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Magnetism of two-dimensional defects in Pd: Stacking faults, twin boundaries, and surfaces
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Careful first-principles density functional calculations reveal the importance of hexagonal versus cubic
stacking of close-packed planes of Pd as far as local magnetic properties are concerned. We find that, contrary

to the stable face-centered-cubic phase, which is paramagnetic, the hexagonal-close-packed phase of Pd is
ferromagnetic with a magnetic moment of 0.35 ug/atom. Our results show that two-dimensional defects with
local hep stacking, like twin boundaries and stacking faults, in the otherwise fcc Pd structure, increase the
magnetic susceptibility. The (111) surface also increases the magnetic susceptibility and it becomes ferromag-
netic in combination with an individual stacking fault or twin boundary close to it. On the contrary, we find that

the (100) surface decreases the tendency to ferromagnetism. The results are consistent with the magnetic
moment recently observed in small Pd nanoparticles, with a large surface area and a high concentration of

two-dimensional stacking defects.

DOI: 10.1103/PhysRevB.74.054405

I. INTRODUCTION

Despite their narrow d bands and high densities of states
(DOS) at the Fermi level, which favor magnetism, there are
only three ferromagnetic transition metals in nature. Palla-
dium is paramagnetic in its stable face-centered-cubic (fcc)
structure, but with a very high magnetic susceptibility. Sev-
eral calculations have shown that its Fermi level lies just
above a large peak in the DOS, at the top of the d bands. The
DOS at the Fermi level, of ~1.1 states per spin, eV, and
atom (Chen et al.' and references therein) is almost high
enough, but not quite so, to fulfill the Stoner criterion for
itinerant magnetism, since the Stoner exchange parameter is
~0.73 eV.%3 The calculations have also shown that Pd, in its
fcc crystal structure, becomes ferromagnetic by increasing
the lattice constant by just a few percent.* All these results
have stressed the subtle balance of magnetism in Pd.

Therefore, we suggest that variations in the atomic ar-
rangement can induce changes in the density of states at the
Fermi level, which, in turn, can induce magnetism. In this
direction, it has been proposed that monatomic Pd nanowires
are ferromagnetic, in either their energetics’6 or thermo-
dynamic’ equilibrium length. Also, recent experimental
results® indicate that fcc Pd nanoparticles with stacking faults
and twin boundaries present ferromagnetism. Other
experiments® on small Pd nanoparticles also indicate the ex-
istence of a hysteresis loop which, in this case, is interpreted
as due to a nonzero magnetic moment at the (100) surface
atoms.

Stacking faults and twin boundaries are very common
two-dimensional defects in fcc metals as well as in diamond
and wurtzite-structure semiconductors. Their abundance is
partly due to their low energy of formation, since they pre-
serve the local geometry and close packing. Their impor-
tance in the mechanical properties, like hardness and brittle-
ness, have been recognized for many years. Recently, the
role played by the stacking of (111) layers has been empha-
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sized in connection with the magnetic orientation and mag-
netic ordering of thin layers and superlattices of magnetic
metals.'%!? The growth of Co on top of the Cu (111) surface
has been extensively studied experimentally, and the correla-
tion between stacking pattern and magnetic properties has
been reasonably well established.

At this stage it seems worth studying the effect of the
stacking sequences and of the surfaces on the electronic and
magnetic properties of Pd. With these ideas in mind, we have
calculated total energies and magnetic moments of Pd in
both the fcc and hexagonal-close-packed (hcp) phases, as
well as in surfaces and near two-dimensional stacking de-
fects like intrinsic and extrinsic stacking faults, and twin
boundaries.

II. METHODOLOGY

All our calculations are performed within density func-
tional theory'> (DFT), using either the local density
approximation'* (LDA) or the generalized gradient
approximation'® (GGA) to exchange and correlation. Most of
the calculations were obtained with the SIESTA'®!7 method,
which uses a basis of numerical atomic orbitals'® and
separable!® norm-conserving pseudopotentials®® with partial
core corrections.”! To generate the pseudopotentials and ba-
sis orbitals, we use a Pd configuration 4d°55, since we have
checked that it leads to better transferability and bulk prop-
erties than the ground-state configuration 4d'%55°. After sev-
eral tests we have found satisfactory the standard double-¢
basis with polarization orbitals (DZ+P) which has been used
throughout this work. The convergence of other precision
parameters was carefully checked. The range of the atomic
basis orbitals was obtained using an energy shift!” of
50 meV. The real-space integration grid had a cutoff of
500 Ry, while around 9000 k-points/atom™" were used in the
Brillouin zone sampling. To accelerate the self-consistency
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FIG. 1. Magnetic moment versus lattice constant for fcc Pd
obtained with the SIESTA code and the LDA and GGA functionals.
The insets indicate the variation of the total energy with magnetic
moment at the corresponding equilibrium lattice constants, indi-
cated by arrows.

convergence, a broadening of the energy levels was per-
formed using the method of Methfessel and Paxton?? which
is very suitable for systems with a large variation of the
density of states at the vicinity of the Fermi level.

It is necessary to mention that most of the energy differ-
ences between paramagnetic and ferromagnetic solutions in
Pd structures are extremely small, which requires a very high
convergence in all precision parameters and tolerances and
especially in the number of k points. It must be recognized,
however, that the basic DFT uncertainty is probably larger
than those energy differences, so that it is not really possible
to determine reliably whether a particular defect or structure
is paramagnetic or ferromagnetic. Still, we think that it is
possible to find reliably the relative tendency towards mag-
netism of different structures. In particular, E(M) curves, of
total energy versus total magnetic moment, provide an excel-
lent tool to study the tendency to magnetism in different
systems: independently of whether the systems are paramag-
netic or ferromagnetic, one may determine if a defect or a
surface has a smaller or a larger tendency to magnetism than
the bulk, depending on which of the two E(M) curves is
higher. In addition, the self-consistent convergence is consid-
erably faster at constant magnetic moment, so that it is pos-
sible to determine reliably (for a given functional) relative
energies as small as a fraction of an meV.

III. BULK CRYSTALS

The first mandatory system to be considered is the perfect
bulk crystal in its experimentally stable fcc phase. In prin-
ciple, the GGA functional goes beyond the LDA and it is
generally considered to be more accurate and reliable. How-
ever, in the case of Pd, we find that the GGA gives a lattice
constant of 3.99 A, 2.5% larger than experiment, and a fer-
romagnetic ground state with a magnetic moment of
0.4up/atom and an energy 4.5 meV/atom below the para-
magnetic phase (Fig. 1). Since this energy difference is very
small and to rule out the possibility that the ferromagnetic
phase is favored by the pseudopotential or basis set used, we
have reproduced® this result using two other DFT methods:
the pseudopotential plane-wave code VASP> and the all-
electron augmented plane-wave method WIEN,>* both with
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FIG. 2. Total energy versus magnetic moment for three transi-
tion metals in the same column of the periodoc table, calculated in
the LDA. Note the flatness of the Pd curve, responsible for the large
magnetic susceptibility of this metal.

the same GGA functional.’® Previous GGA calculations by
Singh and Ashkenazi,”> using a different functional, also
found a lattice constant larger than the experimental one, but
did not address the subtle ferromagnetic-paramagnetic tran-
sition with sufficient detail.

On the other hand, within the LDA we find a paramag-
netic ground state and a lattice constant of 3.89 A, both in
agreement with the experimental values and with previous
LDA calculations of Moruzzi and Marcus.* These results
suggest that the GGA is not necessarily more reliable to
study magnetism in Pd. In fact, it is not feasible to study the
possible existence of magnetic defects in fcc Pd when the
bulk result is already ferromagnetic. Therefore, we have cho-
sen the spin-dependent LDA to perform most of the remain-
ing calculations in this work, although GGA results have
been obtained also as a check in some cases.

The magnetic susceptibility y of the magnetic moment M
to an external magnetic field H is

X=\on o VOM?) g
Thus, the flatness of the E(M) curve in Fig. 1 implies a very
large susceptibility, even within the LDA. To compare with
the other transition metals in the same column of the periodic

table we have calculated the variation of energy with mag-
netic moment for Ni and Pt. The results are shown in Fig. 2.
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FIG. 3. Calculated electronic densities of states of Pd in the
paramagnetic phase (i.e., forcing equal spin-up and spin-down
populations) in the fcc and hep crystal structures. The vertical line
indicates the Fermi level.

We immediately observe a clear ferromagnetic and paramag-
netic behavior of Ni and Pt respectively, while Pd, as indi-
cated above, is paramagnetic but very close to the ferromag-
netic transition.

In order to study how magnetism depends on the local
geometry and stacking of atoms, we have first considered the
hep structure as compared to the fcc one. It is known that the
breaking of the cubic symmetry in stacking faults, while
keeping the number of nearest-neighbor atoms and their
bond lengths and angles, induces a rearrangement of the d
energy bands that can even give rise to localized electronic
states.”® The DOS of hep and fcc structures, in the paramag-
netic phase, shown in Fig. 3, were calculated for the same
nearest-neighbor distance of 2.76 A and the ideal ratio c/a
=(8/3)"2 for the hcp structure, since we obtain that both
structures are stable at this distance, with the hcp c¢/a ratio
only 0.75% larger than the ideal value. Several points are
worth mentioning: (i) The d band width is almost identical in
both structures because they have identical nearest-neighbor
configurations. (ii) The shapes of the DOS are very different,
as a consequence of the breaking of the cubic symmetry: in
fce the second-nearest-neighbor atoms are staggered whereas
in hep they are eclipsed and the lack of cubic symmetry
inhibits the #,,-e, splitting of the d bands. (iii) The DOS at
the Fermi level is larger in hcp than in fce (1.43 versus 1.15
states per atom per eV and per spin). This implies that Pd in
the hep structure satisfies the Stoner condition for ferromag-
netism: with a Stoner exchange parameter /=0.73 eV,>* we
get IX D(Er)=0.84 for fcc and I X D(E)=1.05 for hcp.

We have then calculated the total energy and the magnetic
order in the hcp phase in the LDA. The results are shown in
Fig. 4. We immediately observe that, contrary to what hap-
pens in the fcc structure, there is a nonzero magnetic moment
of 0.35up/atom at the equilibrium interatomic separation for
the hep structure, d=2.76 A. Like in the fcc phase, the sys-
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FIG. 4. Calculated total energy for (a) fcc and (b) hep Pd as a
function of the nearest-neighbor distance. The insets at (a) and (b)
show the total energy versus magnetic moment for the fcc and hep
structures, respectively. In these cases the energy origin is at the
corresponding minima.

tem is close to a magnetic-nonmagnetic transition but, in this
case, in the ferromagnetic side, with the ferromagnetic hcp
phase approximately 1.7 meV lower in energy than the para-
magnetic one. The transition from paramagnetism to ferro-
magnetism, as a function of the lattice constant, is abrupt,
like in the fcc case, although we cannot assess with enough
confidence whether it is first or second order.*?’

Finally, the hcp structure is 4.0 meV higher in energy than
the fcc. This ordering is in agreement with experiment, and
we reproduce it also with the GGA, but it is in contradiction
with the calculations of Huger and Osuch?® that reported an
hcp structure lower in energy, but also ferromagnetic.

IV. BULK DEFECTS

Hexagonal- (111) close-packed planes of atoms can be
stacked in different ways, giving rise to different structures.
If we label the three possible positions of the atoms as A, B,
and C, the fcc stacking is ... ABCABC... and that of hcp is
...ABABAB...,” where the layers with hexagonal symmetry
are underlined. Different defects can be generated in the fcc
structure: The intrinsic and extrinsic stacking faults have two
hexagonal layers, with stacking sequences ... ABCACABC...
and ... ABCACBCABC... respectively. The twin boundary
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FIG. 5. Local magnetic moment in supercells of different thick-
ness, containing a single intrinsic stacking fault between fcc layers,
calculated with the LDA.

has a single hexagonal layer with ...ABCACBA... stacking.

Previous model calculations®® at stacking faults of transi-
tion metals indicate an important perturbation of the local
densities of states from that of the perfect fcc lattice. The
presence of a hexagonal stacking of layers induces localized
electronic states?®? and an enhancement of the DOS at the
top of the valence band. These calculations suggest possible
variations of the magnetic properties around the extended
defect. We have performed calculations of several packing
sequences, in supercells containing various numbers of fcc
layers, to study to what extent different local configurations
can give rise to magnetic moments. The results of the calcu-
lations, both in the perfect crystals and in the defects, are
independent (within less than 1%) of the initial input mo-
ment.

Most of the calculated supercells have a finite magnetic
moment and some are shown in Fig. 5. However, its varia-
tion with the supercell thickness is rather complex and non-
monotonic. We suspect that this complex behavior is due to
an oscillatory component of the magnetic coupling between
the neighboring stacking faults, like that observed in super-
structures of magnetic slabs sandwiched between nonmag-
netic metals.>' Although we have not been able to stabilize
any antiferromagnetic solution in double-size supercells, this
may be due to the size limitations and to the difficulties of
convergence. As expected, the magnetic moments are
smaller in fcc than in hep layers, but they are nevertheless far
from negligible. The interplay between the magnetism of the
hexagonal layers and the paramagnetism of the cubic ones,
both close to a paramagnetic to ferromagnetic transition, is
very subtle. What is important is that the hexagonal layers
have a tendency to become magnetic and they induce mag-
netic moments at the atoms in the cubic layers. This is due,
first, to the large magnetic susceptibility in fcc Pd, where the
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FIG. 6. Total energy as a function of the magnetic moment for
differents two-dimensional defects of Pd, with local hexagonal sym-
metry, compared to the bulk fcc lattice. The energy at M =0 has
been shifted to a common value. The defects are separated by six
fee layers like in Fig. 5(b). The stacking fault curve has a minimum
of —=0.2 meV at M =0.09ug/atom, in agreement with Fig. 5(b),
which is not noticeable at the figure scale.

hexagonal layers act as magnetic impurities. And second,
because of the two-dimensional character of the defects, any
magnetic perturbation decays very slowly with distance, like
in a pseudo-one-dimensional metal. In other words, there is a
long-range RKKY-like interaction between the hcp layers
through the intermediate fcc ones.

Given the size limitations of our calculated supercells and
the nonmonotonic magnetic moment with increasing super-
cell thickness, it is not possible to conclude confidently
whether isolated planar defects in fcc Pd have a finite mag-
netic moment, within the LDA. However, Fig. 6 clearly
shows that all the hexagonal defects have a larger tendency
to magnetism than the bulk fcc lattice, as indicated by their
respective E(M) curves. This is hardly surprising, given the
ferromagnetic character of hcp Pd. On the other hand, all the
supercells are, of course, strongly magnetic within the GGA,
with a larger tendency to magnetism [lower E(M) curve]
than the bulk fcc crystal. Therefore, it is perfectly possible
that an isolated stacking fault in fcc Pd is indeed magnetic in
nature.

V. SURFACES

Recent experimental results’ on Pd nanoparticles have
been interpreted as magnetism at (100) surfaces. In principle,
surface magnetism is plausible in general because the lower
coordination of surface atoms favors narrower bands and
larger densities of states. In practice, however, surface relax-
ation and reconstruction may contract the surface bond
lengths and more than compensate for the lower coordina-
tion. We have then calculated the electronic structure of finite
Pd slabs in the (100) and (111) orientations, after carefully
relaxing their geommetry. The results of the calculated total
energy versus magnetic moment are shown in Fig. 7 for the
largest calculated thickness. This general tendency is consis-
tently obtained for sufficiently thick slabs, but the thickness
dependence of the total magnetic moment, shown in Fig. §,
is not monotonic, as in the bulk supercells.
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FIG. 7. Total energy within the LDA versus magnetic moment
of bulk fcc Pd and of nine-layer slabs with surfaces oriented in the
(100) and (111) directions. The energy at M=0 has been shifted to
a common value.

We observe in Fig. 7 that the minimum energy is at zero
magnetic moment and therefore the two surfaces are para-
magnetic. Moreover, the E(M) curve of the (100) surface is
higher than that of the bulk, showing that this surface is less
prone to magnetism than the bulk. On the other hand, the
(111) surface, although also paramagnetic within the LDA,
has a larger susceptibility than the bulk, which makes it plau-
sible that it may be magnetic in nature.

We have found that bulk planar defects, as well as (111)
surfaces, have a larger tendency to magnetism than the bulk
Pd crystal, which is itself on the verge of ferromagnetism.
Since both surfaces and defects are in high concentrations in
nanoparticles and both have in fact been proposed
independently®® as responsible for the observed magnetic
moment of these particles, it makes sense to consider their
combined effect. To this end, we have calculated the geom-
etry, energy, and magnetism of planar defects close to a (111)
surface. We use a slab in which the opposite surface is “mag-
netically passivated” by imposing a short distance between
the first two atomic planes, what immediately destroys their
local magnetic moment. In this way, we ensure that the pos-
sible magnetic moment of the slab is due to the combination
of the stacking fault and a single surface (in fact, this struc-
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FIG. 8. Largest local magnetic moment, as a function of the
number of layers, in slabs with surfaces oriented in the (100) and
(111) directions.
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FIG. 9. Local magnetic moments for different stackings of hex-
agonal and cubic planes in a slab of nine layers. (a) Twin boundary.
(b), (c), and (d) Intrinsic stacking faults, with the hcp layers in
differents positions. (¢) Extrinsic staking fault. Squares and hexa-
gons represent cubic and hexagonal layers, respectively. The dis-
tance between the two rightmost layers was fixed to a small value,
in order to destroy their tendency to magnetism and thus to simulate
the bulk. The energies reported are the difference between the total
energy of the slab, minus those of the defect in the bulk and of the
unfaulted slab. The formation energies in the bulk are 33.9, 74.7,
and 73.0 meV for the twin boundary, intrinsic stacking fault, and
extrinsic stacking fault, respectively.

ture penalizes and sets a lower limit for the appearence of
magnetism). Still, as shown in Fig. 9, we find a clear mag-
netic moment in all the cases considered. This tendency is
further demonstrated by their E(M) curves, presented in Fig.
10 for two cases, which show unambiguously their magnetic
character. Furthermore, the total energy of all the slabs is
lower than that of the defects in the bulk, plus that of the
unfaulted slab, implying that the surface attracts the defects
and that they should therefore be expected to appear together
in nanoparticles, due to the high concentration of stacking
faults and to the small space between surfaces. Notice that
the extrinsic stacking fault is more stable than the intrinsic
one both at the surface and at the bulk.

VI. CONCLUSIONS

Our main conclusions can be summarized as follows: (i)
The GGA functional gives an incorrect ferromagnetic ground
state for the fcc Pd crystal. Accordingly, all the defects stud-
ied are also magnetic within the GGA but, obviously, this
does not imply that they are magnetic in nature. On the con-
trary, the simpler LDA gives the correct lattice constant and
paramagnetic state. (ii) The hcp phase is ferromagnetic,
within both the LDA and GGA. In the LDA, it has an energy
1.7 meV lower than the hcp paramagnetic state and 4.0 meV
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moment, for two different two-dimensional defects close to a (111)
surface [shown in Figs. 9(c) and 9(e)].

above the fcc phase. (iii) We cannot determine whether an
isolated stacking fault is magnetic in the LDA, but it cer-
tainly has a larger magnetic susceptibility than the perfect
crystal and might be magnetic in nature, given the uncer-
tainty between the different functionals. (iv) The free (100)
surface is paramagnetic, with a lower susceptibility than the
bulk crystal. (v) The (111) surface is paramagnetic in the
LDA, but it has a larger susceptibility than the bulk crystal,
and it might be magnetic in nature. (vi) Hexagonal planar
defects are attracted towards a (111) surface, and they be-
come clearly magnetic when close enough.

Therefore, (100) surfaces are not good candidates as the
origin of magnetism in Pd nanoparticles, as they had been
proposed.” In contrast, planar stacking defects, (111) sur-
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faces, and especially a combination of both are plausible
candidates to present permanent magnetic moments and to
be responsible for the magnetism observed in Pd nanopar-
ticles. Thus, our results are consistent with experiments in
small Pd clusters of average diameter 2.4 nm, which are re-
ported to display spontaneous magnetization.® High-
resolution transmission electron microscopy has shown that a
high percentage of the particles exhibit single and multiple
twinning boundaries. In addition, the smallness of the spon-
taneous magnetization seems to indicate that only a small
fraction of atoms hold a permanent magnetic moment and
contribute to ferromagnetism. Other experimental results® on
small Pd particles have also shown their ferromagnetic char-
acter. Besides, ferromagnetism can also take place in other
non ideal structures like nanowires.>

Magnetic anomalies observed experimentally in different
Ni (Ref. 32) and Co (Ref. 12) stacking can be interpreted
along the lines described in this work. The fact that stacking
faults in Pd display non-negligible magnetic moments, not
present in bulk fcc crystal, opens new lines of research. The
appearance of magnetism in nominal fcc samples should be
reexamined in view of our results, since so far the possibility
of magnetism around stacking faults has been overlooked.
Also, layer growth of Pd on top of nonmagnetic substrates,
including Pd itself, may produce an interesting magnetic
phenomenology in connection with the stacking structure
which, in turn, depends on the method used for growth. The
study of the dependence of the magnetic properties of Pd-
grown Ag(111) and Pd/Ag multilayers on the stacking se-
quences is under way and will be reported elsewhere.
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