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Monte Carlo simulations are used to investigate the modification of magnetic ordering in ultrathin films by
the introduction of a regular array of vacancies. The magnetic moments are coupled by a dipolar interaction
and are assumed to form a square lattice. The simulations demonstrate the variations in magnetic ordering with
temperature and vacancy concentration for a variety of vacancy configurations.
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I. INTRODUCTION

Ultrathin magnetic films have been extensively studied
using both experimental and theoretical methods.1,2 The high
level of interest in these systems is generated, in part, by the
wide range of ordering phenomena that they demonstrate
and, in part, by their potential technological uses.2,3

In theory, modifying the magnetic parameters or ran-
domly changing the structure may be used to modify the
magnetic properties of the film, however, in practice it may
be difficult to achieve precise control of the properties. For
example, for systems with both dipolar and exchange inter-
actions, it has recently been demonstrated that the strength of
the antiferromagnetic exchange interaction affects the nature
of the magnetic ordering.4–6 While the exchange interaction
in a manufactured film may be controlled somewhat by the
choice of film and substrate materials, and similar surface
science techniques, precise manipulation of the exchange in-
teraction to obtain desired ordering properties may be diffi-
cult. Simulation studies have also been used to investigate
the effect of randomly distributed vacancies on in plane or-
dering in ultrathin magnetic films.7 At the very low densities
of vacancies investigated these studies are consistent with
earlier predictions,8,9 however, they also provide some evi-
dence that even at quite low densities a multitude of nearly
degenerate low energy states exists and the system may relax
to any of these states.7

The use of regular arrays of holes �antidots� in ultrathin
films has been discussed as a way of controlling the proper-
ties of the film.2 It has the advantage that the connectivity of
the film is preserved and so the modification of the interac-
tion is smaller than in, say, an array of magnetic nanodots
�that is the interaction between the dots�. Moreover, for films
which are of the order of nanometers in diameter there is a
wide range of possible spacings for the holes and hence the
possibility of rather precise control of the effected magnetic
properties of the film.

In addition to the possible technological implications of
being able to vary the properties of a film in a controlled
way, considering systems with regular arrays of vacancies
also provides insight into the interplay between magnetic
structure and system structure in systems demonstrating or-
der from disorder phenomena. In particular, the introduction
of thermal disorder into a system of dipoles confined to the

film plane results in a reduction in symmetry from the con-
tinuous symmetry of the ground state to a fourfold discrete
symmetry.8–11 The introduction of random vacancies modi-
fies the discrete fourfold symmetric states selected �at suffi-
ciently low temperature�.7–9 As demonstrated in the work
reported here, introducing a regular array of vacancies allows
a similar modification of the selected states, however, the
manner in which the ground states vary with increasing va-
cancy concentration may be systematically controlled and
studied.

Our simulation results predict the temperature-
concentration phase diagrams of materials with vacancies ar-
ranged in a regular array. Experimentally the phase transition
lines predicted can be located by the measurement of mac-
roscopic quantities such as the magnetic specific heat. How-
ever, our simulation results also describe the variation in
magnetic structure at the atomic level with vacancy concen-
tration and temperature. There is the fascinating possibility
of experimentally probing this variation through direct imag-
ing using techniques that allow atomic resolution of antifer-
romagnetic structures. In particular, spin-polarized scanning
tunneling microscopy is capable of such resolution and can
be used to image antiferromagnetic structures in films with
in-plane moments by using Fe coated probe tips.12

II. MODEL AND MONTE CARLO SIMULATION METHOD

In this study a square lattice of magnetic moments inter-
acting through a dipolar interaction was used to model the
ultrathin film. The moments are confined to the plane of the
lattice and the Hamiltonian of the system is taken to be

H = g�
ij
��� i . �� j

rij
3 − 3

�� i . r�ij�� j . r�ij

rij
5 � . �1�

As in previous work we simulate an ideal system without
a boundary by assuming that the infinite space is tiled with
replicas of the basic simulation cell and using Ewald sum
techniques to calculate the corresponding modified
interactions.1 The simulations may be thought of as repre-
senting a film of atomic moments which interact through a
dipolar interaction only; in this case, the vacancies represent
the removal of individual atoms. However, the simulations
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may also be thought of as representing a regular array of
uniform magnetic nanodots which interact through the dipo-
lar interactions between the net moments of the dots; in this
case the vacancies represent the removal of nanodots. We
choose units such that the dipolar interaction parameter g
=1.0. Accordingly the temperature scale may be rescaled ap-
propriately to compare with experimental results from either
films with atomic vacancies or arrays of antidots.

A variety of system sizes, and vacancy concentrations and
configurations have been considered. Results are summa-
rized in the following sections. In almost all cases the simu-
lations were started with the system in a disordered state well
above the temperature at which the system without vacancies
is known to order10 and the system is cooled slowly. At T
=0.05 the temperature step was reduced from −0.05 to
−0.005 until a temperature of T=0 was reached. The system
temperature was then set to zero and the system allowed us
to further relax using the Monte Carlo simulation �i.e., only
energy decreasing moves allowed� in order to ensure that the
local energy minimum had been reached. In a few cases the
system was initiated in an ordered state at zero temperature
and slowly raised to a temperature well above the transition
temperature. These warming simulations were used to check
for consistency and for evidence of metastability effects.

Previously Monte Carlo simulations have been used to
demonstrate the ordering of a square lattice of magnetic mo-
ments coupled by a dipolar interaction only.10 This ordering
occurs despite the continuous degeneracy of the ground state
of the system10,11 and is associated with the appearance of an
effective anisotropy �and an associated gap in the spin wave
spectrum� at finite temperatures. The effective anisotropy
generated by the thermal fluctuations is such that the order-
ing tends to be along the axial directions of the lattice. When
only the dipolar interaction is present �i.e., no exchange in-
teraction� the low temperature state consists of lines of par-
allel moments with moments in adjacent lines antiparallel.
We refer to this as the colinear ordered state. Adding random
impurities7 or, under certain conditions, an antiferromagnetic
exchange interaction4–6 results in a change to an ordered
state in which the moments are at 45° to the axial directions.
We refer to this as the microvortex state.

The degree of ordering corresponding to the �zero va-
cancy� dipolar ground state manifold is measured by calcu-

lating the order parameter �� with components4

�x =� 1

N
�

i

si
x� ;�y =� 1

N
�

i

si
y� , �2�

where the sum is over all sites on the lattice. The “gauge
transformed” spins s� have a one-to-one correspondence with
the original dipole moments through the transform

s�i = �si
x,si

y� = ���
x ��,j

x ,��
y ��,j

y � �3�

and a ferromagnetic ground state. The label j in Eq. �3� in-
dicates a distinct four spin plaquette on the square lattice and
the label � indicates one of four sublattice positions within
the plaquette. The four-dimensional vectors used to construct
the transformation are ��x= �1,−1,−1,1� and ��y = �1,1 ,−1 ,
−1�.

We follow earlier work10 by calculating

P =� 1

N
�

i

�si
x�4 + �si

y�4� �4�

to distinguish between the colinear and microvortex phases.
This has the value P=1 in the pure colinear phase, P=0.5 in
the pure microvortex phase, and P=0.75 in a system with
zero effective anisotropy. However, we note that P is actu-
ally a measure of the degree of alignment with the axial or
diagonal directions of the square lattice rather than an order
parameter for the colinear or microvortex states. Conse-
quently, as discussed below, some care is required in inter-
preting the calculated values of P.

Systems of various sizes �N=30�30 to N=70�70� with
various concentrations of vacancies were simulated. We
found no evidence of significant finite size effects except as
discussed below in Sec. IV. In most cases vacancy concen-
trations were chosen such that the vacancy array is commen-
surate with the basic Monte Carlo cell size. However, in
order to provide more data points at intermediate concentra-
tions, incommensurate structures were also used. To the ac-
curacy of the simulations we found no systematic differences
between the results from the commensurate and incommen-
surate structures.

III. MODIFICATION OF THE LOW TEMPERATURE
STATES

A. Square lattice of vacancies

The variation of the low temperature states with changing
concentration of vacancies is indicated by the configurations
shown in Fig. 1, for a system with a square array of vacan-
cies. These low temperature states are obtained by simulated
cooling of the system from a high temperature to zero tem-
perature by the Monte Carlo method described above. The
figure shows the configuration in the gauge transformed sys-
tem �s�i	.

In the absence of vacancies the low temperature state is
that of an ordered system with the moments aligned parallel
to the axis of the underlying square lattice. Addition of va-
cancies modifies the zero temperature state obtained. At the
lowest concentrations of vacancies considered, the state of
the system obtained by cooling to zero temperature shows
the moments rotated by � /4 relative to the lattice axes with
some further slight modification of the angle apparent for
moments in the immediate vicinity of the vacancies. This is
consistent with a similar observation of a rotation by � /4 of
the moments in systems with random distributions of low
concentrations of vacancies �the microvortex phase�.

As the concentration of vacancies is increased the further
modification of the zero temperature state by the vacancies is
apparent as a further partial rotation of the moments particu-
larly along the lattice lines which connect adjacent vacan-
cies. Hence with increasing concentration of vacancies the
system deviates from a homogenous system but remains or-
dered and the ordered state has the symmetry of the vacancy
lattice.

As the vacancy concentration is increased the tendency of
the system to form multiple domain states as the system is
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cooled, increases. Such domain states have been observed at
vacancy concentrations as low as 1% �c=0.01�. In all cases
where domains are observed, the domain boundaries are lo-
cated on the lines of the vacancy lattice. Moreover, the mo-
ments located on these domain boundaries tend to be further
rotated �in relation to the micro-vortex phase orientation�
relative to those on similar vacancy lattice lines which are
not on a domain boundary. At the higher concentrations con-
sidered, the formation of multiple domain states is almost
always observed. This indicates that the introduction of a
domain wall has only a small energy penalty thus resulting in
a very large number of multiple domain states which are

almost degenerate. 
For example, the energy difference per
spin between the single domain phase shown in Fig. 1�b� and
the mutiple domain phase shown in Fig. 1�c� is only
0.0008g�. These multiple domain states include “plaid” states
with both horizontal and vertical domain walls, such as that
shown at a vacancy concentration of 6.25% �c=0.0625� in
Fig. 1.

B. Face centered square lattice of vacancies

The gross features of systems with vacancies arranged in
a face centered square �FCSq� array are similar to those

FIG. 1. �Color online� Zero
temperature �gauge transformed�
configurations obtained by cool-
ing the system with a square array
of vacancies and vacancy concen-
trations of �top left to bottom
right� c=0.0039, 0.0156, 0.0156
�with domains�, 0.0278, 0.0625,
and 0.111. Colors are generated
by a color wheel representing the
orientation of the moments.
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found is systems with a square array of vacancies, however,
there are some significant differences in the details of the
arrangements. Introduction of a small concentration of va-
cancies again results in a zero temperature phase which is
close to the microvortex phase with distortions of that phase
close to the vacancy locations. Domain formation is ob-
served at relatively low concentrations of vacancies �3.2%�.
As in the case of a square array of vacancies, domain walls
are aligned with the nearest neighbor edges of the vacancy
lattice and, therefore, in this case are rotated by � /4 relative
to the underlying spin lattice �see Fig. 2�.

Once a concentration of 50% of vacancies in a FCSq ar-
rangement is reached, the remaining dipoles form a square
lattice oriented at � /4 with respect to the c=0 lattice of
dipoles. As this is indistinguishable from a square lattice
with a lattice spacing expanded by a factor of 1 /�2, the low
temperature state is the colinear state on the “new” lattice.
This low temperature state is shown in Fig. 3 and we note
that it does not correspond to a microvortex state on the
original lattice. We return to this special case to provide
some useful results for finite temperature systems below.

IV. VARIATION WITH TEMPERATURE

A. Order and anisotropy parameters

The order parameter 
defined in Eq. �2�� as a function of
temperature is summarized in Fig. 4 and the variation of P

Eq. �4�� with temperature is summarized in Fig. 5, for a
system with a square array of vacancies at various values of
vacancy concentration, c.

At sufficiently low concentrations of vacancies �c
�2.0% � the variation in P and �= ��  with temperature is
very similar to that observed in the zero vacancy case.10

Initially as the temperature continues to decrease below the
critical temperature for ordering, P increases above its value
in the disordered system indicating that the ordering is es-
sentially of the colinear type. However, at very low tempera-

tures there is a rapid decrease in P and at very low concen-
trations of vacancies P�0.5 at T=0. At slightly higher
values of concentration the same rapid decrease in P is ob-
served but the final value is noticeably above 0.5. The initial
increase in P followed by a rapid decrease at a vacancy
concentration dependent critical temperature is consistent
with an initial ordering transition to a colinear phase fol-
lowed by a subsequent transition to the microvortex state as
the temperature continues to decrease. This phase behavior is
similar to that observed in systems with random vacancies at
low concentrations of vacancies.7 At higher concentrations of
vacancies �2.8�c�11.1% �, P never reaches a value above
0.75, apparently indicating that the microvortex state is the
only ordered state observed; however, as we shall show be-
low, a more subtle analysis of the phase behavior is required
to correctly determine the properties of the system at these
higher concentrations of vacancies. Notice that at the highest
concentration of vacancies considered here �c=0.25�, the fi-
nal value of P is P�0.80 �i.e., P	0.75� indicating that the
distortion of the microvortex state, generated by the vacan-
cies, results in many of the moments lying along or close to
the axial directions.

B. Dynamical behavior in finite systems

As noted above, for sufficiently high values of the va-
cancy concentration c a value of P	0.75 is not observed in
our simulations. We also note that even for low concentra-
tions or zero concentration of vacancies, there is a tempera-
ture interval immediately below the ordering temperature
where the anisotropy parameter P is essentially indistin-
guishable from its isotropic value, P=0.75. A simple inter-
pretation of these results would lead one to believe that at
sufficiently high vacancy concentrations the colinear phase
does not occur and that even at lower concentrations of va-
cancies the colinear phase does not occur until one lowers
the temperature somewhat below the ordering temperature.
This might be explained by assuming that the anisotropy
induced by the thermal fluctuations is insufficient to over-
come rotations due to thermal excitations.

FIG. 2. �Color online� A typical zero temperature configuration
obtained by cooling a system with a FCSq arrangement of vacan-
cies �c=0.125�. The orientation of the domain boundaries relative to
the underlying square lattice is typical of domain formation with the
FCSq arrangement of vacancies.

FIG. 3. �Color online� A typical zero temperature configuration
obtained by cooling a system with a FCSq arrangement of vacan-
cies �c=0.50�.
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This appears to be confirmed by plotting the average
value of sx and sy as a function of temperature �Fig. 6�. For a
range of values immediately below the ordering temperature
the values of �sx� and �sy� are scattered with no obvious
systematic variation. At higher concentrations of vacancies
this region of temperature continues until the onset of the
microvortex state at which point both �sx� and �sy� stabilize
at values characteristic of the microvortex phase �sx�sy

�1/�2�. At lower values of vacancy concentration, the val-
ues of �sx� and �sy� stabilize at values characteristic of a
colinear phase, this is usually proceeded by temperature in-
tervals in which �sx� and �sy� are stable but where the orien-
tation changes as one continues to lower the temperature.

Both the low and high vacancy concentration behavior in
these ranges can be explained as a dynamical effect in which
the thermal excitations cause the order parameter to fluctuate

FIG. 4. Variation of the order
parameter with temperature in a
system with a square array of
vacancies at concentrations of
c=0.0039�+�, 0.0156���,
0.0278���, and 0.0625���.

FIG. 5. Variation of the aniso-
tropy parameter, P, with tempera-
ture in a system with a square ar-
ray of vacancies at concentrations
of c=0.0039�+�, 0.0156���,
0.0278���, and 0.0625���.
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between the free energy minima. If the temperature is suffi-
ciently high the typical thermal excitation energy is compa-
rable to the energy barrier and the moments will rotate be-
tween the axial directions easily. As the temperature is
lowered the thermal energy becomes comparable with the
energy barrier due to the anisotropy which is in turn gener-
ated by the thermal excitations; the rate of fluctuations of the
order parameter becomes comparable with the time spent at
each temperature in the simulations. Finally at sufficiently
low temperature the probability of an excitation over the
energy barrier is negligible and the particular ordered phase
becomes stable �at least on times probed in these simula-
tions�.

A more detailed analysis of this dynamical behaviour was
obtained by plotting �sx� and �sy� as a function of time for
fixed temperature and vacancy concentration. We then plot
the self-correlation function, 
�t�, defined by

��t� = �s�i�t� · s�i�0�� − �s�i�t���s�i�0�� , �5�


�t� =
��t�
��0�

, �6�

and assume that a relaxation time � may be defined by fitting
the data to the form


�t� = exp�− t/�� . �7�

In Figure 7 we show the typical variation of � with tempera-
ture. The smooth behavior of the curve in the temperature
interval from the ordering temperature to the microvortex
transition temperature implies that there is only a single
phase in this region but the relaxation time is �relatively�
very short just below the ordering transition temperature.
However, the relaxation time increases rapidly as the micro-
vortex transition is approached. At higher concentrations of
vacancies the short relaxation time persists almost all the
way to the microvortex transition and therefore a stable

single colinear phase is not observed. These dynamical ef-
fects account for the absence of a value of P	0.75 even
though the system may be said to be in a colinear phase. At
vacancy concentrations of c	0.04 anomalous behavior of �
with temperature was sometimes observed, however, we con-
cluded that this was primarily an artifact of domain forma-
tion.

A finite size analysis of this dynamical behavior was then
carried out by defining a temperature Ts�c ,L� for given va-
cancy concentration, c, and linear system size, L, as the tem-
perature at which a stable single colinear phase appears in
our simulation. For the smaller system sizes used, Ts is well
below the ordering temperature, however, it rises relatively
rapidly with system size when the larger system sizes are
included. Extrapolating to 1/L→0 indicates that it ap-
proaches the ordering transition temperature in this limit.
Thus the destabilizing of the single colinear phase by these
dynamical effects is a finite system effect.

V. PHASE DIAGRAMS

A. Square lattice of vacancies

While the concentration of vacancies cannot be continu-
ously varied if the nature of a chosen vacancy lattice is to be
maintained, we can nonetheless plot the points �Tc ,c� and
�Tmv ,c�, corresponding to the ordering and microvortex tran-
sitions, respectively, on a temperature-concentration phase
diagram for those values of c corresponding to a chosen
lattice type for the vacancy array. Figure 8 is the phase dia-
gram for a system with a square lattice of vacancies, pro-
duced in this way. While it is possible to identify both Tc and
Tmv from the simulations reported here at all of the values of
c considered, some caution is needed. As we noted above,
domain formation is a characteristic feature of the low tem-
perature behavior of these systems for all but the very lowest
of vacancy concentrations considered. In a finite system,
there is always one dominant phase so the system can be said

FIG. 6. Averages of the x and y spin components as functions of temperature for systems with a square array of vacancies at concen-
trations of �a� c=0.0156 and �b� c=0.0278.
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to be ordered �although the saturation value of the order pa-
rameter may be reduced�, however, in the large system limit
we would expect all equivalent phases to be equally repre-
sented and therefore while the system would be locally or-
dered it would not display global order. While such domain
phases are metastable the dynamical process for removing
topological defects in dipolar systems may be very slow �see,
for example, the paper by Bromley et al.13 and references

therein� and, therefore, these states may be very long lived at
least on time scales available to current simulations.

We have attempted to determine the limiting slope of the
line Tmv�c� as c→0 by forming least-squares fits to the data
points then performing a range of fit analysis. Taking the
overall error bounds in the data points into account, our es-
timates are just consistent with the result of Prakash and
Henley who obtained a slope of 5.75.9 However, the error

FIG. 7. Relaxation time, �,
as a function of temperature for
systems with a square array of
vacancies at concentrations of
c=0.0069���, 0.0156���, and
0.0278���.

FIG. 8. Phase diagram for a
system with a square array of va-
cancies. Independent simulation
runs are performed at each value
of c for which data points are
shown �error bounds represent
variations over independent simu-
lations at fixed c�. Each simula-
tion consists either of cooling the
temperature from an initial high
value or heating from zero tem-
perature with a previously deter-
mined low temperature state as
the initial state.
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bounds on our estimate are fairly wide and the central esti-
mate is lower than the result of Prakash and Henley. Further
work is needed to determine if the truncation of the dipolar
interaction, used by Prakash and Henley, effects this limiting
slope.

B. Face centered square lattice of vacancies

While the general features of the phase diagram for the
FCSq array of vacancies is similar to that for the Sq array
described above, consideration of certain special points on
the phase diagram is useful in illuminating the general prop-
erties of the system and in particular the limit of very sparse
systems. As noted above, at a vacancy concentration of 50%
with vacancies arranged in a FCSq lattice the remaining di-
poles form a square lattice. This is identical to the original
�c=0� lattice of dipoles except for a rotation by � /4 and a
dilation such that the lattice spacing is increased by a factor
of �2. Since this “new” square lattice is identical to the origi-
nal other than the rescaling and rotation, it must exhibit the
same magnetic properties including a single ordered phase,
i.e., the colinear phase, and a single phase transition, i.e., the
order disorder transition. The dipoles in this colinear phase
will be aligned parallel to the axis of the “new” square lattice
of dipoles and the order-disorder transition temperature will
be related to the transition temperature of the original �c
=0� lattice by Tc�c=0.50�=Tc�c=0� /�23.

This process may be continued by removing 50% of the
dipoles on the new lattice again using a FCSq arrangement
of vacancies �defined on the “new” lattice�. Again this will
result in a square lattice of dipoles and the same argument as
above shows that at a vacancy concentration of c=75% �rela-
tive to the original lattice of dipoles� generated by this pro-
cess there is a single ordered phase with an order-disorder
transition temperature related to the c=0 transition tempera-
ture by a simple rescaling factor of �26. We may now gen-
erate iteratively a sequence of vacancy arrays labeled by i
with vacancy concentrations relative to the original lattice of
dipoles of

ci = �
j=1

i

2−j = 1 − 2−i, �8�

at each such concentration on the phase diagram there will be
a single, colinear, ordered phase with an order-disorder criti-
cal temperature of

Ti =
T0

�23i
, �9�

where T0 is the order-disorder critical temperature for the
original system with zero vacancies. Moreover, points at
other concentrations in the interval 
ci ,ci+1� may be gener-
ated by a corresponding rescaling of the concentrations and
critical temperatures for data points in the concentration in-
terval 
0,c1�. In the limit ci→1 �or equivalently i→� the
values of ci become very dense on the c axis. If ci is approxi-
mated by a continuous variable c in this limit, the corre-
sponding critical temperature for the order disorder transition
is

Tc = T0�1 − c�3/2. �10�

This line approaches the c axis tangentially as c→1 and we
conclude that the dipole system orders at sufficiently low
temperature no matter how sparse it is. Figure 9 shows a
phase diagram for the system with a FCSq array of vacancies
generated by using data points from our simulations in the
vacancy concentration interval 
0, 0.5� and the iterative pro-
cedure described above to generate points in the interval

0.5, 1.0�. We note also that, to the accuracy of these simu-
lations, the actual data points for the order-disorder transition
temperature of a system with a regular array of vacancies is
quite well predicted by this line regardless of which array of
vacancies considered here is chosen.

VI. SUMMARY

In addition to those simulations of dipole systems with
square �Sq� and face centered square �FCSq� arrays of va-
cancies described above, we have also performed Monte
Carlo simulations of dipole systems on a square lattice with
triangular arrays of vacancies and rectangular arrays of va-
cancies. Apart from changes in the details of the ordered
phases and domain structures which might be predicted
based on the results above, the general features of the order-
ing and structure of the phase diagrams is similar to that
discussed above.

The simulation results reported above demonstrate that
the introduction of a very small concentration of vacancies
generates a new phase at low temperature in addition to the
colinear phase. The system initially orders in the colinear
phase below the order-disorder critical temperature, however,
as the system temperature is further reduced the system un-
dergoes an abrupt transition to the new phase at a finite tem-
perature. At very low concentrations of vacancies this new
ordered phase is the microvortex ordered phase �with some
distortion centered on the vacancies� that has been discussed
in the context of systems with random vacancies7 and sys-
tems with negative exchange interaction.4,5 Indeed, at very
low concentrations of vacancies the behavior of systems with
random vacancies and regular arrays of vacancies are very
similar. At all but the lowest values of vacancy concentration
considered, domain formation plays a significant role in the
low temperature properties of the system. In the case of the
square array of vacancies, the frequent appearance of do-
mains appears at concentrations of vacancies as low as 1%
�c=0.01�. Domain walls are in almost all cases located on
vacancy lattice lines. At the lower vacancy concentrations at
which domains occur the domain walls tend to be parallel
giving a striped arrangement of domains. However, at higher
concentrations of vacancies complex plaid patterns of do-
mains form with intersecting domain walls. While the do-
main walls retain some structure such as alignment with the
vacancy lattice lines, their positioning and, consequently, in-
tersections appears to be quite random in these plaid phases.
The observation of these phases implies that the energy cost
for domain formation is quite low and that, therefore, the
plaid phases will form a system of nearly degenerate states
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with energies just above the single domain state. Moreover,
while these states will eventually relax to the single domain
states the dynamical process for this is very slow �at least on
the scale of times that can be simulated�. In this sense these
states can be considered to be analogous to glasses; however,
as described above, an ordering temperature can still be iden-
tified for the systems simulated in this work.

In general, immediately below the critical temperature Tc
the colinear phase is destabilized by thermal fluctuations
over a range of temperatures which depends on system size
and vacancy concentration. In sufficiently small systems for
certain vacancy concentrations this range of temperature ex-
tends to the lower critical line. This destabilization, while not
significant for typical films of atomic dipoles 
O�100�
−O�1000� atoms across�, will be significant in small arrays
of nanodots. Of course, such small systems would also be
affected by edge effects which are not included in this study.

By considering the special case of vacancy arrays gener-
ated by an iterative procedure based on FCSq arrays of va-
cancies we are able to extend our results to vacancy concen-
trations in the range 
0.5, 1.0� and determine an asymptotic
form for the dependence of the order-disorder critical tem-
perature in the limit of vacancy concentration c→1.0, thus
demonstrating that the system orders no matter how sparse it
becomes. In their pioneering work on order disorder phe-
nomena in dipolar systems, Prakash and Henley speculated
that a “percolation threshold” exists for systems with a ran-
dom distribution of vacancies. The system considered by
Prakash and Henley had a dipolar interaction which was
truncated at nearest neighbor distances; such a system obvi-
ously has a percolation threshold, however, our present re-
sults suggest that no such percolation limit exists for dipolar
systems with full long ranged interactions. A further simple
argument based on the nature of the dipole interaction itself

also suggests this possibility. Consider a random array of
point dipoles distributed on a continuous plane. If the plane
is infinite then the only measures of length are those gener-
ated by the positioning of the dipoles in the space. For ex-
ample, the square root of the areal density of dipoles pro-
vides such a measure and all lengths scale with this measure.
Now if the system is uniformly rescaled so that its areal
density changes, the vector which positions any dipole rela-
tive to any other dipole changes in length but not its orien-
tation relative to a system of axes with origin at one of these
dipoles. Therefore the only change which occurs in the
dipole-dipole interaction is simply a rescaling of the factor
that multiplies both the isotropic and anisotropic terms of the
interaction. Thus if we can find a random array of point
dipoles which orders at a finite temperature we can generate
an arbitrarily sparse system which also orders at a suitably
rescaled but finite transition temperature. �Notice that this
result does not hold for other long ranged interactions, such
as the RKKY interaction, where a uniform rescaling may
change the overall sign as well as the magnitude of the in-
teraction�.

We note also that in the iterative procedure based on
FCSq arrays of vacancies there exist “special” values of con-
centration at which only a single ordered phase exists. Un-
fortunately, we were not able to extrapolate the data in a
sufficiently reliable way to determine where the two phase
lines coalesce.

Finally we note that, while we have shown the Sq and
FCSq vacancy array data points separately in Figs. 9 and 10,
respectively, if the data points are combined on a single
phase diagram they lie close to a single line in both the case
of the order-disorder transition and the case of the colinear to
microvortex transition. Moreover, the line

FIG. 9. Phase diagram for a
system with a face centered
square array of vacancies. Data
points for c	0.5 are generated
using the iterative procedure de-
scribed in the text. The dotted line
is the function Tc�c�=Tc�0��1
−c�3/2.
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Tc = T0�1 − c�3/2, �11�

obtained from our consideration of extending the FCSq data
as described above, provides a reasonable estimate of the
order disorder transition temperature as a function of the va-
cancy concentration irrespective of the vacancy array used
�again to the accuracy of the present Monte Carlo data�. Fig-
ure 10 demonstrates this by plotting ln�Tc� vs ln�1−c� for
three different types of vacancy array. The slope of the least-
squares regression line for this plot is 1.44±0.07 consistent
with the “scaling form” given above. We note that the loca-
tion of the exact value of Tc for intermediate values of c is
more uncertain because of the noise in the data at interme-
diate values of c. We assume that this additional noise is due
to the rather weak nature of the anisotropy and consequent
instability of the single colinear phase for T�Tc in systems
of the size considered here. To overcome this difficulty data
points for intermediate values of c in Fig. 10 represent aver-
ages over several Monte Carlo simulations for a given va-
cancy array and the error bounds represent the variation in Tc
obtained from those simulations. Due to the spacing of the
accessible values of c the data point at the highest value of c
in Fig. 10 �c=0.50� which is for a FCSq vacancy array might
play a strong role in determining the slope of the regression
line. We have therefore repeated the fitting procedure with
this point removed. The slope of the resulting least-squares
regression line �1.4±0.2� while having a wider error bound
and slightly lower central estimate remains consistent with
the scaling form for Tc as a function of c, given above. We
conclude that this scaling form is a useful guide to the
change in Tc due to vacancy presence.

The specific results presented here are, of course, depen-
dent on the fact that we have excluded magnetic interactions

other than the dipolar interaction from our model. For ex-
ample, the introduction of either a positive or negative ex-
change interaction parameter, in a system with axial aniso-
tropy and a dipolar interaction, results in either a
ferromagnetic or simple antiferromagnetic ground state, re-
spectively, for a system with no vacancies, if the magnitude
of the exchange interaction exceeds a fairly low threshold.14

More recent results for systems with no vacancies and no
on-site anisotropy have shown that an antiferromagnetic in-
teraction may �depending on magnitude� change the nature
of the effective anisotropy associated with the dipolar inter-
action and consequently change the preferred axes for the
order parameter. Preliminary results for this system with the
addition of random vacancies indicate that the structure of
the phase diagram is quite rich15 and we are currently inves-
tigating how the addition of exchange interactions effect the
system studied in this paper. The addition of exchange inter-
actions breaks the self-similarity which we exploited to map
the system with a face centered square array of vacancies at
a concentration below 50% to the corresponding system with
vacancy concentration above 50%. Consequently comparing
results for systems with exchange interaction with the “scal-
ing law” relating transition temperature to vacancy concen-
tration obtained in this work will be of some interest. Last
we note that the introduction of vacancy arrays can be used
to directly modify or control exchange interactions. For ex-
ample, if the exchange interaction is assumed to be between
nearest neighbors only in the original model, introducing the
50% concentration of vacancies in a face centered square
array reproduces the original lattice structure but the mag-
netic system now contains dipolar interactions only. Conse-
quently the introduction of regular arrays of vacancies allows
one to move between systems dominated by exchange inter-
actions in their ground state to pure dipole systems.

FIG. 10. A plot of ln�Tc� vs
ln�1−c� for various arrays of va-
cancies �square, �, face centered
square, �, and triangular, �� and
vacancy concentration c�50%.
The slope of the least-squares re-
gression line shown is 1.44±0.07
�one standard error�. Excluding
the data point from an indepen-
dent simulation with a face cen-
tered square array of vacancies at
c=50% results in a regression line
slope of 1.4±0.2.
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