure calculations, which will be discussed in Sec. III A.
Since the magnetic properties of t2g perovskite oxides are
extremely sensitive to all these details, it is not surprising
that there is a substantial variation in the results of first-
principles calculations, which sometimes yield even qualita-
tively different conclusions about the direction of the CF
splitting as well as the form of the magnetic ground
state.28,31–33 The problem is not only in the numerical accu-
racy of calculations. Simply, the error-bar caused by the ad-
ditional assumptions about the form and magnitude of intra-
atomic Coulomb interactions, which are largely empirical,
already exceeds those small differences of physical quanti-
ties, which we typically deal with in the case of t2g perov-
skite oxides. In the light of these controversies, it seems that
the formulation of the method, which would be free of any
adjustable parameters, becomes a real cornerstone of elec-
tronic structure calculations for strongly correlated systems.

Therefore, the main motivation of the present work is
twofold.

�i� In our previous work �Ref. 34� we have proposed a
method of construction of the effective Hubbard-type model
for the states located near the Fermi level on the basis of
first-principles electronic structure calculations. In the
present work we apply this strategy to the t2g states of the
distorted perovskite oxides. Namely, we will derive param-
eters of the effective multiorbital Hubbard Hamiltonian for
the t2g bands and solve this Hamiltonian using a number of
techniques, including the Hartree-Fock �HF� approximation,
the perturbation theory for the correlation energy, and the
theory of superexchange interactions, which takes into ac-
count the effects of the multiplet structure of the atomic
states. Of course, our method is based on a number of ap-
proximation, which have been introduced in Ref. 34 and will
be briefly discussed in Sec. III. However, we would like to
emphasize from the very beginning that our policy here was

FIG. 1. �Color online� Total and partial densities of states for
YTiO3, LaTiO3, YVO3 �orthorhombic phase�, and LaVO3 in the
local-density approximation. The shaded area shows the contribu-
tions of the transition-metal 3d states. Other symbols show the po-
sitions of the main bands. The Fermi level is at zero energy.
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not to use any adjustable parameters apart from the approxi-
mations introduced in Ref. 34. Thus, we believe that it poses
a severe test for the proposed method, and the obtained re-
sults should clearly demonstrate that our general strategy,
which can be expressed by the formula: first-principles elec-
tronic structure calculations→construction of the model
Hamiltonian→solution of this model Hamiltonian,5,34 is in-
deed very promising. For example, at the HF level, using
relatively simple model Hamiltonian, which is limited exclu-
sively by the t2g bands, we will be able to reproduce the main
results of all-electron LDA+U calculations.27,29 Further-
more, due to simplicity of the model Hamiltonian we can
easily go beyond the HF approximation and consider the
correlation effects.

�ii� Why do we need to convert results of first-principles
electronic structure calculations into a model? Apart from a
purely technical reason to reduce the size of the physical
Hilbert space in order to make it accessible for many-
electron calculations,4,5 the story of distorted t2g perovskite
oxides clearly shows that the model consideration has yet
another advantage, which sometimes is not sufficiently ap-
preciated by the computational community. It is true that the
field of first-principles electronic structure calculations is
currently on the rise, and calculations of the basic properties
for many materials will soon become a matter of routine.
However, the methods of electronic structure calculations are
based on some approximations, the limitations of which
should be clearly understood. Furthermore, like the experi-
ment data, the results of first-principles electronic structure
calculations will always require some interpretation, which
would transform the world of numbers and trends into a
“parallel world” of rationalized model categories capturing
the essential part of these calculations. The understanding of
the results of calculations in terms of these categories opens
a way, on the one hand, to the material engineering of com-
pounds with a desired set of properties, and, on the other
way, to the “engineering” of the new methods of electronic

structure calculations in the direction of further elucidation
and overcoming the defects of the existing approximations.
In this work we will illustrate how the results of first-
principles calculations for distorted perovskite oxides can be
interpreted in terms of a limited number of model param-
eters, such as the crystal-field splitting, transfer integrals, and
intra-atomic Coulomb interactions, which can be regarded as
the basic operating blocks for understanding the properties of
these materials as well as the limitations of approximations
existing in the methods of electronic structure calculations.
Particularly, we will explicitly show that the atomic-spheres
approximation �ASA�, which was employed in the series of
publications �Refs. 28 and 30–32�, is not enough as it ne-
glects the nonsphericity of the Madelung potential. The latter
plays an important role and in a number of cases predeter-
mines the character of the magnetic ground state of the dis-
torted perovskite oxides. We will also show that once the
parameters of Coulomb interactions are determined from the
first principles, the commonly used mean-field HF approxi-
mation does not necessarily guarantee the right answer for
the magnetic properties of t2g perovskite oxides. However,
we will argue that this is a normal situation, and in the ma-
jority of cases, a better agreement with the experimental data
can be obtained by systematically including the correlation
effects beyond the HF approximation. In this sense, our strat-
egy is completely different from conventional LDA+U cal-
culations, where the on-site Coulomb interaction U is typi-
cally treated as an adjustable parameter �e.g., Refs. 27, 29,
and 31–33�. By changing U, one can certainly get a better
numerical agreement with some experimental data already at
the HF level. However, one should clearly understand that
such an empirical treatment actually disguises the actual role
played by the correlation effects in the narrow-band com-
pounds.

The rest of the paper is organized as follows. In Sec. II we
will briefly remind the main details of crystal and magnetic
structure of the distorted perovskite oxides. The procedure of

FIG. 2. �Color online� Crystal structure of orthorhombic LaTiO3 �left�, YTiO3 �middle�, and YVO3 �right�. The La and Y atoms are
indicated by the big �blue� dark spheres, the Ti and V atoms are indicated by the medium �red� dark gray spheres, and the oxygen atoms are
indicated by the small �green� light gray spheres. The symbols a, b, and c stand for the orthorhombic translations. The symbols 1–4 denote
the transition-metal sites, which form the unit cell of the distorted perovskite oxides.
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constructing the model Hamiltonian as well as the results of
calculations of the CF splitting, transfer integrals, and intra-
atomic Coulomb interactions for the isolated t2g band will be
briefly explained in Sec. III. Particularly, in Sec. III A we
will discuss the highly controversial situation around the val-
ues of the CF splitting extracted from electronic structure
calculations,28,30–32 and argue that the main differences are
caused by two factors: �i� certain arbitrariness with the
choice of the Wannier functions for distorted perovskite ox-
ides; �ii� additional approximations used for the nonspherical
part of the crystalline potential inside atomic spheres. The
methods of solution of the model Hamiltonian will be de-
scribed in Sec. IV, and the results of these calculations will
be presented in Sec. V. Finally, in Sec. VI we will summarize
the main results of our work.

II. CRYSTAL AND MAGNETIC STRUCTURES

The distorted perovskite oxides contain four formula units
in the primitive cell. The transition-metal atoms are located
at �0,0 ,0� �site 1�, �a /2 ,b /2 ,0� �site 2�, �0,0 ,c /2� �site 3�,
and �a /2 ,b /2 ,c /2� �site 4�, in terms of three primitive trans-
lations: a, b, and c �see Fig. 2�. The distortion can be either
orthorhombic or monoclinic.

The space group of the orthorhombic phase is D2h
16 �in the

Schönflies notations or Pbnm in the Hermann-Maguin nota-
tions, No. 62 in the International Tables�. In this case all
transition-metal sites are equivalent and can be transformed
to each other using symmetry operations of the D2h

16 group.
The space group of the monoclinic phase is C2h

5 �P21/a,
No. 14 in the International Tables�.14,35 In this case, there are
two nonequivalent pairs of transition-metal sites: �1,2� and
�3,4�. Each pair is allocated within one ab plane, so that the
atoms of this pair can be transformed to each other using
symmetry operations of the C2h

5 group. However, there is no
symmetry operation, which connects the different pairs of
atoms from neighboring ab planes.

All calculations have been performed using experimental
lattice parameters and atomic positions. The experimental
data have been taken from the following papers: Ref. 6 for
YTiO3 �the measurements have been done for the room tem-
perature T=293 K�, Ref. 12 for LaTiO3 �T=8 K�, Ref. 14
for YVO3 �T=65 K and 100 K, for the orthorhombic and
monoclinic phase, respectively�, and Ref. 18 for LaVO3 �T
=10 K�.

There are five possible magnetic structure, which can be
obtained by associating with each transition-metal site either
positive �↑� or negative �↓� direction of the spin, without
enlarging the unit cell. Therefore, each magnetic structure
can be denoted by means of four vectors associated with the
transition-metal sites �1, 2, 3, 4�. They are

�1� �↑↑ ↑ ↑ �, which is called the ferromagnetic �F� phase;
�2� �↑↑ ↓ ↓ �, the layered �A-type� antiferromagnetic

phase;
�3� �↑↓ ↑ ↓ �, the chainlike �C-type� antiferromagnetic

phase;
�4� �↑↓ ↓ ↑ �, the totally antiferromagnetic �G-type�

phase;

�5� �↓↑ ↑ ↑ �, the spin-flip phase. In the monoclinic struc-
ture, there are two different spin-flip phases: �↓↑ ↑ ↑ � and
�↑↑ ↓ ↑ �, which will be denoted as flip I and flip II,
respectively.

Similar classification can be used for the orbital ordering.
Typically, two orthogonal orbitals belonging to different
transition-metal sites are said to be ordered antiferromagneti-
cally, although such a definition is not unique.36

III. MODEL HAMILTONIAN

Our first goal is the construction of the effective multior-
bital Hubbard model for the isolated t2g bands,

Ĥ = �
RR�

�
��

hRR�
�� ĉR�

† ĉR��
† +

1

2�
R

�
����

U����ĉR�
† ĉR�

† ĉR�
† ĉR�

† ,

�1�

where ĉR�
† �ĉR�� creates �annihilates� an electron in the Wan-

nier orbital W̃R
� of the transition-metal site R, and � is a joint

index, incorporating all remaining �spin and orbital� degrees

of freedom. The matrix ĥRR�= �hRR�
�� � parametrizes the kinetic

energy of electrons, where the site-diagonal part �R=R��
describes the local level-splitting, caused by the crystal-field
and �or� the spin-orbit interaction, and the off-diagonal part
�R�R�� stands for the transfer integrals.

U���� =� dr� dr�W̃R
�†�r�W̃R

��r�vscr�r − r��W̃R
�†�r��W̃R

� �r��

� �W̃R
�W̃R

� �vscr�W̃R
�W̃R

� 	

are the matrix elements of screened Coulomb interaction
vscr�r−r��, which are supposed to be diagonal with respect to
the site indices. As we shall see below, U���� can also de-
pend on the site index R. Even in the orthorhombic structure,
the Coulomb matrix elements at different transition-metal
sites are related by some unitary transformations. In the
monoclinic structure, there are two different sets of param-
eters of Coulomb interactions associated with different ab
planes. However, for the sake of simplicity, here and
throughout in this paper we drop the index R in the notation
of the Coulomb matrix elements.

The parameters of the Hubbard Hamiltonian �1� can be
derived from the first principles, starting from the electronic
structure in LDA. This procedure has been already discussed
in details in Ref. 34. Here we only remind the main ideas and
present the results for the distorted perovskite oxides.

All calculations have been performed using the linear
muffin-tin-orbital �LMTO� method in the atomic-spheres
approximation.37 We have also considered the additional cor-
rections to the crystal-field splitting, coming from the non-
sphericity of electron-ion interactions, beyond conventional
ASA.34

A. Kinetic-energy part, controversy about the
crystal-field splitting

The kinetic-energy part of the Hubbard Hamiltonian was
constructed using the downfolding method.28,34 It yields a
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certain set of parameters 
hRR�
�� �. The Wannier functions 
W̃R

��
for the isolated t2g bands can be obtained from 
hRR�

�� � using

the definition hRR�
�� = �W̃R

� � ĤLDA �W̃R�
� 	, where ĤLDA is the

LDA Hamiltonian in the atomic-spheres approximation.38

The �characteristic� example of such Wannier functions
constructed for LaTiO3 is shown in Fig. 3, and their exten-
sion in the real space is illustrated in Fig. 4. The functions
are well localized: about 80–85% of their total weight is
accumulated at the central Ti site, 5–9% belong to neighbor-
ing oxygen sites, and about 10% is distributed over La, Ti,
and O sites located in next coordination spheres. Another
measure of localization of the Wannier functions is the ex-
pectation value of the square of the position operator, �r2	�

= �W̃R
� � �r−R�2 �W̃R

�	,39 which yields �r2	�= 2.68, 2.36, and
2.37 Å2 for �= 1, 2, and 3, respectively. The Wannier func-
tions for LaTiO3 are less localized in comparison with the
more distorted YTiO3, where �r2	 is of the order of
1.90–2.28 Å2.34 However, this is to be expected.

The parameters 
hRR�
�� � include all kinds of hybridization

�or covalent mixing� effects between transition-metal t2g and
other atomic orbitals. However, there are other effects, which
are not yet included in 
hRR�

�� �. They come from the nonsphe-
ricity �NS� of the Madelung potential for the electron-ion
interactions, and contribute to the CF splitting. The proper
corrections to 
hRR�

�� � can be easily calculated in the basis of

Wannier functions 
W̃R
�� as

FIG. 3. �Color online� Contour plot of Wannier functions for LaTiO3, in three orthorhombic planes: ab �left�, ac �center�, and bc �right�.
The solid and dashed lines correspond to the positive and negative values of the Wannier functions. The projections of different atoms on the
planes are denoted by the following symbols: + �La�, � �Ti�, and � �O�. Around each atomic site, the Wannier function increases or
decreases with the step 0.04 from the values indicated on the graph.
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�NShRR
�� = �

R��R

�W̃R
� �

− ZR�
* e2

�R + r − R��
�W̃R

�	 , �2�

where ZR�
* is the total charge associated with the site R�

�namely, the nuclear charge minus the screening electronic
charge encircled by the atomic sphere�, and r is the position
of the electron in the sphere R.

The main idea behind this treatment of the CF splitting is
based on certain hierarchy of interactions in solids. It implies
that the strongest interaction, which leads to the energetic
separation of the t2g band from other bands �Fig. 1�, is the
covalent mixing. For example, in many transition-metal ox-
ides this interaction is mainly responsible for the famous
splitting between the transition-metal t2g and eg states.40 The
nonsphericity of the Madelung potential is considerably
weaker than this splitting. However, it can be comparable
with the effects of the covalent mixing in the narrow t2g
bands. Therefore, the basic idea is to treat this nonsphericity
as a pseudoperturbation,37 and calculate the matrix elements
of the Madelung potential in the basis of Wannier functions
constructed for spherically averaged ASA potential.

The same strategy can be used for the spin-orbit �SO�
interaction, which yields the following correction to the
kinetic-energy part of the model Hamiltonian:

�SOhRR
�� = �W̃R

� �
	

4m2c2 ��V � p� · ��W̃R
�	

�where V is the self-consistent LDA potential and � is the
vector of Pauli matrices�.

One of the most controversial issues, which is actively
discussed in this field, is the magnitude and the direction of
the CF splitting in the distorted t2g perovskite oxides. There-
fore, we would like to discuss this problem more in details.
Basically, there are two sources of discrepancies, which
largely affect the conclusions about the orbital ordering and
the magnetic ground state.

�1� �The origin of the CF splitting: the nonsphericity of
the Madelung potential versus the covalent mixing.� The im-
portance of nonsphericity of the Madelung potential has been
emphasized by several authors. The original idea is due to
Mochizuki and Imada, who considered the t2g-level splitting

in titanites associated with the displacements of the Y and La
atoms.23 It was paraphrased by Cwik et al.,12 who suggested
the main effect comes from the deformation of the TiO6
octahedra. A more general picture has been considered by
Schmitz et al.,24 who summed up all contributions in the
Madelung potential. A weak point of all these works is an
approximate treatment of the covalent mixing �or the hybrid-
ization effects�, which largely relied on the model param-
eters. Moreover, the conclusions are sensitive to the value of
the dielectric constant, which was treated as an adjustable
parameter. On the other hand, the parameters of model
Hamiltonian extracted from the first-principles electronic
structure calculations using either downfolding �Refs. 28, 30,
and 31� or Wannier function �Ref. 32� methods automatically
include all effects of the covalent mixing. In this sense, these
are more rigorous techniques. However, these calculations
were supplemented with the additional atomic-spheres ap-
proximation and neglected the nonspherical part of the
Madelung potential. This term has been also neglected in our
previous work �Ref. 28�. As we shall see in Secs. V B and
V D, it will definitely revise several statements of Ref. 28.
However, the final conclusion about the type of the magnetic
ground state of YTiO3 and LaTiO3 appears to be correct.

�2� �The nonuniqueness of the Wannier functions.� Differ-
ent calculations yield rather different parameters of the CF
splitting. For example, for LaTiO3 different authors reported
the following values of the CF splitting �between lowest and
highest t2g levels�: 93 meV �Ref. 28�, 200 meV �Ref. 30�,
and 270 meV �Ref. 32�. There is a particularly bad custom to
criticize Ref. 28,24,32,41 which reports the smallest value of
the CF splitting, even with certain hints at the accuracy of
calculations.32 It is also premature to think that the small CF
splitting will automatically lead to the realization of the or-
bital liquid state,20,32 because other model parameters �such
as transfer integrals and Coulomb interactions� are also af-
fected by the lattice distortion, which makes a big difference
from idealized cubic perovskites.34

First, we would like to consider the second part of prob-
lem and argue that different values of the CF splitting are
most likely related with the different choice of the Wannier
functions, which by no means is unique. This is not a prob-
lem of accuracy of calculations.

In the downfolding method employed in Ref. 28 �and ap-
parently in Refs. 30 and 31�, all basis functions have been
divided in two groups: the “t2g” part 

̃t�, and the “rest” 

̃r�.
The effective Hamiltonian is constructed by eliminating the
“rest” part.34 A similar idea �although formulated in a differ-
ent way� has been employed in the projector-operator
method,32 where 

̃t� played a role of trial orbitals for the
construction of the Wannier functions. The basic difficulty
here is that, in the distorted perovskites, the set of atomic
“t2g” orbitals cannot be defined in a unique way: since the
local symmetry is not cubic, the abbreviations like “t2g” and
“eg” will always reflect some bad quantum numbers for the
states, which are mixed by the crystal field and/or the trans-
fer integrals. In the numerical calculations, the set of “t2g”
orbitals is always specified in some local coordinate frame,
and the choice of this frame appeared to be different in dif-
ferent calculations. For example, Pavarini et al. �Refs. 30 and
31� and Streltsov et al. �Ref. 32� selected their local coordi-

FIG. 4. �Color online� Spacial extension of the Wannier func-
tions in the case of LaTiO3: the weight of the Wannier function
accumulated around the central Ti site after adding every new
sphere of neighboring atomic sites �also denoted as the “accumu-
lated charge” in Ref. 34�.
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nate frames from some geometrical considerations. A com-
pletely different strategy has been pursued by the present
author, who found the atomic “t2g” orbitals from the diago-
nalization of the local density matrix.28

Then, we are ready to argue that the different choice of
the local coordinate frame naturally explains the difference
in the parameters of the CF splitting reported by different
authors. For these purposes we consider two different setups
in the downfolding method, and use LaTiO3 as an example.
The first scheme is absolutely identical to the one proposed
in Ref. 28, and where the atomic “t2g” orbitals have been
defined as three most populated orbitals obtained from the
diagonalization of the local density matrix constructed from
the t2g bands. In the second scheme, we first construct a more
general 40�40 tight-binding Hamiltonian, comprising the
Ti�3d� and La�5d� states, and reproducing the behavior of 40
overlapping Ti�3d�-La�5d� bands. Other orbitals have been
eliminated using the downfolding method. Then, we diago-
nalize the site-diagonal part of this Hamiltonian and associ-
ate three lowest eigenstates at each Ti site with the atomic
“t2g” orbitals. After that we eliminate the rest of the Ti�3d�
and La�5d� states using the downfolding method and obtain
the minimal 12�12 Hamiltonian for the t2g bands.

Both downfolding schemes are nearly perfect and well
reproduce the behavior of t2g bands in the reciprocal space
�Fig. 5�. However, they yield very different parameters after
the Fourier transformation to the real space. For example, the
splitting of atomic t2g levels �in meV� obtained in the
schemes I and II is �−49, 4, 44� and �−320, 123, 197�, re-
spectively. Moreover, the eigenvectors corresponding to the
lowest “t2g” levels appear to be also different. In the ortho-
rhombic coordinate frame, specified by the vectors a, b, and

c, these eigenvectors have the following form �referred to
the site 1�: ��I	=0.32 �xy	−0.73 �yz	−0.10 �z2	−0.18 �zx	
+0.57 �x2−y2	 and ��II	=0.31 �xy	−0.20 �yz	+0.15 �z2	
+0.55 �zx	+0.73 �x2−y2	, for the schemes I and II, respec-
tively. Thus, the small value of the CF splitting reported in
Ref. 28 is related with the particular choice of the Wannier
functions �which is controlled by the parameters of the
downfolding scheme�. Had we changed our definition of the
local coordinate frame, our conclusion would have been also
different, and we could easily obtain the CF splitting of the
order of 500 meV �and even larger�.

Then, it is of course right to ask which scheme is better?
In principle, the physics should not depend on the choice of
the Wannier functions, and as long as we are dealing only
with the kinetic-energy part of the model Hamiltonian, both
schemes are totally equivalent as they equally well reproduce
the behavior of twelve t2g bands. However, what we want to
do next is to combine this kinetic-energy part with the Cou-
lomb interactions, and to use only the site-diagonal part of
these interactions. This is of course an approximation, and in
order to justify this approximation one should guarantee that
the Wannier functions, which are used as the basis for the
matrix elements of these Coulomb interactions, were suffi-
ciently well localized in the real space, so that all intersite
interactions could be neglected.

The degree of localization of the Wannier orbitals is re-
lated with the spread of the transfer integrals. Loosely speak-
ing, in order to contribute to the transfer integral between
Nth neighbors, the Wannier function should have a finite
weight at this neighbor. The distance dependence of transfer
integrals calculated for two different schemes is shown in
Fig. 5. One can clearly see that the transfer integrals obtained
in the scheme I are indeed well localized and basically re-

FIG. 5. �Color online� Left panel shows LDA energy bands for LaTiO3 obtained in LMTO calculations and after the tight-binding �TB�
parametrization using two different schemes of the downfolding method. In the scheme I, the local coordinate frame has been obtained from
the diagonalization of the local density matrix. In the scheme II, the local coordinate frame has been obtained from the diagonalization of the
site-diagonal part of a more general 40�40 Ti�3d�-La�5d� tight-binding Hamiltonian. Notations of the high-symmetry points of the

Brillouin zone are taken from Ref. 42. Right panel shows distance dependence of averaged parameters of the kinetic energy h̄RR��d�
= ����hRR�

�� hR�R
�� �1/2, where d is the distance between transition-metal sites R and R�. The data for d=0 correspond to the crystal-field

splitting of the covalent type, and d�4 Å is the distance between nearest transition-metal sites. Two schemes generate very similar
electronic structure in the reciprocal space, which is well consistent with results of original LMTO calculations. However, the real-space
parameters appear to be different. The scheme II yields larger crystal-field splitting. However, the transfer integrals are less localized and
spread beyond the nearest neighbors.
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stricted by the nearest neighbors. The transfer integrals ob-
tained in the scheme II are less localized and spread far be-
yond the nearest neighbors. Therefore, the Wannier
functions, corresponding to the scheme I, should be more
localized. This is not surprising, because the scheme I guar-
antees that the density matrix �or the integrated density of
states� at the transition-metal site is well described by the
central parts �or by the “heads”� of the Wannier functions,
given by the atomic orbitals 

̃t�.34 Therefore, the tails of the
Wannier functions, coming from the neighboring sites,
should be small and largely cancel each other. In the scheme
II, the local density matrix is composed both from the
“heads” of the Wannier functions and from the tails coming
from the neighboring sites. Intuitively, this means that the
tail part of the Wannier functions is larger for the scheme II
and these functions are less localized.

Thus, we believe that the scheme I is more suitable for the
purposes of our work and we apply it to all perovskites. The
transfer integrals, obtained in this scheme, are indeed well
localized and restricted by the nearest neighbors for all t2g
compounds �Fig. 6�.

The next important contribution to the CF splitting arises
from the nonsphericity of the Madelung potential. This effect
is comparable with the CF splitting of the covalent type. We
have also found that there are several different contributions

to the CF splitting, which tend to cancel each other. For
example, the CF splitting of the covalent type in YTiO3 and
LaTiO3 is largely compensated by the nonsphericity of the
Madelung potential originating from the region close to the
transition-metal sites and including the neighboring oxygen
sites �the cutoff radius d�2 Å in Fig. 7�.43 The next impor-
tant contribution comes from the Y/La and Ti sites, located
in the next coordination spheres �d�4 Å�. In some com-
pounds, even longer-range interactions spreading up to d
�10 Å can contribute to the sum �2�.

The final scheme of the “t2g”-level splitting, which in-
clude all these effects, is shown in Fig. 8. The splitting is not
particularly large. Nevertheless, as we shall see below, it
greatly facilitates the analysis of possible orbital and spin
magnetic structures and allows us to explain the type of the
magnetic ground state in all considered compounds, except
LaTiO3. The Madelung potential changes not only the mag-
nitude of the crystal-field splitting, but also the form of the
atomic “t2g” orbitals, which are split off by the distortion
�Table I�. These orbitals should predetermine the type of the
magnetic ground state in the limit of large Coulomb interac-
tions.

Finally, both form and magnitude of the CF splitting ap-
pear to be different for the nonequivalent transition-metal
sites in the monoclinic structure. Therefore, one can gener-
ally expect rather different behavior of spin and orbital de-
grees of freedom in two adjacent ab planes of the monoclinic
phase.

B. Effective Coulomb interactions

The effective Coulomb interactions in the t2g band are
defined as the energy cost for moving an electron between

FIG. 7. Convergence of the crystal-field split-
ting as the function of the cutoff radius for the
real-space summation in Eq. �2�.

FIG. 6. �Color online� Distance dependence of averaged param-
eters of the kinetic energy for various compounds. In the ortho-
rhombic �o� structure, all sublattices of the transition-metal sites are
equivalent and shown by a single symbol. In the monoclinic �m�
structure, the results obtained for two different sublattices are
shown by closed and open symbols. For other notations, see Fig. 5.

FIG. 8. Summary of the t2g-level splitting in various com-
pounds. The notations “site 1” and “site 3” correspond to two non-
equivalent transition-metal sites in the monoclinic phase �shown in
Fig. 2�.
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two Wannier orbitals, W̃R
� and W̃R�

� , which have been initially
populated by nR� and nR�� electrons,

U���� = E
nR� + 1,nR�� − 1� − E
nR�,nR��� . �3�

If R�R�, the above matrix elements define the on-site Cou-
lomb interactions, which are screened by intersite interac-
tions. The latter are typically small for the t2g perovskite
oxides, and can be neglected in the first approximation.34 The
terms corresponding to R=R� define the intra-atomic ex-
change and nonsphericity of the Coulomb interactions,
which are responsible for Hund’s rules. More generally, one
can consider the transfer of an electron from any linear com-
bination of the Wannier orbitals at the site R� to any linear
combination at the site R. This defines the full matrix of

screened Coulomb interactions Û= �U�����. It can be calcu-
lated under certain approximations, which have been dis-
cussed in details in Ref. 34. The method consists of two
parts.

�1� First, we perform the standard constraint-LDA
�c-LDA� calculations and artificially switch off all matrix
elements of hybridization involving the atomic 3d states.44

This part takes into account the screening of Coulomb inter-
actions caused by the relaxation of the 3d-atomic basis func-
tions and the redistribution of the rest of the charge density
caused by the change of the Coulomb potential. Typical val-
ues of on-site Coulomb interactions �u� obtained in this ap-
proach vary from 8.5 eV �for titanites� to 9.3 eV �for vana-
dates�. Using the same type of approximations, one can also
calculate the intra-atomic exchange coupling constant �j�,
which is about 0.9 eV for all t2g perovskite oxides. Then,
using only u and j, one can restore the full 5�5�5�5
matrix û��u����� of screened Coulomb interactions between
atomic 3d orbitals with the same spin, as it is typically done
in the LDA+U method.3

�2� As the next step, we switch on the hybridization be-
tween the atomic 3d orbitals and the rest of the basis states,
and evaluate the static screening caused by the change of this
hybridization in the random-phase approximation �RPA�,

Û = 
1 − ûP̂�0��−1û . �4�

This scheme implies that different channels of screening can
be included consecutively. Namely, the û matrix derived
from c-LDA is used as the bare Coulomb interaction in the
Dyson equation �4�, and the 5�5�5�5 polarization matrix

P̂��P����� describes solely the effects of hybridization of
the transition-metal 3d states with O�2p�, and either Y�4d�
or La�5d� states, which lead to the formation of the distinct
oxygen 2p, transition-metal t2g, and a hybrid eg band shown
in Fig. 1. Then, the matrix elements of the polarization func-
tion are given by

P������� = �
nk

�
n�k�

�nnk − nn�k��d�n�k�
† d�nkd�nk

† d�n�k�

� − 
n�k� + 
nk + i��nnk − nn�k��
,

�5�

where 

nk� and 
nnk� are LDA eigenvalues and occupation
numbers for the band n and momentum k in the first Bril-
louin zone �the spin index is already included in the defini-
tion of n� and d�nk= �
̃� ��nk	 is the projection of LDA eigen-
state �nk onto the atomic 3d orbital 
̃�. Note that in order to

calculate P̂, we use the electronic structure obtained in the
local-density approximation, which yields an incorrect me-
tallic behavior for all considered compounds. Therefore, in
the process of calculation of the screened Coulomb interac-
tion, we should get rid of the parasitic metallic screening.
This is typically done by switching off all transitions be-
tween t2g bands in the polarization function �5�.5,34 There-
fore, when we employ the HF approximation for the solution
of our model Hamiltonian �1�, this means that we take into
account all channels of screening, except the self-screening
by the t2g electrons �that is totally in spirit of the HF approxi-
mation�. The screening by the t2g electrons can be included
by considering the correlation effects beyond the HF
approximation.5 However, the result of such screening will
be clearly different from RPA screening for the metallic t2g
bands in the local-density approximation.

Hence, we obtain a 5�5�5�5 matrix of screened Cou-
lomb interactions in the basis of all five 3d orbitals. This
matrix is transformed to the local coordinate frame spanned

TABLE I. Lowest �for YTiO3 and LaTiO3� and highest �for YVO3 and LaVO3� atomic orbital obtained from the diagonalization of the
site-diagonal part of the model Hamiltonian in the downfolding method �denoted as “covalent part”� and after including the nonsphericity of
the Madelung potential �denoted as “total”�. The symbols o and m stand for orthorhombic and monoclinic phases, respectively. The order of
the basis orbitals is xy, yz, z2, zx, and x2−y2, referred to the orthorhombic coordinate frame. The positions of the transition-metal sites are
shown in Fig. 2.

Compound Phase Site Covalent part Total

YTiO3 o 1 �0.32, 0.78, 0.36, −0.33, −0.22� �−0.13, 0.45, 0.38, −0.61, 0.50�
LaTiO3 o 1 �−0.32, 0.73, 0.10, 0.18, −0.57� �−0.06, 0.85, 0.15, 0.34, 0.37�
YVO3 o 1 �0.04, 0.84, 0.19, −0.22, 0.47� �0.29, 0.90, 0.25, −0.22, −0.06�
YVO3 m 1 �−0.04, 0.47, 0.19, −0.61, 0.60� �0.12, 0.54, 0.18, −0.74, 0.33�

3 �−0.01, 0.04, −0.09, 0.79, 0.60� �0.28, 0.24, −0.28, 0.89, −0.05�
LaVO3 m 1 �0.04, −0.31, 0.11, 0.80, −0.49� �0.16, 0.09, 0.01, 0.98, −0.04�

3 �−0.01, 0.37, 0.10, 0.75, 0.54� �−0.09, 0.55, 0.14, 0.78, 0.24�
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by only three “t2g” orbitals with the same spin. The obtained
3�3�3�3 matrix is expanded in the spin subspace using
the orthogonality condition between Wannier orbitals with

different spins. This yields a 6�6�6�6 matrix Û, which
was used in the actual calculations.

Only for explanatory purposes, we fit Û in terms of two
Kanamori parameters: the intraorbital Coulomb interaction U
and the intra-atomic exchange interaction J.45,46 The results
of such fitting are shown in Table II. There is the clear de-
pendence of the parameter U on the local environment in
solid, which is captured by the RPA calculations.34 Gener-
ally, the value of U is larger for more distorted Y compounds.
There is also a clear correlation between the value of U and
the magnitude of the local distortion around two nonequiva-
lent transition-metal sites in the monoclinic phase: the sites
experiencing larger distortion �according to the magnitude of
the CF splitting in Fig. 8� have larger U. On the other hand,
J is practically insensitive to the local environment in solids.

It is important to note that our values of the effective
Coulomb interactions U are considerably smaller than ex-
perimental Kanamori parameters for the transition-metal ox-
ides, which are typically derived from the analysis of photo-
emission spectra.19,47 To a smaller extent, the same apply to
the parameters of intra-atomic exchange interactions J.
However, this is to be expected. Note that the photoemission
spectra are typically interpreted in the cluster model, which
treats explicitly all transition-metal 3d and oxygen 2p states.
However, in our model we want to keep only the transition-
metal t2g bands and include the effect of other states implic-
itly, i.e., through the renormalization of the interaction pa-
rameters in the t2g band. Therefore, our parameters should be
generally smaller than in the cluster model. For example, the
transfer of an electron, associated with the reaction �3� will
cause the change of the electronic structure in the oxygen 2p
and transition-metal eg bands �see Fig. 1�, which tends to
compensate the change of the number of t2g electrons at dif-
ferent transition-metal sites. Since the oxygen 2p and
transition-metal eg bands are eliminated in our t2g model, this
change of the electronic structure should be effectively in-
cluded into the screening of Coulomb and exchange interac-

tions in the t2g band. In practical calculations, this effect is
taken into account through the RPA channel of screening.34

IV. SOLUTION OF MODEL HAMILTONIAN

In this section we briefly discuss the methods of solution
of the model Hamiltonian �1�. We start with the simplest HF
approach, which totally neglects the correlation effects.
Then, we consider two simple corrections to the HF approxi-
mation, which will allow us to include some of these effects.
One is the second-order perturbation theory for the total en-
ergy. It shares common problems of the regular �nondegen-
erate� perturbation theory and allows us to calculate easily
the correction to the total energy, starting from the single-
Slater-determinant approximation for the many-electron
wave functions. Therefore, we expect this method to work
well for the systems where the orbital degeneracy is already
lifted and the ground state is described reasonably well by a
single Slater determinant, so that other corrections can be
treated as a perturbation. The second scheme is the varia-
tional superexchange theory for d1 perovskites �titanites�,
which takes into account the multiplet structure of the ex-
cited atomic states. It will allow us to study the effect of
electron correlations on the orbital ordering. However, it is
limited by typical approximations made in the theory of su-
perexchange interactions, which treat all transfer integrals as
a perturbation.

All calculations have been performed in the basis of Wan-

nier functions 
W̃R
��, which have a finite weight at the central

transition-metal site as well as the oxygen and other atomic
sites located in its neighborhood. In order to calculate the
local quantities, associated with the transition-metal atoms,
such as spin and orbital magnetic moments as well as the
distribution of the charge density, the Wannier functions have
been expanded over the standard LMTO basis functions, and
the aforementioned quantities have been obtained after radial
integration over atomic spheres of the transition-metal sites.

A. Hartree-Fock approximation

The Hartree-Fock approximation provides the simplest
solution of the many-body problem described by the model
Hamiltonian �1�. In this case, the trial wave function for the
many-electron ground state is searched in the form of a
single Slater determinant �S
�nk�	, which is constructed from
the one-electron orbitals 
�nk�. The latter are subjected to the
variational principle and requested to minimize the total en-
ergy

EHF = min

�nk�

�S
�nk��Ĥ�S
�nk�	

for a given number of particles N, yielding the set of well-
known HF equations,

�ĥk + V̂���nk	 = 
nk��nk	 , �6�

where ĥk��hk
��� is the kinetic part of the model Hamiltonian

�1� in the reciprocal space: hk
��= 1

N�R�hRR�
�� e−ik·�R−R�� �N be-

ing the number of sites�, and V̂��V��� is the HF potential,

TABLE II. Results of fitting of the effective Coulomb interac-
tions in the t2g band obtained in the hybrid c-LDA+RPA approach
in terms of two Kanamori parameters: the intraorbital Coulomb
interaction U and the exchange interaction J �in eV� �Refs. 45 and
46�. The symbols o and m stand for the orthorhombic and mono-
clinic phases, respectively. The positions of the transition-metal
sites are shown in Fig. 2.

Compound Phase Site U J

YTiO3 o 1 3.45 0.62

LaTiO3 o 1 3.20 0.61

YVO3 o 1 3.27 0.63

YVO3 m 1 3.19 0.63

3 3.26 0.63

LaVO3 m 1 3.11 0.62

3 3.12 0.62
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V�� = �
��

�U���� − U�����n��. �7�

Again, for the sake of simplicity of our notations, we drop
here the dependence of V�� on the index R. Equation �6� is
solved self-consistently together with the equation

n̂ = �
nk

occ

��nk	��nk�

for the density matrix n̂��n��� in the basis of Wannier or-
bitals.

After the self-consistency, the total energy can be calcu-
lated as

EHF = �
nk

occ


nk −
1

2�
��

V��n��.

Using 

nk� and 
�nk�, one can also calculate the one-
electron Green function

ĜRR���� = �
nk

��nk	��nk�
� − 
nk + i�

eik·�R−R��.

The latter is widely used for the analysis of interatomic mag-
netic interactions,48

JRR� =
1

2�
Im�

−�


F

d
 TrL
ĜRR�
↑ ����V̂ĜR�R

↓ ����V̂� , �8�

where ĜRR�
↑,↓ = 1

2 TrS
�1̂± �̂z�ĜRR�� is the projection of the
Green function onto the majority �↑� and minority �↓� spin

states, �V̂=TrS
�̂zV̂� is the magnetic �spin� part of the HF
potential, TrS �TrL� denotes the trace over the spin �orbital�
indices, 1̂ and �̂z are, correspondingly, the unity and Pauli
matrices of the dimension 6, and 
F is the Fermi energy.

The interatomic magnetic interactions 
JRR�� characterize
the spin stiffness of the magnetic phase. Therefore, they can
be directly compared with the experimental magnon �spin-
wave� spectra derived from inelastic neutron scattering mea-
surements.

According to Eq. �8�, JRR��0 ��0� means that for a
given magnetic structure, the spin arrangement in the bond
�RR�	 corresponds to the local minimum �maximum� of the
total energy. However, in the following we will use the uni-
versal notations, according to which JRR��0 and �0 will
stand the ferromagnetic and antiferromagnetic coupling, re-
spectively. This corresponds to the local mapping of the HF
energies onto the Heisenberg model

EHeis = − �
�RR�	

JRR�eR · eR�, �9�

where eR is the direction of the spin magnetic moment at the
site R. The “local mapping” means that, strictly speaking,
the total energy change given by Eq. �9� is justified only for
infinitesimal rotations of the spin magnetic moment near cer-
tain equilibrium state. The results of such mapping near an-
other equilibrium state can be generally different, for ex-
ample, due to different type of the orbital ordering realized in

this state. Therefore, the magnetic interactions can be re-
garded as the local probe of the orbital ordering in each
magnetic state.

B. Second order perturbation theory for correlation energy

The simplest way to go beyond the HF approximation is
to include the correlation interactions in the second order of
perturbation theory for the total energy.49 The correlation in-
teraction �or a fluctuation� is defined as the difference be-
tween true many-body Hamiltonian �1�, and its one-electron
counterpart, obtained at the level of HF approximation

ĤC = �
R
�1

2 �
����

U����ĉR�
† ĉR�

† ĉR�
† ĉR�

† − �
��

V��ĉR�
† ĉR�

† � .

�10�

By treating ĤC as a perturbation, the correlation energy can
be easily estimated as49

EC = − �
S

�G�ĤC�S	�S�ĤC�G	
EHF�S� − EHF�G�

, �11�

where �G	 and �S	 are the Slater determinants corresponding
to the low-energy ground state in the HF approximation, and
the excited state, respectively. Due to the variational proper-
ties of the Hartree-Fock method, the only processes which
may contribute to EC are the two-particle excitations, for
which each �S	 is obtained from �G	 by replacing two one-
electron orbitals, say �n1k1

and �n2k2
, from the occupied part

of the spectrum by two unoccupied orbitals, say �n3k3
and

�n4k4
. Hence, using the notations of Sec. III, the matrix ele-

ments take the following form:

�S�ĤC�G	 = ��n3k3
�n4k4

�vscr��n1k1
�n2k2

	

− ��n3k3
�n4k4

�vscr��n2k2
�n1k1

	 . �12�

These matrix elements satisfy the following condition:

�S �ĤC �G	� 1
N�Rei�k3+k4−k1−k2�·R, provided that the screened

Coulomb interactions are diagonal with respect to the site
indices. In the following we will retain only the R=0 part in
this sum. This corresponds to the single-site approximation
for the correlation interactions, which is known to be good
for three-dimensional systems and becomes exact in the limit
of infinite spacial dimensions.50

Finally, we employ a common approximation of noninter-
acting quasiparticles and replace the denominator of Eq. �11�
by the linear combination of HF eigenvalues: EHF�S�
−EHF�G��
n3k3

+
n4k4
−
n1k1

−
n2k2
.49

The form of Eq. �11� implies that the HF ground state is
nondegenerate, and the correlation effects can be systemati-
cally included by considering the regular perturbation theory
expansion. It is not applicable for cubic perovskites, where
the HF ground state is known to be infinitely degenerate
�with respect to different orbital configurations� and the cor-
relation energy should be evaluated on the basis of a degen-
erate perturbation theory.20 Thus, the use of Eq. �11� implies
that the orbital degeneracy is already lifted by the crystal

LATTICE DISTORTION AND MAGNETISM OF 3d - t2g¼ PHYSICAL REVIEW B 74, 054412 �2006�

054412-11



distortion. As we shall see below, this approximation can be
justified for a number of perovskite compounds �although
with some exceptions and reservations�.

C. Effects of multiplet structure in the theory of
superexchange interactions

Another method, which allows us to treat some correla-
tion effects beyond the mean-field HF approximation is the
theory of superexchange interactions starting with the correct
multiplet structure of the atomic states. Similar idea has been
discussed in the context of colossal magnetoresistive manga-
nites �Refs. 51 and 52� and cubic t2g perovskites �Ref. 52�.
Here we focus mainly on the interplay of superexchange in-
teractions with the lattice distortion. The formulation is ex-
tremely simple for the d1 compounds, like YTiO3 and
LaTiO3.

The superexchange interaction in the bond �RR�	 is basi-
cally the gain of the kinetic energy, which is acquired by an
electron occupying the atomic orbital �R of site R in the
process of virtual hoppings into the subspace of unoccupied
states of the �neighboring� site R�, and vice versa.53,54 In the
atomic limit for the d1 compounds, there is only one t2g
electron at each Ti site. This is essentially a one-electron
problem, where the form of the atomic orbital �R is deter-
mined by the site-diagonal part of the kinetic energy �hRR

�� �,
incorporating the effects of the spin-orbit interaction and the
CF splitting. Therefore, in the pure atomic limit, the ground-
state wave function for each bond �RR�	 can be taken in the
form of a single Slater determinant

�GRR�	 =
1
�2


�R�1��R��2� − �R��1��R�2�� .

Then, �R and �R� are expanded over the Wannier orbitals
associated with the site R and R� and the transfer integrals
connecting different Wannier orbitals are treated as a pertur-
bation. The excited states at the sites R and R�, which appear
in the process of virtual hoppings are the two-electron states
and subjected to the multiplet splitting. This is exactly the
point where the electron correlations, beyond the HF ap-
proximation, enter the problem. In order to incorporate these

effects, we note that from m=6 Wannier spin orbitals 
W̃R
�� at

each Ti site, one can construct 1
2m�m−1�=15 antisymmetric

two-electron Slater’s determinants 
�S	� �S=1, . . . ,15�, which
can be used as the basis for the screened Coulomb interac-
tions in the excited state: USS�= �S �vscr �S�	. The diagonaliza-
tion of this 15�15 matrix yields the complete set of eigen-
values 
ERM� and eigenfunctions 
�RM	� of the two-electron
states at the site R �M =1, . . . ,15�. An example of such a
multiplet structure for YTiO3 and LaTiO3 is shown in Fig. 9.
According to the first Hund rule, the lowest-energy configu-
ration corresponds to the spin-triplet state 3T1g. The degen-
eracy of the 3T1g, 3Eg, and 3T2g levels is lifted by the ortho-
rhombic distortion, which affects the matrix elements of the
effective Coulomb interaction via the RPA channel of screen-
ing. The splitting is larger for the more distorted YTiO3.

In order to calculate the energy gain caused by the virtual
hoppings, the eigenfunctions 
�RM	� shall be projected onto

the physical subspace of two-electron states which can be
created by transferring an electron from the neighboring
sites. The corresponding projector operators have the form

P̂R=�� � PR
�	�PR

� �, where

�PR
�	 = 1

�2

�R�1�W̃R

��2� − W̃R
��1��R�2��

is the Slater determinant constructed from the occupied or-

bital �R and one of the basis Wannier orbitals W̃R
� . In the

other words, the projection P̂R imposes an additional con-
straint, which guarantees that one of the orbitals in the two-
electron state must be �R. Then, the energy gain caused by
the virtual hoppings in the bond �RR�	 is given by

�ERR� = − �GRR��ĥRR���
M

P̂R��R�M	�R�M�P̂R�

ER�M
�ĥR�R

+ �R ↔ R���GRR�	 . �13�

The total energy of the system in the superexchange approxi-
mation is obtained after summation over all bonds, which
should be combined with the site-diagonal elements, incor-
porating the effects of the CF splitting and the relativistic
spin-orbit interaction:

ESE = �
R

��R�ĥRR��R	 + �
�RR�	

�ERR�.

Finally, the set of occupied orbitals 
�R� is obtained by mini-
mizing ESE, e.g., using the steepest descent method.

For a given orbital ordering, the multiplet effects are ex-
pected to be more important in the case of the AFM spin
ordering, where an electron comes to the neighboring site
with the opposite direction of spin. In this case, the excited
configuration is subjected to the multiplet splitting into the
spin-singlet and spin-triplet states, which additionally stabi-
lizes the AFM spin state.55

V. RESULTS AND DISCUSSIONS

In this section we present results of solution the model
Hamiltonian �1� for the distorted perovskite compounds. We

FIG. 9. The multiplet structure of the excited atomic configura-
tion t2g

2 in YTiO3 and LaTiO3.
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start with Y-based perovskites, where the orbital ordering is
largely controlled by the CF splitting coming from the ex-
perimental lattice distortion. We will show that this distortion
imposes a severe constraint on the magnetic properties and
predetermines the type of the magnetic ground state. Then,
we will consider the La-based perovskites, where the situa-
tion is less clear: while in LaVO3 the experimental distortion
largely controls the type of the orbital ordering in one of the
ab planes, it is generally small in LaTiO3, that poses many
open and unresolved questions.

First, we will consider the effect of the pure crystal dis-
tortion, without spin-orbit interaction. The latter will be dis-
cussed separately in Sec. V E.

A. YVO3

YVO3 exhibits two structural phase transitions.14,15 The
first one is the second-order transition from orthorhombic
�D2h

16� to monoclinic �apparently D2h
5 � phase, which takes

places at 200 K and is believed to coincide with the onset of
the orbital ordering. The second one is the first-order transi-
tion at 77 K from monoclinic to another orthorhombic phase.
The magnetic transition temperature is 116 K, which lies in
the monoclinic region and does not coincide with any struc-
tural phase transition. On the other hand, the change of the
crystal structure at 77 K coincides with the magnetic phase
transition. The magnetic structure in the interval 77 K �T
�116 K is C-type AFM, while below 77 K it becomes
G-type AFM.

1. Low-temperature orthorhombic phase „T�77 K…

YVO3 has the largest CF splitting amongst considered
orthorhombic perovskite oxides �Fig. 8�. It lowers the ener-

gies of two t2g levels, which are just enough to accommodate
two d electrons. The highest level is separated from the
middle one by a 111 meV gap. Therefore, the orbital degrees
of freedom in this d2 compound are expected to be quenched
�at least partially� by the crystal distortion.

This is clearly seen in our Hartree-Fock calculations. The
orbital ordering depends on the magnetic state. However, this
dependence is weak and can be hardly seen on the plot �Fig.
10�. The form of the orbital ordering, which can be schemati-
cally viewed as an alternation of the �xy,yz� and �xy,zx� or-
bitals in the cubic coordinate frame associated with the VO6
octahedra, is in an excellent agreement with the one pre-
dicted by Sawada and Terakura on the basis of LDA+U
calculations,27 and which was later on confirmed in synchro-
tron x-ray-diffraction experiments.56

The first important question, which we would like to ad-
dress here is where does this ordering come from? In Fig. 11
we show results of calculations obtained using three different

FIG. 10. �Color online� Distri-
bution of the charge density
around V sites in various magnetic
phases of orthorhombically dis-
torted YVO3 �T�77 K�, as ob-
tained in the Hartree-Fock calcu-
lations. Different magnetic sublat-
tices are shown by dark gray
�blue� and light gray �yellow�
colors.

FIG. 11. �Color online� Orbital ordering in the G-type antifer-
romagnetic phase of orthorhombically distorted YVO3 computed
without crystal field �left�, including the crystal field of the covalent
type �middle�, and the crystal field of both covalent and Madelung
type �right�.
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settings for the site-diagonal part of the kinetic energy: �i�
hRR

�� =0 �i.e., there is no CF splitting at all�; �ii� the param-
eters 
hRR

�� � extracted from the downfolding method, which
takes into account only the covalent type of the CF splitting;
and �iii� the parameters 
hRR

�� � obtained in the downfolding
method and corrected for the nonsphericity of the Madelung
potential �2�. One can clearly see that in order to reproduce
the correct orbital ordering, all contributions to the CF split-
ting appear to be important. Had we neglected some of these
contributions, not only the orbital ordering but also the mag-
netic ground state would have been different. For example,
without the Madelung term, the magnetic ground state is
expected to be of the A type, being in clear disagreement
with the experimental data.

As it has been already discussed by other authors,19,27,29

the C-type orbital ordering shown in Fig. 10 favors the
G-type AFM spin ordering, which emerges as the ground
state already at the level of HF calculations �Table III�. The
order of the magnetic states, corresponding to the increase of
the total energy, is G→C→ flip→A→F, which is well
consistent with results of all-electron LDA+U calcula-
tions.27,29,57

However, the orbital ordering is not fully quenched by the
crystal distortion and to certain extent can adjust the change
of the magnetic state by further minimizing the energies of
superexchange interaction.54 This is seen particularly well in
the behavior of interatomic magnetic interactions, which re-
veal an appreciable dependence on the magnetic state. For
example, by going from the G state to the F state, the in-
plane interaction J12 �J34� changes by nearly 70%, and the
interplane interaction J13 �J24� changes by 25%.

In agreement with the experimental finding,16 the mag-
netic interactions obtained for the G-type AFM ground state
are nearly isotropic. However, this isotropic behavior can be
easily destroyed by the small change of the orbital ordering
in other magnetic states.

The absolute values of J12 and J13 for the G-type AFM
phase are underestimated by about 1 meV �i.e., by nearly
20%� in comparison with the parameters extracted from the
fit of the experimental magnon spectra �J12=J13=
−5.7±0.3 meV�. This seems to be reasonable because the HF
method is a single-Slater-determinant approach, which does
not take into account the correlation effects. The magnitude

of the correlation energy depends on the magnetic state and
is expected to be larger in the case of the AFM spin align-
ment, where the net magnetization is zero and the choice of
the many-electron wave function in the form of a single
Slater determinant is always an approximation.5 On the other
hand, the saturated ferromagnetic state can be described rea-
sonably well by a single Slater determinant �provided that
the orbital degeneracy is already lifted by the crystal distor-
tion�. All these trends are clearly seen in the total energy
calculations, which take into account the correlation effects
in the second order of perturbation theory �Table III�. The
correlations additionally stabilize the G-type AFM ground
state relative to other magnetic states. However, it does not
change the order of the magnetic states.

The absolute values of the correlation energy obtained for
the ferromagnetic and G-type AFM phases of YVO3 are cor-
respondingly 2 and 7 meV per one formula unit. These are
rather typical values for all considered compounds except
LaTiO3, where the characteristic correlation energies are
substantially larger �see Sec. V D�.

Unfortunately, it is not possible to estimates the effect of
electron correlations on the interatomic magnetic interactions
directly, using Eq. �8�. Nevertheless, one can still try to use
the total energy differences between different magnetic states
and map them onto the Heisenberg model.58 This is a cruder
approximation, which implies that the orbital ordering is
completely quenched by the crystal distortion and does not
depend on the magnetic state. Although it is not strictly true,
we will use this approximation here in order to get a rough
idea about the impact of the correlation energy on the param-
eters of interatomic magnetic interactions. Then, the standard
HF approximation yields J12=−3.3 meV and J13=−4.3
meV, while the second order perturbation theory for the cor-
relation energy yields J12=−4.1 meV and J13=−5.4 meV.
Therefore, the 1 meV difference between parameters of in-
teratomic magnetic interactions obtained in the HF approxi-
mation and the experimental magnon data can be naturally
attributed to the correlation effects. This example clearly
shows that for the detailed analysis of electronic and mag-
netic properties of t2g perovskite oxides, it is necessary to go
beyond the HF approximation and consider the correlation
effects.

2. High-temperature monoclinic phase „77 K�T�116 K…

The monoclinic distortion creates two inequivalent types
of V atoms, which lie in different ab planes, denoted as �1,2�
and �3,4� in Fig. 2. It also changes the scheme of the crystal-
field splitting of the atomic t2g levels �Fig. 8�. Energetically,
the new scheme is rather similar to the previous one, ob-
served in the orthorhombic phase. In both planes it lowers
the energies of two t2g levels. The energy gap, which sepa-
rates the highest level from the middle one is 101 and
128 meV for the sites 1 and 3, respectively. However, the
type of the orbitals which are split off by the monoclinic
distortion is different �Table I�. This leads to the new type of
stacking between the planes, which is sometimes referred to
as the G-type AFM orbital ordering.

However, the orbital degrees of freedom are not com-
pletely quenched by the crystal distortion and there is a sub-

TABLE III. Magnetic interactions �JRR��, Hartree-Fock energies
�EHF�, and total energies �Etot� in the orthorhombic phase of YVO3

�T�77 K�. The energies are measured from the most stable mag-
netic state in meV per one formula unit. The magnetic interactions
are measured in meV. The total energy is defined as Hartree-Fock
energy plus correlation energies �EC� in the second order of pertur-
bation theory, Etot=EHF+EC.

Phase J12 J13 J24 J34 EHF Etot

F −1.4 −3.6 −3.6 −1.4 21.7 27.1

A −2.5 −3.7 −3.7 −2.5 14.6 17.3

C −4.7 −4.9 −4.9 −4.7 10.1 11.7

G −4.4 −4.8 −4.8 −4.4 0 0

Flip −4.0 −4.8 −3.9 −1.8 11.6 14.0
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stantial variation of the orbital structures depending on the
magnetic state, which can be seen already in the distribution
of the charge density shown in Fig. 12. Nevertheless, the
basic shape of the G-type AFM orbital ordering pattern is
clearly seen in all magnetic structures. This appears to be
sufficient to stabilize the experimentally observed C-type
AFM phase, which emerges as the ground state already at the
level of HF calculations �Table IV�. The correlation effects
play a very important role. They additionally stabilize the
C-type AFM ground state and reverse the order of other
magnetic states �e.g., F and A in Table IV�.

The orbital ordering in the plane �3,4� clearly reminiscent
of the one observed in the orthorhombic phase �Fig. 10�. The
shape of the orbitals in the plane �1,2� appears to be more
distorted.

The behavior of interatomic magnetic interactions in the
high-temperature phase of YVO3 deserves a particular atten-

tion. The experimental spin-wave spectrum shows a clear
splitting into acoustic and optical branches, which are sepa-
rated by a 5 meV gap in the middle, qm= �0,0 ,� /2c�, point
of the first Brillouin zone along the 
001� direction.16 Origi-
nally, the splitting was thought to be due to the dimerization
effects associated with a orbital Peierls state, which causes
the alternation of the strong and weak ferromagnetic bonds
along the c direction.16 However, such a dimerization
seemsto conflict with the C2h

5 symmetry of the monoclinic
phase �nevertheless, see also the footnote in Ref. 35�. More
recently, the puzzling splitting of the experimental magnon
spectrum has been explained by the difference of interatomic
magnetic interactions in the adjacent ab planes, which is
expected for the C2h

5 symmetry.29 This effect is clearly seen
in our HF calculations: while the AFM exchange coupling in
the plane �3,4� does not change so much in comparison with
the orthorhombic phase, the one in the plane �1,2� drops by
almost 4 meV �referring to the C-type AFM state in Table
IV�. The value of the gap in the point qm can be estimated in
the linear spin-wave theory as

�SW = 2J13��1 − 4J12/J13 − �1 − 4J34/J13� .

Then, using results of HF calculations we obtain �SW
�6.2 meV, which is in fair agreement with the experimental
finding. We can further speculate that the ferromagnetic cou-
pling J13 is overestimated in the HF approximation due to the
lack of the correlations effects �in the next section we shall
see that this is indeed the case for the totally ferromagnetic
YTiO3�. Therefore, the correlation effects may also reduce
�SW, which is proportional to J13.

B. YTiO3

YTiO3 is a d1 compound. The lattice distortion splits off
one t2g level to the low-energy part of the spectrum �Fig. 8�,

FIG. 12. �Color online� Distri-
bution of the charge density
around V sites in various magnetic
phases of monoclinically distorted
YVO3, as obtained in the Hartree-
Fock calculations. Different mag-
netic sublattices are shown by
dark gray �blue� and light gray
�yellow� colors.

TABLE IV. Magnetic interactions �JRR��, Hartree-Fock energies
�EHF�, and total energies �Etot� in the monoclinic phase of YVO3

�77 K�T�116 K�. The energies are measured from the most
stable magnetic state in meV per one formula unit. The magnetic
interactions are measured in meV. The total energy is defined as
Hartree-Fock energy plus correlation energies �EC� in the second
order of perturbation theory, Etot=EHF+EC.

Phase J12 J13 J24 J34 EHF Etot

F 0.1 2.7 2.7 −3.5 11.7 17.5

A −0.3 2.5 2.5 −3.4 14.0 17.1

C −0.9 2.2 2.2 −4.5 0 0

G −1.6 1.8 1.8 −4.8 6.6 7.2

Flip I −1.8 1.6 2.5 −3.4 11.5 14.2

Flip II −0.4 2.3 2.8 −4.8 4.4 6.5
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which is just enough for trapping one d electron at each Ti
site. Therefore, the situation is similar to YVO3. The lowest
t2g level is separated from the middle one by a 109 meV gap,
which is comparable with the magnitude of the CF splitting
in YVO3.

The lattice distortion stabilizes the orbital ordering pat-
tern, which is shown in Fig. 13. In this case, the orbital
degrees of freedom are strongly quenched by the crystal dis-
tortion, and not only the charge densities but also the inter-
atomic magnetic interactions, which are more sensitive to the
change of the orbital ordering, only weakly depend on the
magnetic state �Table V�. Partly, this is because of the large
value of the on-site Coulomb interaction U obtained in
YTiO3 in comparison with other perovskite oxides �Table II�.
Therefore, the superexchange contribution to the orbital or-
dering is expected to be smaller in YTiO3, and the CF split-
ting will clearly dominate. The obtained orbital ordering pat-
tern is in an excellent agreement with the results of LDA
+U calculations by Sawada and Terakura,27 and the experi-

mental measurements using the nuclear magnetic resonance
�Ref. 7�, the polarized neutron diffraction �Ref. 8�, and the
soft x-ray linear dichroism �Ref. 10�.

The observed orbital ordering patter is compatible with
the ferromagnetic ground state, which easily emerges at the
level of HF calculations.19,27 The same trend is clearly seen
in our HF studies, where both the order F→A→C→ flip
→G and the total energy differences between different mag-
netic states are well consistent with the results of LDA+U
calculations by Sawada and Terakura.27

The correlation effects are important. Similar to YVO3,
they tend to additionally stabilize the AFM configurations
and destabilize the ferromagnetic ground state. The situation
is very fragile, and after taking into account the correlation
effects, the energy difference between the F state and the
next A-type AFM state becomes only 0.1–0.8 meV per one
formula unit. In fact, for the titanites, we can apply two
independent schemes for studying the correlation effects: one
is the second order perturbation theory and the other one is

FIG. 13. �Color online� Distri-
bution of the charge density
around Ti sites in various mag-
netic phases of YTiO3, as ob-
tained in the Hartree-Fock calcu-
lations. Different magnetic sublat-
tices are shown by dark gray
�blue� and light gray �yellow�
colors.

TABLE V. Magnetic interactions �JRR��, Hartree-Fock energies �EHF�, total energies �Etot�, and superex-
change energies �ESE� in YTiO3. The energies are measured from the most stable magnetic state in meV per
one formula unit. The magnetic interactions are measured in meV. The total energy is defined as Hartree-Fock
energy plus correlation energies �EC� in the second order of perturbation theory, Etot=EHF+EC. ESE is defined
as the total energy in the superexchange approximation.

Phase J12 J13 J24 J34 EHF Etot ESE

F 3.9 1.2 1.2 3.9 0 0 0

A 3.9 1.1 1.1 3.9 2.0 0.8 0.1

C 3.2 1.1 1.1 3.2 14.4 10.9 12.1

G 3.2 1.0 1.0 3.2 16.2 12.5 13.9

Flip 3.2 1.1 1.1 3.9 8.2 6.1 6.7
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the theory of superexchange interactions, taking into account
the multiplet structure of the excited states. For YTiO3, both
schemes provide a very consistent picture, apart from the
small quantitative differences, which are always inevitable
for two very different approximations.

Yet, the magnetic behavior of YTiO3 poses several open
questions, which are not fully understood.

First of all, YTiO3 is an exceptional example amongst t2g
perovskite oxides, where the ferromagnetic ground state is
anticipated on the basis of canonical Goodenough-Kana-
mori-Anderson rules for the superexchange interactions in
the simple cubic structure. This immediately revives the idea
of Kugel and Khomskii about the superexchange-driven or-
bital ordering and the concomitant Jahn-Teller distortion,
which was intensively discussed in the context of KCuF3.54

Then, it is reasonable to ask whether the experimental orbital
ordering in YTiO3 can be stabilized by the pure superex-
change mechanism, without the CF splitting. This can be
easily checked by substituting hRR

�� =0 into the kinetic-energy
part of our model Hamiltonian. The results of these calcula-
tions are shown in Fig. 14. Surprisingly, the orbital ordering
in the ferromagnetic state is practically the same with and
without the CF splitting. The interatomic magnetic interac-
tions, J12=4.3 meV and J13=1.6 meV, are also consistent
with the data listed in Table V, and which include the effect
of the CF splitting. This naturally explains results of our
previous work �Ref. 28�, where similar orbital ordering and
interatomic magnetic interactions have been obtained by tak-
ing into account only the covalent part of the CF splitting
and neglecting the nonsphericity of the Madelung potential.
Therefore, it is tempting to conclude that the orbital ordering
in YTiO3 is driven by the superexchange interactions, and
the lattice distortion simply follows the anisotropic distribu-
tion of the charge density associated with this orbital state.
However, the situation is not so simple, because our calcula-
tions have been performed using the crystal structure corre-
sponding to the room temperature,6 which is considerably
higher than the Curie temperature �TC�30 K, Ref. 8�. Fur-
thermore, the particular orbital ordering shown in Fig. 14 in
the absence of the CF splitting takes place only in the ferro-
magnetic phase. For example, had we changed the magnetic
state, our orbital ordering pattern would have been also dif-
ferent. Therefore, it seems that a more plausible scenario for

YTiO3 is that the lattice distortion goes first and sets up the
experimental orbital ordering pattern and the ferromagnetic
ground state. Nevertheless, the good agreement between two
orbital states shown in Fig. 14 is really curious. Is it a simple
coincidence or is there some physical meaning behind this
result? We would like to emphasize again that the situation is
totally different from YVO3 considered in Sec. V A.

Another group of questions is related with the behavior of
interatomic magnetic interactions. The first puzzling feature
is the nearly isotropic experimental spin-wave spectrum re-
ported by Ulrich et al.,9 which cannot be explained in terms
of interatomic magnetic interactions derived from the first-
principles electronic structure calculations. For example, the
parameters listed in Table V are clearly anisotropic, where
the interatomic magnetic interactions along the c axis are
much weaker than those in the ab plane. A similar conclu-
sion is expected from the analysis of the total energy differ-
ences reported by Sawada and Terakura.27 Since this aniso-
tropy of magnetic interactions is directly related with the
particular form of the orbital ordering, it seems that the in-
elastic neutron-scattering data by Ulrich et al. are in an ap-
parent disagreement not only with the results of first-
principles electronic structure calculations but also with a
number of other experimental data, which report the same
type of the orbital ordering.7,8,10 Clearly, this controversy de-
serves further analysis, apparently on the both theoretical and
experimental sides.

The behavior of interatomic magnetic interactions prede-
termines not only the form of the magnon spectrum, but also
the absolute value of TC. If the magnetic properties of YTiO3
are indeed controlled by the large lattice distortion, which is
set up far above TC, it should be a good Heisenberg ferro-
magnet. This is directly seen in our HF calculations for
YTiO3, where the interatomic magnetic interactions are the
least sensitive to the magnetic state �Table V�. Then, the
applicability of the Heisenberg model is no longer restricted
by infinitesimal rotations of the spin magnetic moments, and
TC can be easily evaluated using the standard expressions,
which are well known in the theory of Heisenberg magnets.59

The simplest one is the mean-field formula, 3kBTC
MF=4J12

+2J13, where the prefactor S�S+1� is already included in the
definition of our exchange parameters, though with some ap-
proximations for the spin-1 /2.60 By combining this expres-
sion with the HF approximation for the exchange interac-
tions, one finds TC

MF=64 K, which exceeds the experimental
value by a factor of 2. However, TC

MF does not include spon-
taneous fluctuations and correlations between the motion of
the neighboring spins. This is exactly the point where the
anisotropy of exchange interactions can help to reduce the
theoretical value of TC. Indeed, according to the Mermin-
Wagner theorem,61 the two-dimensional Heisenberg model
does not support any long-range spin order at any nonzero
temperature. Therefore, since for J13/J12�1 the system will
eventually approach this two-dimensional limit, it is reason-
able to expect a substantial reduction of TC. In order to de-
scribe these effects quantitatively, one can use the spherical
approximation for the Heisenberg model,59 where 3kBTC

=1/ 
�k�J0−Jk�−1�, Jk=�R�JRR�e
ik·R�, and the summation

over k is restricted by the first Brillouin zone. Then, using

FIG. 14. �Color online� Orbital ordering in the ferromagnetic
phase of YTiO3 computed with �left� and without �right� crystal-
field splitting.
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parameters extracted from the HF calculations, one finds
TC=36 K, which can be further reduced by correlation ef-
fects. For example, by mapping the total energy change ob-
tained in the second order of perturbation theory and in the
theory of superexchange interactions onto the Heisenberg
model, we obtain TC=27 and 28 K, respectively, which is in
fair agreement with the experimental data.

C. LaVO3

The monoclinic LaVO3 has two inequivalent V sites.
Contrary to YVO3, these sites differ not only by the direc-
tion, but also by the magnitude of the CF splitting �Table
VIII�, which can be estimated as 78 and 152 meV for the
sites 1 and 3, respectively �referring to the splitting between
middle and highest t2g levels�. Therefore, already from this
very simple analysis of the CF splitting one can expect very
different behavior of the orbital degrees of freedom in differ-
ent ab planes: the strong quenching in the plane �3,4�, and a
relative flexibility in the plane �1,2� �Fig. 2�. Thus, the situ-
ation is qualitatively different from YVO3.

Furthermore, the effective Coulomb interaction U is
smaller in LaVO3 �Table II�, while the transfer integrals be-
tween nearest neighbors are generally larger �Fig. 6�. There-
fore, the energy gain caused by the virtual hoppings of an
electron to the neighboring sites �and back�, which lead to
the superexchange coupling �see Sec. IV C�, will be gener-
ally larger in LaVO3. This energy gain can be further mini-
mized by adjusting the form of the spin and orbital ordering.
The latter effect is known as the Kugel-Khomskii mechanism
of the spin and orbital ordering, which is a generalization of
Goodenough-Kanamori-Anderson rules.54 The Kugel-Khom-
skii mechanism will certainly play a more important role in
LaVO3 �in comparison with YVO3�, and, as we will see in a

moment, can even compete with the CF splitting.
These trends are clearly seen in our HF calculations �Fig.

15�: the orbital ordering in the plane �1,2� strongly depend on
the magnetic state and one can clearly distinguish �at least�
two types of the orbital-ordering pattern realized, on the one
hand, in the phases F and C, and, on the other hand, in the
phases A and G. In fact, even such a division is only quali-
tative, because there is still a substantial difference between
orbital states realized, for example, in the phases A and G,
which will be seen in the behavior of interatomic magnetic
interactions. Therefore, it is perhaps right to say that in
LaVO3, the experimental orbital ordering is partly concomi-
tant to the magnetic ordering via the Kugel-Khomskii
mechanism.54 This seems to agree with the experimental
data, which show that in La-based compounds, the orbital
ordering develops only few degrees below the magnetic Néel
temperature �TN�.62 This is again different from YVO3, for

TABLE VI. Magnetic interactions �JRR��, Hartree-Fock energies
�EHF�, and total energies �Etot� in LaVO3. The energies are mea-
sured from the most stable magnetic state in meV per one formula
unit. The magnetic interactions are measured in meV. The total
energy is defined as Hartree-Fock energy plus correlation energies
�EC� in the second order of perturbation theory, Etot=EHF+EC.

Phase J12 J13 J24 J34 EHF Etot

F −5.1 6.6 6.6 −1.7 21.0 30.8

A 3.8 2.1 −4.5 −2.4 20.6 24.1

C −4.8 6.0 6.0 −1.8 0 0

G −6.3 −4.4 −4.4 −2.4 7.6 11.1

Flip I 7.7 0.6 5.8 −1.7 9.8 15.0

Flip II −6.2 −4.0 5.8 −3.1 12.7 16.9

FIG. 15. �Color online� Distri-
bution of the charge density
around V sites in various magnetic
phases of LaVO3, as obtained in
the Hartree-Fock calculations.
Different magnetic sublattices
are shown by dark gray �blue� and
light gray �yellow� colors.
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which the orbital-ordering temperature is substantially higher
than TN.

The change of the orbital ordering is reflected in the be-
havior of interatomic magnetic interactions, which not only
depend on the magnetic states, but can even change the signs
�Table VI�. In such a situation, the total energy may have
several local minima, realized for those magnetic states
where the signs of interatomic magnetic interactions are con-
sistent with the type of the imposed spin ordering. We have
found at least two such minima, corresponding to the C-type
AFM ground state and the G-type AFM state, which has
higher energy. Another interesting situation is realized in the
A phase, where the orbitals in the �1,2� plane are able to
rearrange so to form the ferromagnetic spin coupling in the
bond 1-2 and the AFM spin coupling in the bond 2-4, which
are consistent with the A-type AFM spin structure. However,
the orbital ordering in the plane �3,4� is frozen by the CF
splitting. Therefore, the spin coupling in the bond 1-3 re-
mains antiferromagnetic and the spin coupling in the bond
1-3 becomes ferromagnetic, which make the whole A-type
AFM spin structure unstable. Thus, we do not quite agree
with the conclusions about the complete quenching of the
orbital ordering in these distorted perovskite compounds.29

This is not generally true and LaVO3 is clearly an exception.
Thus, on the basis of our calculations we can propose the

following model for the spin and orbital ordering in LaVO3:
�i� In every second monoclinic ab plane �we will call

them “quenched planes”�, the orbital degrees of freedom are
quenched by the crystal distortion, which leads to the robust
orbital ordering and develops the AFM coupling between
spin magnetic moments within these planes.

�ii� In the adjacent planes, the crystal distortion is rela-
tively small, so that the orbitals are rather flexible and can
follow the spin ordering via the Kugel-Khomskii mecha-
nism.

�iii� Then, there are only three magnetic structures, which
are compatible with the translation symmetry of the mono-
clinic phase and the AFM spin coupling in the quenched ab
planes. These are C, G, as well as �strongly frustrated� flip-II
structure.

�iv� If the intra-atomic exchange �Hund’s rule� coupling
J is finite, the ferromagnetic spin coupling between the
planes can be easily stabilized by AFM orbital correlations,
as it was suggested by model �mean-field and exact diago-
nalization� calculations for cubic vanadates in the realistic
parameters range �=J /U�0.2 �see Table II�.21 This natu-
rally explains the origin of the C-type AFM ground state in
LaVO3.

In our scenario, the relative flexibility of the orbital de-
grees of freedom in one of the ab planes plays an important
role and naturally explains the fact that the spin and orbital
ordering in LaVO3 develop almost simultaneously with the
decrease of the temperature.62 Note however, that the
quenching of the orbital degrees of freedom in another ab
plane poses a severe constraint on the possible form of or-
bital and spin magnetic structures in LaVO3. For example,
similar to YVO3, one can probably safely rule out the ap-
pearance of the orbital dimerization also in LaVO3, which is
only possible between degenerate t2g orbitals in the adjacent
ab planes. Also, as we will see in Sec. V E, the orbital mag-

netic moments are strongly quenched by the crystal distor-
tion, even in LaVO3.

Since the interatomic magnetic interactions depend on the
magnetic state, the simple Heisenberg model may be used
only for the analysis of local perturbations around each mag-
netic state. Then, it is reasonable to expect a gap �SW
�6.8 meV between acoustic and optical branches of the
spin-wave spectrum, similar to the one observed in the
C-type AFM phase of YVO3.16 However, the Heisenberg
model is no longer valid for the analysis of the transition
temperature �unlike in YTiO3�, which should take into ac-
count a possible change of the orbital states in the course of
thermodynamic average.

Similar to YVO3 and YTiO3, the correlation effects play a
very important role also in LaVO3 and additionally stabilize
the C-type AFM ground state.

D. LaTiO3

LaTiO3 is a puzzling system. It has the smallest CF split-
ting among the distorted perovskite oxides �about 37 meV
between lowest and middle t2g levels, Fig. 8�, which formally
leaves a room for the orbital fluctuations. On the other hand,
the possible variations of the orbital structure appear to be
bounded by certain constraint conditions. For example, al-
though the orbital ordering depends on the magnetic state,
this dependence is not particularly strong, as it is clearly seen
from the HF calculations, where the basic shape of the
orbital-ordering pattern remains the same for different mag-
netic states �Fig. 16�. There is certainly some variation of the
orbital ordering, which can be seen already on the plot. How-
ever, this variation does not seem to change the qualitative
conclusion about the form of interatomic magnetic interac-
tions and the magnetic ground state of LaTiO3.

Unfortunately, this conclusion is not consistent with the
experimental data. In this sense, there is a clear difference of
LaTiO3 from other perovskite compounds considered in this
work, despite the fact that we have used absolutely the same
procedure for construction and solution of the model Hamil-
tonian.

The magnetic ground state is expected to be of the A type,
as it is clearly seen from the total-energy calculations as well

TABLE VII. Magnetic interactions �JRR��, Hartree-Fock ener-
gies �EHF�, total energies �Etot�, and superexchange energies �ESE�
in LaTiO3. The energies are measured from the most stable mag-
netic state in meV per one formula unit. The magnetic interactions
are measured in meV. The total energy is defined as Hartree-Fock
energy plus correlation energies �EC� in the second order of pertur-
bation theory, Etot=EHF+EC. ESE is defined as the total energy in
the superexchange approximation.

Phase J12 J13 J24 J34 EHF Etot ESE

F 4.5 −1.2 −1.2 4.5 5.0 17.7 1.6

A 3.6 −3.3 −3.3 3.6 0 0 0

C 1.0 −2.0 −2.0 3.4 19.6 26.3 14.2

G 2.0 −4.9 −4.9 2.0 11.5 11.0 9.0

Flip 1.3 −4.5 −0.4 4.6 7.7 11.4 5.7
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as from the behavior of interatomic magnetic interactions
�Table VII�, although experimentally, it is totally antiferro-
magnetic G type.11 The magnetic interactions are sensitive to
the magnetic ordering. However, other magnetic states ap-
pear to be unstable and the form of interatomic magnetic
interactions in each magnetic state systematically leads to the
A-type antiferromagnetism. This conclusion is totally consis-
tent with our previous work,28 where we did not consider the
nonsphericity of the Madelung potential and the contribution
of this nonsphericity to the CF splitting.

Then, what is missing in our calculations, or maybe even
more generally, in our understanding of the magnetic prop-
erties of LaTiO3? Below we discuss several plausible sce-
narios.

�i� One possibility is that the effect of the crystal distor-
tion maybe still underestimated. Particularly, we tried to fol-
low the idea of Refs. 23 and 24, and additionally scaled the
contribution of the Madelung term to the CF splitting by
multiplying the right-hand side of Eq. �2� by a constant. This
corresponds to the change of the dielectric constant, which in
Refs. 23 and 24 was treated as an adjustable parameter. We
have found that in order to obtain the experimentally ob-
served G-type antiferromagnetic ground state, the dielectric
constant should be reduced by a factor of 4 �Fig. 17�. Then,
the exchange interactions become nearly isotropic �J12
=−3.3 and J13=−3.5 meV� and only weakly depend on the
magnetic state. Hence, LaTiO3 is expected to be a good
Heisenberg antiferromagnet, in agreement with experimental
inelastic neutron-scattering data. The latter reveal nearly iso-
tropic spin-wave dispersion, which can be fitted in terms of a
single exchange interaction parameter J=J12=J13=−15.5S2

�−3.9 meV.11 The same parameter J can explain the experi-
mental value of the Néel temperature TN�150 K.11 Thus, we
totally agree with the authors of Refs. 23 and 24 that the

Madelung term alone could explain several experimental fea-
tures of LaTiO3. The only problem is that, according to the
electronic structure calculations, this effect is too small. One
can of course try to blame LDA for this failure. However,
why does this problem occur only for LaTiO3 while for other
perovskite compounds our method works reasonably well?
We believe that if the story about the structural origin of the
G-type antiferromagnetism in LaTiO3 does make sense, it is
more likely that the real magnitude of the crystal distortion
in LaTiO3 is still undisclosed experimentally. This seems to
be reasonable, because the structural data for the distorted
perovskite oxides are still in the process of steady
refinement.12,14,15

�ii� Other scenarios are related with correlation effects,
which are not taken into account by the HF calculations.
There is no doubt that they must play an important role also
in LaTiO3. However, it seems that there is no straightforward

FIG. 16. �Color online� Distri-
bution of the charge density
around Ti sites in various mag-
netic phases of LaTiO3, as ob-
tained in the Hartree-Fock calcu-
lations. Different magnetic sublat-
tices are shown by dark gray
�blue� and light gray �yellow�
colors.

FIG. 17. �Color online� Total energies measured relative to the
G-type antiferromagnetic state as obtained in the Hartree-Fock cal-
culations after scaling the Madelung contribution to the crystal-field
splitting.
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scheme which would allow us to incorporate these effects
easily into the electronic structure calculations. The second-
order perturbation theory and the theory of superexchange
interactions, which we tried, are definitely not enough. They
do substantially change the total energies of the HF method.
However, the conclusions strongly depend on the approxima-
tion which we use �Table VII�. For example, from the second
order perturbation theory, it seems to be clear that the corre-
lation effects tend to stabilize the G-type AFM state: the
correlations change the order of the magnetic states and
somewhat lower the energy of the G-type AFM state relative
to the A state. However, this is not enough to make the
G-type AFM state to be the ground state of LaTiO3.63 The
latter trend is also seen for the superexchange approach.
However, the superexchange method tends to lower also the
energies of other magnetic states �relatively to the A-type
AFM state�, apparently through the small change of the or-
bital ordering. This is in straight contrast with the more dis-
torted YTiO3, where two different methods provide a consis-
tent picture for the role played by the correlation effects
�Table V�.

�iii� The theory of the orbital liquid is just an opposite
case to the theory of CF splitting as these two effects are
incompatible with each other. Although the formation of the
orbital liquid in the cubic t2g lattice is a many-electron effect,
the necessary prerequisite, which should exist already at the
mean-field level, is an infinite degeneracy of the magnetic
ground state.20 In this sense, we were very surprised by the
fact that, although our CF splitting for LaTiO3 is small,
which is sometimes regarded as the strong support for the
orbital liquid theory, we do not observe such a degeneracy in
the Hartree-Fock method: all HF calculations steadily con-
verge to a single solution for the orbital-ordering pattern,
which is shown in Fig. 16, irrespectively on the starting con-
ditions and the size of the supercell. Thus, we believe that it
is still an open �and very interesting� question whether the
orbital liquid will be realized as the ground state of LaTiO3
or not. One clue may be the absolute value of the correlation
energy in LaTiO3, which appears to be larger than in other
perovskite oxides. For example, the second order perturba-
tion theory yields EC=−11 and −19 meV per one formula
unit, correspondingly for the ferromagnetic and G-type AFM
phase of LaTiO3. These values are already comparable with
the magnitude of the CF splitting in LaTiO3. Therefore, it is
possible that the correlation effects should be considered at
the first place, and the simple HF theory for the spin and
orbital ordering with the subsequent inclusion of the correla-
tion effects as a perturbation to the HF ground state may not
be appropriate here. We do not rule out such a possibility. In
such a situation, it is perhaps more practical to get rid of the
perturbation-theory expansion near the nondegenerate HF
ground state, which was pursued in this work, and derive an
approximate ground state from the diagonalization of a
many-electron Hamiltonian matrix constructed in the basis of
some limited number of specially selected Slater determi-
nants, as it is done, for example, in the path-integral renor-
malization group method.5,64

Thus, one of the challenging problems in the theory of
distorted perovskite oxides remains to be the explanation of
the G-type AFM ground state in LaTiO3. Definitely, we need

a more rigorous theory for the correlation effects. But, will it
be enough, or do we need a more radical refinement of our
starting model, given by Eq. �1�, in the case of LaTiO3?

E. Spin-orbit interaction and magnetic ground state

The spin-orbit interaction in the distorted perovskite ox-
ides will generally lead to the noncollinear spin alignment,
which obeys certain symmetry rules.65 The spin magnetic
moments, aligned along one of the orthorhombic axes, will
be subjected to certain rotational forces, coming both from
the Dzyaloshinsky-Moriya interactions and from the minimi-
zation of single-ion anisotropy energies,66,67 which lead to
the spin canting and the appearance of nonvanishing compo-
nents of the spin-magnetization density along two other di-
rections. The type of the magnetic ordering for all three pro-
jection of the spin-magnetization density is generally
different. Thus, each magnetic structure can be generally ab-
breviated as X-Y-Z, where X, Y, and Z is the type of the
magnetic ordering �F, A, C, or G� formed by the projections
of the spin magnetic moments onto the orthorhombic axes a,
b, and c, respectively.68 The orbital magnetic structure has
the same symmetry, although it may have a different origin
of the canting, which arises mainly from the minimization of
the single-ion anisotropy energy at individual transition-
metal sites. Generally, the spin and orbital magnetic mo-
ments are not collinear to each other.69

Results of HF calculations, which take into account the
spin-orbit interaction, are summarized in Table VIII. The
magnetic ground state of YTiO3 is G-A-F, in agreement with
the neutron scattering data.9 The ferromagnetic moment is
aligned along the c axis, and the canting angle is relatively
small. The absolute values of the spin and orbital magnetic
moments are different from those reported in our previous
work.28 The difference is related with the additional transfor-
mation to the LMTO basis, employed in the present work,
which allows us to decompose the magnetization densities
over different atomic sites and evaluate the local spin and
orbital magnetic moments directly at the transition-metal
sites, whereas in Ref. 28 these moments have been calculated
in the Wannier basis, which had a substantial weight at other
�e.g., oxygen� sites. This comparison clearly shows that the
covalent effects play a very important role and allow us to
explain the substantial reduction of the local magnetic mo-
ments at the transition-metal sites. As it was already dis-
cussed in Sec. V B, the correlation effects in YTiO3 favor the
AFM coupling and systematically lower the energies of all
AFM states relative to the ferromagnetic ground state �see
Table V�. Then, it is reasonable to expect that after including
the spin-orbit interaction, the correlation effects will lead to
an additional spin canting away from the collinear ferromag-
netic state. Such an effect is clearly seen in our calculations.
For example, in the framework of superexchange approach
we have obtained the following values of spin and orbital
magnetic moments �in �B, referred to as site 1�: �S
= �−0.02,−0.29,0.77� and �L= �−0.05,0.02,−0.03�. It
readily explains the experimental values reported for the F
and G components of the magnetic moments, correspond-
ingly along the c and a axes,9 while the A-type AFM com-
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ponent along the b axis is somewhat larger in our calcula-
tions. The reason is not clear. The orbital magnetic moments
in YTiO3 are strongly quenched by the crystal field.

The orthorhombic YVO3 has nearly collinear magnetic
structure, where the G-type AFM moment is aligned along
the c axis. The total magnetic moment ��S+�L� �c=1.48�B,
parallel to the c axis, is in the excellent agreement with the
experimental value of 1.45�B reported by Blake et al. and
corresponding to T=65 K.14 Ulrich et al. reported somewhat
larger value of 1.72�B, also oriented along c.16 The weak
ferromagnetic component along the a direction has been also
observed experimentally.13 Details of the magnetic ordering
in the monoclinic phase of YVO3 are somewhat controver-
sial. Blake et al. reported the C-type AFM ordering for both
b and c components of the magnetic moments in the ortho-
rhombic Pbnm notations, which correspond to the a and c
directions in the monoclinic P21/a notations.14 This is totally
consistent with our finding. The quantitative difference can
be explained by the finite temperature effects in the interme-
diate phase.29 Furthermore, we predict the A-type antiferri-
magnetic ordering for the remaining b component �in the
P21/a notations�, which implies nearly antiferromagnetic
alignment of the b projections of the magnetic moments in
the adjacent ab planes. However, since the sites 1 and 3 are
not fully equivalent in the monoclinic structure, the b pro-
jections do not compensate each other, and the system ex-
poses a net magnetic moment parallel to b, which can couple
to the magnetic field.13 The antiferrimagnetic ordering ob-
tained for the b component is also consistent with the
temperature-induced magnetization reversal behavior of
YVO3 observed by Ren,13 and could be a natural explanation
for this effect. More generally, it is right to say that the
magnetic coupling along the c direction of the monoclinic
phase is always either ferrimagnetic or antiferrimagnetic, be-
cause the sites 1 and 3 are not equivalent.

The C-A-C magnetic ground state appears to be different
from the magnetic structure reported by Ulrich et al., who
have observed the C-type AFM ordering for the a and b
components, and the G-type AFM ordering for the remaining
c component �apparently, in the Pbnm notations�.16 One pos-
sible explanation for this difference could be the coexistence

of several magnetic structures in a narrow energy range.
Such a behavior has been indeed observed in our HF calcu-
lations: in addition to the C-A-C state we were able to obtain
another self-consistent solution corresponding to the A-C-F
phase with a slightly higher energy �about 0.04 meV per one
formula unit, which is of the order of the magnetocrystalline
anisotropy energy�. The new phase has the following mag-
netic moments �in �B, where the first and second lines cor-
responds to the sites 1 and 3, respectively�:

�S
1 = �− 0.07, 1.65, 0.05� , �L

1 =� 0.05,− 0.15,− 0.02� ,

�S
3 = � 0.07, 1.67, 0.03� , �L

3 =�− 0.09,− 0.07,− 0.02� .

Although the exact form of the magnetic state A-C-F is still
different from the observation by Ulrich et al.,16 we can
speculate that they probably used a different experimental
setup which yielded the realization of another magnetic
phase, which was different from the finding by Blake et al.
�Ref. 14� and Ren et al. �Ref. 13�. At least, their C-type AFM
component parallel to the ab plane is qualitatively consistent
with the form of the A-C-F phase obtained in our HF con-
clusions, and to a certain extent the results of HF calculations
can be further modified by the correlation effects. Note also
that in the present work we used the experimental structure
reported by Black et al.14 Therefore, it is not surprising that
generally we have a better agreement also with the magnetic
data of Black et al. rather than with the ones reported by
Ulrich et al. Unfortunately, the details of the experimental
crystal structure obtained for YVO3 by the second group
became available only recently,70 when the present work was
nearly completed.

In the case of LaVO3 we were able to find three stable
magnetic solutions: A-C-A, C-A-C, and C-F-G. The first two
are similar to the A-C-F and C-A-C states, emerging in the
monoclinic YVO3. The only difference is that the A-C-A
state has lower energy and, therefore, is realized as the mag-
netic ground state of LaVO3. Like in YVO3, the A-type state
corresponds to the antiferrimagnetic alignment. Therefore,
LaVO3 is expected to have the net magnetic moment in the

TABLE VIII. The type of the magnetic ground state, the vectors of spin ��S� and orbital ��L� magnetic
moments �in �B� at given transition-metal sites, and the values of the band gap �Eg, in eV� as obtained in
Hartree-Fock calculations. For the magnetic ground state, three capital letters denote the type of the magnetic
ordering for three projections of the magnetic moments onto the orthorhombic axes a, b, and c, respectively.
For the spin and orbital magnetic moments at the given transition-metal sites, these three projections are
specified by the vectors �S and �L, respectively. The positions of the transition-metal sites are shown in
Fig. 2.

Compound Phase Ground state Site �S �L Eg

YTiO3 o G-A-F 1 �−0.00, −0.09, 0.84� �−0.05, 0.01, −0.03� 1.1

LaTiO3 o C-F-A 1 �0.02, −0.17, 0.76� �0.10, 0.03, −0.08� 0.6

YVO3 o F-C-G 1 �−0.02, 0.00, 1.65� �0.00, −0.00, −0.17� 1.2

YVO3 m C-A-C 1 �−0.74, 0.08, 1.48� �0.07, −0.04, −0.16� 1.0

3 �−0.78, −0.03, 1.48� �0.05, 0.04, −0.07�
LaVO3 m A-C-A 1 �−0.05, 1.64, −0.05� �0.09, −0.18, 0.11� 0.9

3 �0.06, 1.63, 0.05� �−0.05, −0.09, −0.06�
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ac plane. The third �C-F-G� solution has nearly collinear
spin structure:

�S
1 = �− 0.01,− 0.06, 1.60� , �L

1 = � 0.01, 0.13,− 0.34� ,

�S
3 = �− 0.03,− 0.02,− 1.61�, �L

3 = � 0.01, 0.04, 0.14� .

It corresponds to the stable G-type AFM phase emerging
without the spin-orbit interaction �see Table III�. Neverthe-
less, the A-C-A state appears to be well separated from the
C-A-C and C-F-G states, correspondingly by 0.19 and
6.50 meV per one formula unit.

The quenching of the orbital magnetic moments in two
different sublattices of monoclinic YVO3 and LaVO3 nicely
correlates with the values of the CF splitting �Fig. 8�, where
larger CF splitting at the site 3 results in smaller orbital mag-
netization.

It is probably meaningless to discuss the relativistic ef-
fects in LaTiO3, where we could not reproduce the correct
magnetic ground state. We could agree with the criticism
risen by Haverkort et al. �Ref. 41� that our CF splitting alone
does not explain details of their spin-resolved photoemission
spectra �actually, our value of the parameter �L ·S	, obtained
in the HF calculations after the transformation to the LMTO
basis and the radial integration over the Ti sphere is about
−0.13, which exceeds the experimental value by a factor of
2�. However, it does not make sense to present as an alter-
native the results of calculations yielding the same A-type
AFM ground state,32 which totally agrees with our finding
and �unfortunately� disagrees with the experiment, even
though these calculations yield somewhat larger values of the
CF splitting. As it has been already discussed in Sec. III A,
different values of the CF splitting obtained by different au-
thors are most likely related with the nonunique choice of the
Wannier functions for the t2g bands of the distorted perov-
skite oxides. One can formally adjust the theoretical CF
splitting in order to meet certain demands of some particular
class of the experimental data. However, will it solve a more
fundamental problem related with the magnetic ground state
of LaTiO3?

In addition, we show in Table VIII the values of the band
gap obtained in the HF calculations for the magnetic ground
state. For YTiO3, YVO3, and LaVO3 there is a good agree-
ment with the experimental optical data.15,71 However, for
LaTiO3 the experimental gap is substantially smaller ��0.1
eV�.71 This may indicate again the particular importance of
correlation effects in LaTiO3.

VI. SUMMARY AND CONCLUDING REMARKS

The main purpose of this work was to make a bridge
between first-principles electronic structure calculations and
model approaches for the strongly correlated systems, and
illustrate how it works for the series of distorted t2g perov-
skite oxides. The whole plan included three major steps:
first-principles electronic structure calculations→construc-
tion of the model Hamiltonian for the isolated t2g bands lo-
cated near the Fermi level→solution of this model Hamil-
tonian using several different techniques. The choice of the

distorted t2g perovskite oxides was motivated by the fact that
they represent a good example of the systems for which it is
practically impossible to construct a relevant model Hamil-
tonian without the impact from the first-principles calcula-
tions: simply, the lattice distortion is too complex and there
are too many model parameters, which cannot be fixed in
unbiased way. In this sense, we strongly believe that any
theoretical model for such complex oxide materials should
be based on the results of first-principles electronic structure
calculations. Otherwise it could be just an abstract math-
ematical construction deprived of clear physical grounds. On
the other hand, it would be also incorrect to underestimate
the impact of model physics on the first-principles electronic
structure calculations. Certainly, one good example of such a
beneficial collaboration is the problem of on-site Coulomb
correlations.2–4

The present work clearly demonstrates that nowadays the
idea of constructing the ab initio models for the strongly
correlated systems is quite feasible: all model parameters in
our work, including the intra-atomic Coulomb interactions,
have been derived from the first-principles calculations using
the method proposed in Ref. 34. Apart from the approxima-
tions inherent to this method, the procedure of constructing
the model Hamiltonian was totally parameter free, and our
analysis did not rely on the use of any adjustable parameters.
Therefore, it is remarkable that using such a parameter-free
approach we could propose a consistent explanation for a
number of puzzling properties of the distorted t2g perovskite
oxides. The first results are really encouraging and we would
like to hope that this method can be successfully applied in
the future for the analysis of electronic and magnetic prop-
erties of other narrow-band materials.

It is also remarkable that the results of full-potential all-
electron LDA+U calculations �Refs. 27 and 29� can be suc-
cessfully reproduced in our model approach for the isolated
t2g bands. We could easily rationalize the main results of
these relatively heavy calculations and elucidate the main
microscopic interactions responsible for the formation of dif-
ferent magnetic structures in the case of YTiO3, YVO3, and
LaVO3. We argue that the nonsphericity of the Madelung
potential should be an indispensable ingredient of both
model analysis and electronic structure calculations, and the
results of commonly used atomic-spheres approximation
should be corrected in order to include these effects.

The crystal distortion plays an important role in the phys-
ics of t2g perovskite oxides. At least for YTiO3, YVO3, and
LaVO3, the knowledge of the experimental lattice parameters
and the atomic positions greatly helps in explaining the mag-
netic properties of these compounds. Of course, some ques-
tions still remain. Particularly, what is the origin of this dis-
tortion? Why is it so different for different compounds, that
is finally manifested in the formation of completely different
magnetic structures? Very similar arguments have been em-
ployed in order to explain the magnetic behavior of LaMnO3,
which is a characteristic example of the Jahn-Teller distorted
eg perovskite oxides. Particularly, it was argued that the ex-
perimental distortion not only stabilize the A-type AFM
ground state of LaMnO3,67,72–74 but is also responsible for
the opening of the band gap.72,74 However, the direction of
the Jahn-Teller distortion in LaMnO3 can be naturally under-
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stood in terms of anharmonicity of the electron-lattice
interaction.54,75,76 In this sense, LaMnO3 is an easy example.
Then, is it possible to rationalize the behavior of t2g perov-
skite oxides in a similar way and come up with some suitable
lattice model, which would explain not only the direction of
the lattice distortion in each particular compound, but also
the difference between these compounds?

Finally, we emphasize the importance of correlation ef-
fects in the t2g band of distorted perovskite oxides. Although
the mean-field Hartree-Fock approach provides a satisfactory
description for the magnetic properties of YTiO3, YVO3, and
LaVO3, the inclusion of the correlation effects systematically
improves the agreement with the experimental data for all
three compounds. Definitely, LaTiO3 is an exceptional ex-
ample for which we could not obtain the correct G-type

AFM ground state neither at the level of Hartree-Fock ap-
proximation nor after including some correlation effects,
though in a very approximate form. However, we expect that
the situation may change by systematically improving the
level of approximations for treating the correlation effects.
The approximations considered in the present work were
simply not enough in the case of LaTiO3.

ACKNOWLEDGMENTS

The author is grateful to Masatoshi Imada for valuable
discussions. This work has been partially supported by
Grants-in-Aid for Scientific Research in Priority Area
“Anomalous Quantum Materials” from the Ministry of Edu-
cation, Culture, Sports, Science and Technology of Japan.

*Electronic address: solovyev.igor@nims.go.jp
1 M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039

�1998�; Y. Tokura and N. Nagaosa, Science 288, 462 �2000�.
2 V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44,

943 �1991�.
3 I. V. Solovyev, P. H. Dederichs, and V. I. Anisimov, Phys. Rev. B

50, 16861 �1994�.
4 V. I. Anisimov, A. I. Poteryaev, M. A. Korotin, A. O. Anokhin,

and G. Kotliar, J. Phys.: Condens. Matter 9, 7359 �1997�; S. Y.
Savrasov, G. Kotliar, and E. Abrahams, Nature �London� 410,
793 �2001�; K. Held, G. Keller, V. Eyert, D. Vollhardt, and V. I.
Anisimov, Phys. Rev. Lett. 86, 5345 �2001�; A. I. Lichtenstein
and M. I. Katsnelson, Phys. Rev. B 57, 6884 �1998�.

5 Y. Imai, I. Solovyev, and M. Imada, Phys. Rev. Lett. 95, 176405
�2005�.

6 D. A. Maclean, H.-N. Ng, and J. E. Greedan, J. Solid State Chem.
30, 35 �1979�.

7 M. Itoh, M. Tsuchiya, H. Tanaka, and K. Motoya, J. Phys. Soc.
Jpn. 68, 2783 �1999�.

8 J. Akimitsu, H. Ichikawa, N. Eguchi, T. Miyano, M. Nishi, and K.
Kakurai, J. Phys. Soc. Jpn. 70, 3475 �2001�.

9 C. Ulrich, G. Khaliullin, S. Okamoto, M. Reehuis, A. Ivanov, H.
He, Y. Taguchi, Y. Tokura, and B. Keimer, Phys. Rev. Lett. 89,
167202 �2002�.

10 F. Iga, M. Tsubota, M. Sawada, H. B. Huang, S. Kura, M. Take-
mura, K. Yaji, M. Nagira, A. Kimura, T. Jo, T. Takabatake, H.
Namatame, and M. Taniguchi, Phys. Rev. Lett. 93, 257207
�2004�.

11 B. Keimer, D. Casa, A. Ivanov, J. W. Lynn, M. v. Zimmermann,
J. P. Hill, D. Gibbs, Y. Taguchi, and Y. Tokura, Phys. Rev. Lett.
85, 3946 �2000�.

12 M. Cwik, T. Lorenz, J. Baier, R. Müller, G. André, F. Bourée, F.
Lichtenberg, A. Freimuth, R. Schmitz, E. Müller-Hartmann, and
M. Braden, Phys. Rev. B 68, 060401�R� �2003�.

13 Y. Ren, T. T. M. Palstra, D. I. Khomskii, E. Pellegrin, A. A.
Nugroho, A. A. Menovsky, and G. A. Sawatzky, Nature �Lon-
don� 396, 441 �1998�.

14 G. R. Blake, T. T. M. Palstra, Y. Ren, A. A. Nugroho, and A. A.
Menovsky, Phys. Rev. B 65, 174112 �2002�.

15 A. A. Tsvetkov, F. P. Mena, P. H. M. van Loosdrecht, D. van der

Marel, Y. Ren, A. A. Nugroho, A. A. Menovsky, I. S. Elfimov,
and G. A. Sawatzky, Phys. Rev. B 69, 075110 �2004�.

16 C. Ulrich, G. Khaliullin, J. Sirker, M. Reehuis, M. Ohl, S. Mi-
yasaka, Y. Tokura, and B. Keimer, Phys. Rev. Lett. 91, 257202
�2003�.

17 V. G. Zubkov, G. V. Bazuev, V. A. Perelyaev, and G. P. Shveikin,
Sov. Phys. Solid State 15, 1079 �1973�.

18 P. Bordet, C. Chaillout, M. Marezio, Q. Huang, A. Santoro, S-W.
Cheong, H. Takagi, C. S. Oglesby, and B. Batlogg, J. Solid State
Chem. 106, 235 �1993�.

19 T. Mizokawa and A. Fujimori, Phys. Rev. B 54, 5368 �1996�.
20 G. Khaliullin and S. Maekawa, Phys. Rev. Lett. 85, 3950 �2000�.
21 P. Horsch, G. Khaliullin, and A. M. Oleś, Phys. Rev. Lett. 91,

257203 �2003�.
22 G. Khaliullin and S. Okamoto, Phys. Rev. Lett. 89, 167201

�2002�.
23 M. Mochizuki and M. Imada, Phys. Rev. Lett. 91, 167203 �2003�.
24 R. Schmitz, O. Entin-Wohlman, A. Aharony, A. B. Harris, and E.

Müller-Hartmann, Phys. Rev. B 71, 144412 �2005�.
25 H. Fujitani and S. Asano, Phys. Rev. B 51, 2098 �1995�.
26 H. Sawada, N. Hamada, K. Terakura, and T. Asada, Phys. Rev. B

53, 12742 �1996�.
27 H. Sawada and K. Terakura, Phys. Rev. B 58, 6831 �1998�.
28 I. V. Solovyev, Phys. Rev. B 69, 134403 �2004�.
29 Z. Fang and N. Nagaosa, Phys. Rev. Lett. 93, 176404 �2004�.
30 E. Pavarini, S. Biermann, A. Poteryaev, A. I. Lichtenstein, A.

Georges, and O. K. Andersen, Phys. Rev. Lett. 92, 176403
�2004�.

31 E. Pavarini, A. Yamasaki, J. Nuss, and O. K. Andersen, New J.
Phys. 7, 188 �2005�.

32 S. V. Streltsov, A. S. Mylnikova, A. O. Shorikov, Z. V. Pchelkina,
D. I. Khomskii, and V. I. Anisimov, Phys. Rev. B 71, 245114
�2005�.

33 S. Okatov, A. Poteryaev, and A. Lichtenstein, cond-mat/0412063
�unpublished�.

34 I. V. Solovyev, Phys. Rev. B 73, 155117 �2005�.
35 There are certain experimental indications that the actual symme-

try of the intermediate phase of YVO3 can be even lower than
P21/a �Ref. 15�.

36 For example, from the viewpoint of superexchange interactions, it
is more natural to define the “orthogonal” orbitals as the ones

I. V. SOLOVYEV PHYSICAL REVIEW B 74, 054412 �2006�

054412-24



which are decoupled via matrix elements of transfer integrals

between neighboring transition-metal sites: ��R � ĥRR� ��R�	=0,
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