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By using the sparse-matrix canonical-grid method, we performed large-scale multiple-scattering calculations
to study the gap structures and wave functions of classical waves in two-dimensional quasiperiodic structures.
We observed many interesting phenomena arising from the quasiperiodic long-range order. In particular, a
self-similar wave function with resonant structures was observed at a band edge. Our findings indicate that
two-dimensional quasiperiodic systems exhibit a universal behavior that applies to both electrons �or phonons�
in discrete lattices and classical waves in continuous media.
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I. INTRODUCTION

During the past two decades, a new class of materials
called photonic crystals has attracted much research
attention.1–5 Analogous to electrons in a crystal, electromag-
netic waves propagating in photonic crystals are organized
into photonic bands that are separated by gaps where propa-
gating states are forbidden. Photonic crystals possess many
interesting properties, such as complete spectral gaps,2

superprism,3 negative refraction,4 and self-collimation,5 etc.
These properties could lead to novel applications,2 such as
photonic crystal fibers and optical circuits, etc. Recently, re-
search on photonic crystals has further extended to the
propagation of other classical waves, such as elastic and/or
acoustic waves6 and liquid surface waves,7 in periodic com-
posites, which can exhibit similar wave properties as electro-
magnetic waves in photonic crystals.

The propagation of classical waves in quasiperiodic struc-
tures, which are analogs of electrons �or phonons� in
quasicrystals,8,9 is another interesting and challenging topic
that has attracted much attention recently.10–23 The study of
quasiperiodic composites is much more difficult than that of
periodic composites, due to the absence of the Bloch theo-
rem. In previous studies, large photonic and/or phononic
band gaps have been found in various quasiperiodic
systems.10–17 Defects and waveguides,10,18 negative
refraction,19 lasing at band edges,20 as well as nonlinear
effects21 have been studied in photonic quasicrystals. Most of
these phenomena are also related to the formation of gaps in
quasiperiodic systems. However, the system sizes used in
previous theoretical studies were limited, usually to hundreds
of cylinders in two dimensions, due to computational limita-
tions. Thus, the previously obtained gap structures in two
dimensions were mostly determined by the short-range order.
How the quasiperiodic long-range order modifies the gap
structures as well as the related phenomena observed in
small samples is an important question. In low-contrast sys-
tems, the gap structures could be explained via the diffrac-
tion patterns �Born approximation�,17,20 but this approach
fails in high-contrast multiple-scattering systems.17 The pos-
sible interesting phenomena arising from the quasiperiodic
long-range order remain almost unexplored. All these can
only be answered by studying large samples.

In this paper, by using the sparse-matrix canonical-grid
�SMCG� method,24 we have carried out first-principles
multiple-scattering calculations to study the gap structures
and wave functions of classical waves in large-sized two-
dimensional �2D� quasiperiodic structures. As the sample
size was increased, we found new states emerging inside the
original gaps and new gaps emerging inside the original
bands, indicating a self-similar-like evolution in the gap
structures. This self-similar-like evolution implies an un-
smooth modification of the density of states due to the qua-
siperiodic long-range order in large samples, which, in turn,
could strongly modify the phenomena observed in small
samples. We also found the self-similar states as well as
large-sized localized states. In particular, we identified a self-
similar state with resonant structures at a band edge in a
large sample containing 33 919 cylinders. Our results origi-
nate from the quasiperiodic long-range order and indicate
that 2D quasiperiodic systems exhibit a universal behavior
that applies to both electrons �or phonons� in discrete lattices
and classical waves in continuous media.

II. PHYSICAL SYSTEM AND METHOD OF CALCULATION

In this work, we study classical wave propagation in a
12-fold symmetric square-triangle tiling generated by the
Stamfli inflation rule25 as shown in Fig. 1�a�. Previous stud-
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FIG. 1. �Color online� �a� The self-similar tiling sample of
Rs=8a. The seed dodecagon is plotted with red �dark gray� lines
�b�; the random tiling sample of Rs=8a, which contains both the
seed dodecagon �red �dark gray� lines� and that rotated by 30° �blue
�dark gray� dashed lines�.
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ies on such a structure in small-sized samples have shown
large photonic and/or phononic band gaps due to both the
short-range order and the high rotational symmetry.13–15

Here, we consider pressure waves in a composite of alumi-
num cylinders in an air host. The radii of the aluminum
cylinders are 0.4a, where a is the distance between two near-
est cylinders. Due to the high density contrast between alu-
minum and air and a large filling fraction, the Born approxi-
mation is not applicable to our system. The transverse elastic
waves in the aluminum cylinders can be ignored26 and we
only need to consider the following scalar equation:

−
�2

�
p = � · �1

�
� p� , �1�

where � is the frequency, � and � are, respectively, the bulk
modulus and density. The above equation can be mapped to
the Maxwell equation for TM �or TE� waves if � �or �� is set
as a constant. Here, Eq. �1� is solved by using the multiple-
scattering theory �MST�.14 In order to calculate large sys-
tems, we have improved the program efficiency by incorpo-
rating the SMCG method24 into the MST method. The idea
of the SMCG method is to introduce a canonical grid into the
multiple-scattering system, so that the interactions between
far-away cylinders can be calculated via the grid by using
fast Fourier transform, thus resulting in an N log N-type ef-
ficiency for CPU and O�N� for memory, where N is the num-
ber of scatterers in the system. In solving the coupled linear
equations given by MST, we use the generalized minimal
residue �GMRES� iterative method.27 In order to confirm
convergence, we increased the cutoff angular quantum num-
ber in MST to 6 and reduced the normwise backward error in
GMRES to 10−5.

III. NUMERICAL RESULTS AND DISCUSSIONS

We first investigate the evolution of gap structures as the
sample size is increased. To do this, we place a monochro-
matic point source of frequency, f , near the center of a cir-
cular sample with radius Rs. Then, the gap structure can be
obtained from the radiation power spectrum. The radiation
power is calculated by integrating the total output energy
flux and dividing it by the total flux without the sample. A
band gap corresponds to a dip in the radiation power spec-
trum, which deepens as the sample size is increased. The
radiation power spectrum has been proven accurate for the
determination of gap positions in the previous literature.14 In
Fig. 2�a�, we plot the calculated radiation power spectra in

the frequency range of 0� f̃ �1.2 in dimensionless unit

f̃ = fa /cair �cair is the sound speed in air� for three samples of
different radii, i.e., Rs=3a, 6a, and 8a. For comparison, we
note that the radius of the seed dodecagon is Rseed�2a in the
square-triangle tiling and the inflation constant is �2+�3�
�3.7. When the sample size is increased from Rs=3a to 6a,
the radiation power at some frequency ranges decreases sig-
nificantly, indicating the positions of gaps, as indicated by
the thick arrows in Fig. 2�a�. However, when the sample size
is increased to Rs=8a, some new resonances emerge inside
the original gaps, as indicated by the thin arrows in Fig. 2�a�.

When the sample size is further increased to Rs=14a, the
radiation power spectrum is shown in Fig. 2�b� with
a red �dark gray� dashed curve in an original gap of

0.4� f̃ �0.48. It is clearly seen that the new resonances that
emerge after Rs�8a have now formed a band, which re-

duces the original gap to 0.405� f̃ �0.423.
Besides new states emerging inside the original gaps, we

have also observed new gaps emerging inside the original
bands. To show this, in Fig. 2�c�, we plot with a black curve
the radiation power spectrum for a sample of Rs=24a in the

range of 0.4� f̃ �0.48. By comparing this curve with that for
Rs=14a in Fig. 2�b�, we find a new dip around the frequency

f̃ =0.442, as indicated with a thick arrow in Fig. 2�c�. In
order to confirm this dip as a new gap, we calculate the
radiation power spectra for even larger samples of Rs=30a

and 34a in the range of 0.44� f̃ �0.445, which are plotted as
a red �dark gray� dashed curve and a blue �dark gray� dotted
curve in Fig. 2�c�, respectively. It is clearly seen that the dip
deepens with sample size, indicating the existence of a new

gap here. However, a new resonant state at f̃ =0.441 65
emerges inside this new gap when Rs�30a. Thus, we have
observed a self-similar-like behavior of states emerging in-
side gaps and gaps emerging inside bands when the sample
size is increased.

In addition to the radiation power spectrum, we have also
calculated the average intensity I�r� as a function of distance
r from the center of the sample, to study the properties of the
wave functions. The average intensity I�r� is obtained by
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FIG. 2. �Color online� �a� The radiation power spectra for the
quasiperiodic samples of radii Rs=3a �black curve�, 6a �red �dark
gray� dashed curve�, and 8a �blue �dark gray� dotted curve�. �b� The
radiation power spectra for quasiperiodic samples of radii Rs=6a
�black curve� and 14a �red �dark gray� dashed curve�, and for a
random sample of radius Rs=14a �blue �dark gray� dotted curve�.
�c� The radiation power spectra for quasiperiodic samples of radii
Rs=24a �black curve�, 30a �red �dark gray� dashed curve�, and 34a
�blue �dark gray� dotted curve�.
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integrating the intensity 	p	2�r��� in an annular ring defined by
r−dr /2� 	r��	�r+dr /2 and dividing it by its area, 2	r dr,
with dr taken as 0.2a in this work. It is known that, in a 2D
periodic structure, wave functions are extended for frequen-
cies inside a band and I�r� is inversely proportional to r;
while at a band edge, I�r� exhibits a Bessel-function-like
envelope, as a result of the Fabry-Perot effect. However, for
each resonance shown in Fig. 2�c�, the envelope of I�r� is
neither inversely proportional to r, nor in Bessel-function-
like form. Here, we show a particular band-edge state at

f̃ =0.4239, which is indicated with a thin arrow in Fig. 2�c�.
This resonance first appears when Rs�8a, as shown in Fig.
2�a�. Figure 3�a� shows the field intensity map 	p	2�r�� of this
resonance for a large sample of Rs=100a consisting of
33 919 cylinders. It is interesting to see that this intensity
pattern is formed by many smaller ring patterns with radii of
Rring�7a, which almost coincide with the minimal sample
size to yield this resonance in the spectrum. In Fig. 3�b�, I�r�
is plotted on a log-log scale. The envelope of I�r� explicitly
exhibits a power-law behavior of I�r�
1/r1.65. The power-
law behavior is known to be the signature of a self-similar
state in a quasiperiodic system.28,29 In Fig. 3�b�, we also plot
I�r� for a smaller sample of Rs=34a. However, with this
sample size, it is difficult to differentiate the power-law de-
cay from the exponential decay.

Another interesting resonance is at f̃ =0.4687, which is
also indicated with a thin arrow in Fig. 2�c�. This resonance
emerges when Rs�11a. In Fig. 3�c�, we plot the intensity
map 	p	2�r�� of this resonance for a sample of Rs=34a, which
contains 3925 cylinders. The corresponding I�r� is plotted in
Fig. 3�d� on a linear-log scale. It is interesting to see that the
envelope of I�r� is confined to a small core area with a radius
of Rcore�11a with a flat tail outside. The size of the core
area coincides with the minimal sample size, i.e., 11a, to
yield this resonance in the spectrum. Another localized state

is found at f̃ =0.441 65 in the new gap indicated with the
thick arrow in Fig. 2�c�, when Rs�30a. This state has a core
radius of about 29a, which is again consistent with the mini-
mal sample size required to see this resonance. It should be
pointed out that both localized states found here are sup-
ported by quasiperiodic long-range order. They emerge only
when the sample size is sufficiently large. Thus, they are
different from the localized states induced by the short-range
order in small samples,30 where the wave functions are con-
centrated only in the first neighbors of the central cylinder.

The large-sized localized states found here can still be
viewed as resonant excitations due to specific local environ-
ments. To confirm this point, we have randomized the cylin-
ders’ positions outside the core area and found that the reso-
nances remain. According to Conway’s theorem,28 when the
sample size is sufficiently large, similar local environments
can appear in the sample quasiperiodically. We cannot, there-
fore, exclude the possibility that the large-sized localized
states found here will give rise to self-similar states in a
much larger sample. From our observations, we propose the
following coherent picture to describe the formation of a
self-similar state in classical waves. As the sample size is
increased, new local environments absent in smaller samples

are formed. These new local environments may support new
localized resonances in the original gaps. As the sample size
is further increased, these local environments repeat them-
selves quasiperiodically following Conway’s theorem. The
coupling of many localized resonances then forms a band
inside the original gaps and the state at the band edge may
result in a self-similar state. This picture explains the ringlike
self-similar state found here.

FIG. 3. �Color online� �a� The intensity distribution 	p	2�r�� �in
log scale� of a band edge state at fa /cair=0.4239 in a sample of
Rs=100a containing 33 919 cylinders. �b� The black curve shows
the corresponding average intensity, I�r�, on the log-log scale for
the resonance shown in �a�. The blue �dark gray� dashed line shows
the envelope of I�r�. The red �dark gray� dotted curve is the I�r� in
a smaller sample of Rs=34a. �c� The intensity distribution 	p	2�r�� �in
log scale� of a localized state at fa /cair=0.4687 in a sample of
Rs=34a. �d� The corresponding average intensity I�r� on the linear-
log scale for the resonance shown in �c�. The core area is indicated
in the graph.
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We have suggested that the interesting phenomena of the
self-similar-like spectrum, the self-similar state, and large-
sized localized states are all due to the quasiperiodic long-
range order. To directly verify this assertion, we have also
calculated the radiation power spectrum of a random sample
generated by allowing each offspring dodecagon to have
50% chance to rotate by 30° from the seed �parent� dodeca-
gon during the inflation process.25 In a random sample so
generated, the long-range order is destroyed while the short-
range order inside the seed dodecagon is preserved, as is
shown in Fig. 1�b�. From the radiation power spectrum of a
random sample, we find that the high-frequency gap struc-
tures are almost unchanged. However, the low-frequency gap
structures are greatly influenced. In Fig. 2�b�, we plot with a
blue �dark gray� dotted curve the radiation power spectrum
of a random sample of Rs=14a. Clearly, the gap of
0.405� f̃ �0.423 found previously in a self-similar sample is
destroyed after randomization, as well as the self-similar

state at f̃ =0.4239. Furthermore, both the localized states at

f̃ =0.4687 and f̃ =0.441 65 disappear in the random sample
due to the destruction of long-range ordered local environ-
ments.

Finally, we note that the energy spectra and wave func-
tions for electrons in quasicrystals have been extensively
studied previously based on simple tight-binding �TB� mod-
els, which also included vibrational modes in the lattice.9 In
a 1D Fibonacci lattice, it is found that the energy spectrum is
singular continuous, consisting of a self-similar Cantor set
with zero Lebesgue measure.31 Self-similar states exhibiting
power-law behaviors may appear at band edges as well as
band centers. In 2D, the existence of self-similar wave func-
tions with a power-law decay has also been conjectured28

and rigorously shown for the ground state in a Penrose
lattice.29 All these distinctive phenomena are due to the qua-
siperiodic long-range order, as the interesting phenomena
shown in this paper. However, it should be pointed out that
classical waves are very different from TB electrons. In TB
models, the transport of electrons is limited to the short-

range hoppings. While for classical waves, the transport is
conducted by the long-range radiation from each excited
scatterer to all other scatterers. This naturally leads to the
absence of “confined states” in classical waves, which have
been observed for TB electrons in 2D.32 Moreover, in clas-
sical waves, the wave energy can occupy the host continuum
as well as the scatterers.33 In our system of aluminum cylin-
ders in an air host, the wave energy is concentrated in the air
host. For the case of electromagnetic waves, it corresponds
to a system of air cylinders in a dielectric host. These situa-
tions are opposite to the TB models, where electrons sit in
the discrete lattices. Thus, it is not obvious that the phenom-
ena found in TB models still apply to classical waves. The
results we observed here strongly indicate the existence of a
universal behavior for 2D quasiperiodic systems that applies
to both electrons �or phonons� in discrete lattices and classi-
cal waves in continuous media.

IV. SUMMARY

In conclusion, by using large-scale calculations, we have
observed the interesting phenomena for classical waves in
2D quasiperiodic structures, including a self-similar-like
evolution in the gap structures, a self-similar state at a band
edge, and large-sized localized states. These findings arise
from the quasiperiodic long-range order. Although we only
studied a specific acoustic system in this work, we believe
that similar phenomena exist for other classical waves, e.g.,
electromagentic waves in photonic quasicrystals, when the
sample sizes are sufficiently large. Since the existence of
band gaps as well as band-edge states is the basis of many
applications in optics and/or acoustics, our results could also
have important implications for applications.
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