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We analyze the low-temperature behavior of mean-field equations of Thouless, Anderson, and Palmer �TAP�.
We demonstrate that degeneracy in free energy makes the low-temperature TAP states unstable. Different
solutions of the TAP equations, independent in the TAP approach, become coupled if an infinitesimal interac-
tion between them is introduced. By means of real spin replicas we derive a self-averaging free energy free of
unstable states with local magnetizations and homogeneous overlap susceptibilities between different spin
replicas as order parameters. We thereby extend the TAP approach to a consistent description of the spin-glass
phase for all configurations of spin exchange with �marginally� stable and thermodynamically homogeneous
free energy.

DOI: 10.1103/PhysRevB.74.054207 PACS number�s�: 64.60.Cn, 75.50.Lk

I. INTRODUCTION

The Parisi replica-symmetry breaking �RSB� scheme1 was
proved to be an exact solution of the Sherrington-Kirkpatrick
�SK� model of spin glasses.2 The analytic form of the mean-
field theory of Ising spin glasses is hence known. What has
not yet been unambiguously identified is the physical origin
of the order parameters from the RSB solution of the replica
trick. The replica trick is used to allow averaging of free
energy over random configurations of spin couplings. Ther-
mal and disorder-induced fluctuations are summed in the rep-
lica trick simultaneously via a single averaging of an n-times
replicated partition function. One is hence unable to deter-
mine whether the former or the latter fluctuations give rise to
the order parameters from the Parisi solution. To find the
physical origin of the order parameters of the RSB solution
one must separate the thermal and the disorder-induced fluc-
tuations.

The direct thermodynamic approach summing separately
the thermal fluctuations for fixed typical configurations of
spin couplings Jij in the SK model was pioneered by Thou-
less, Anderson, and Palmer.3 The standard TAP theory of the
SK model contains only local magnetizations mi as order
parameters. The averaging of the TAP free energy over ran-
dom configurations within linear-response theory and with
the fluctuation-dissipation theorem leads to the �replica-
symmetric� SK solution unstable in the low-temperature
phase.4 That is, no Parisi RSB parameters emerge directly in
the TAP theory.

The assumptions made for the averaging over randomness
in the TAP theory are essentially equivalent to uniqueness of
the equilibrium state for each relevant configuration of spin
couplings. It appeared rather soon, however, that the TAP
equations display a multitude of solutions in the spin-glass
phase5 resulting in a complex free-energy landscape of qua-
siequilibrium states.6 The existence of multiple solutions of
the TAP equations would not pose a problem if different
states were distinguishable by symmetry-breaking fields in-
troduced in free energy. The solutions of the TAP equations
in the spin-glass phase are highly degenerate in free energy
and cannot be singled out by external fields. Even worse is

the fact that for a large number of configurations of spin
couplings there are no stable states, local minima of the TAP
free energy.5,7 One hence cannot define a unique macro-
scopic thermodynamically stable state for these configura-
tions. The existence of an exponentially large number of so-
lutions of the mean-field equations has become a hallmark of
spin-glass models. A new branch of research on complexity
of solutions in the mean-field theory of spin glasses
emerged.8–11

The nonexistence of thermodynamically stable macro-
scopic states for majority of configurations of spin couplings
hinders the existence of the thermodynamic limit in the TAP
approach. To circumvent this problem De Dominicis and
Young suggested that the equilibrium state in the TAP ap-
proach be defined as a weighted sum over different TAP
solutions.12 That is, one assumes that the partition function
can be represented as

TrS exp�− �H�S�� = �
�

N

exp�− �FTAP�mi
��� , �1�

where N is the number of TAP solutions labeled by super-
script �. Assumption �1� means that the phase space of the
SK model is effectively disconnected. It consists of pockets
of spin configurations corresponding to different TAP solu-
tions separated by impenetrable infinite energy barriers.

Albeit assumption �1� defines a relation between indi-
vidual TAP solutions and the macroscopic thermodynamic
state, it does not introduce the RSB order parameters. They
emerge in the De Dominicis and Young completion of the
TAP theory when the replica trick for averaging over random
configurations of spin couplings is used. Without averaging
over randomness we are able neither to verify Eq. �1� nor to
trace down the genesis of the RSB order parameters beyond
the replica trick.

Averaging over randomness should not generally be the
eventual tool for introducing the RSB order parameters.
Guerra and Toninelli recently proved that the free energy of
the SK model is self-averaging.13 Should the TAP approach
be exact, one must trace down the Parisi order parameters
within the TAP approach without resorting to averaging over
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randomness. A question then arises whether the TAP con-
struction indeed provides a complete description of the ther-
modynamics of the SK model.

We know that to derive the TAP theory we must assume
uniqueness of the thermodynamic equilibrium state de-
scribed by a set of local magnetizations. This, however, is the
case only if a convergence condition for the linked-cluster
expansion

1 �
�2J2

N
�

i

�1 − mi
2�2 �2�

holds.14 Equality in the above condition determines the de
Almeida-Thouless �AT� line separating the high-temperature
from the spin-glass phase along which the spin-glass suscep-
tibility diverges.15 Condition �2� is broken below the AT line
for a macroscopic portion of spin-coupling configurations
and the TAP free energy does not have an adequate �rigor-
ous� justification there. We must continue analytically the
TAP thermodynamic potentials from the high-temperature
phase, where Eq. �2� is obeyed, to the low-temperature one,
where the latter condition may be broken. Such a procedure
is not uniquely defined, unless we have appropriate
symmetry-breaking fields at our disposal. Presently, it is as-
sumed that there are only local magnetic fields, Legendre
conjugates to the local magnetizations, as symmetry-
breaking forces. The TAP free energy in the spin-glass phase
consequently has the same form as in the high-temperature
phase, i.e., it is described by the same order parameters, local
magnetizations mi.

Recently Plefka suggested that the TAP equations in situ-
ations with unstable states where Eq. �2� is broken should be
stabilized by introducing a new “order parameter,” a correc-
tion to the local magnetic susceptibility beyond the
fluctuation-dissipation theorem.16 Plefka’s extended solution,
however, does not allow for a diagrammatic representation,
the order parameter for the deviation from the fluctuation-
dissipation theorem cannot be derived from free energy, and
hence a physical meaning cannot be given to the calculations
containing the TAP solutions breaking condition �2�. Al-
though the unstable states seem to become marginally stable
in the thermodynamic limit,17 the number of states breaking
condition �2� linearly increases with the number of lattice
sites and diverges in the thermodynamic limit.5,7 Unstable
states from large but finite volumes hence remain statistically
relevant also in the thermodynamic limit, since the negative
values of the rhs of Eq. �2� vanish with power N−2/3.10,17 We
hence cannot disregard or inappropriately treat the finite-
volume unstable states without further considerations. We
can deduce that the number of TAP configurations with un-
stable states is macroscopically relevant in the thermody-
namic limit also indirectly when averaging the TAP free en-
ergy over spin couplings Jij. Using linear response and the
fluctuation-dissipation theorem, equivalent to self-averaging
property of free energy of ergodic systems, we fail to pro-
duce a thermodynamically stable equilibrium state in the
spin-glass phase. Since we know that the exact free energy of
the SK model is self-averaging, the TAP construction breaks
down in the spin-glass phase. To attain a self-averaging

configurationally-dependent free energy we must extend con-
sistently the TAP free energy also to configurations with un-
stable states, i.e., beyond the validity of inequality �2�.

The aim of this paper is to demonstrate that the TAP free
energy becomes unstable whenever stability condition �2� is
broken and the TAP equations do not have a single solution
independent of the initial conditions. By using spin replicas
for portions of the phase space belonging to different TAP
solutions we show that linear response theory is broken when
an infinitesimal interaction between different spin replicas
�solutions of the TAP equations� is introduced. This break-
down generates a set of new homogeneous order parameters,
overlap susceptibilities between different replicas. They lift
degeneracy in the TAP free energy and break independence
of different solutions of the TAP equations. We derive a gen-
eralization of the TAP free energy for one configuration of
spin couplings containing site-dependent local magnetiza-
tions Mi and homogeneous local overlap susceptibilities �ab

as order parameters. The latter are directly related to the RSB
order parameters of the Parisi solution. In the paramagnetic
phase �ab=0 and we recover the TAP free energy. In the
low-temperature phase, for configurations of spin couplings
for which condition �2� is broken, the overlap susceptibilities
become nonzero and we observe macroscopic deviations
from the TAP free energy. Different solutions of the TAP
equations are hence not separated by infinite energy barriers.
Mutual thermodynamically induced interaction between so-
lutions of the TAP equations mediated by the overlap suscep-
tibilities interconnects parts of the phase space separated in
the TAP theory. The phase space becomes simply connected
and stable macroscopic thermodynamic states exist for each
configuration of spin couplings independently of whether
condition �2� is fulfilled or not. The interaction between dif-
ferent TAP states also leads to the existence of a single equi-
librium state with a well-defined thermodynamic limit gen-
erated from a self-averaging free energy functional.

The paper is organized as follows. In Sec. II we recall the
basic ingredients of the TAP theory with restrictions on its
applicability. We use real replicas and the demand of thermo-
dynamic homogeneity to extend �analytically continue� the
TAP approach to situations with unstable TAP states in Sec.
III. In Sec. IV we reduce the general theory to one hierarchi-
cal level and present the modified TAP equations, study their
stability and finally demonstrate explicitly near the critical
point that the TAP construction indeed becomes unstable in
the spin-glass phase. In the last section we summarize our
findings and discuss their consequences.

II. TAP MEAN-FIELD THEORY AND STABILITY OF ITS
EQUILIBRIUM STATES

We first recall the basic concepts of the TAP theory for the
SK model so that we understand the restrictions under which
the TAP theory is applicable. In the diagrammatic represen-
tation the TAP free energy was derived as a sum of tree and
single-loop �cavity-field� contributions with specific restric-
tions of the SK model on spin couplings Jij, namely
� jJij

2n+1=0 and � jJij
2 =J2.18 Due to the fluctuation-dissipation

theorem the local susceptibility containing the loop contribu-
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tions is a function of the local magnetization and the TAP
free energy for the SK model is a functional of only local
magnetizations mi. It is convenient to represent the TAP free
energy in the following form:

FTAP = �
i
�mi�i

0 −
1

�
ln 2 cosh���h + �i

0��	
−

1

2�
ij
�Jijmimj +

1

2
�Jij

2 �1 − mi
2��1 − mj

2�	 , �3�

where we introduced apart from local magnetizations mi also
internal inhomogeneous magnetic field �i

0. The sets of pa-
rameters mi and �i

0 are Legendre conjugate variables and are
treated variationally in free energy �3�. That is, they have to
determine an extremal value of this free-energy functional.
The corresponding stationarity �TAP� equations for these pa-
rameters read

mi = tanh���h + �i
0�� , �4a�

�i
0 = �

j

Jijmj − mi�
j

�Jij
2 �1 − mj

2� . �4b�

These equations can now be solved numerically for finite
numbers of lattice sites and given configurations of spin cou-
plings. But not all solutions of equations �4� are physical
ones. Only locally stable solutions for which the nonlocal
susceptibility does not contain negative eigenvalues are
meaningful. The inverse of the susceptibility is defined as a
second derivative of free energy �3�,

��−1�ij =
�2�FTAP

�mi�mj
+ �

l
� �2�FTAP

�mi��l
0

��l
0

�mj
+

�2�FTAP

�mj��l
0

��l
0

�mi
	

+ �
kl

�2�FTAP

��k
0��l

0

��k
0

�mi

��l
0

�mj

= − �Jij + �ij� 1

1 − mi
2 + �

l

�2Jil
2�1 − ml

2�	 . �5�

That is, only local minima of the TAP free energy �3� as a
functional of local magnetizations mi, when the internal mag-
netic fields are resolved, are physically acceptable.

Non-negativity of the eigenvalues of the linear suscepti-
bility is not the only stability criterion. There is a stronger
condition on consistency of the TAP theory. It is connected
with the existence of a nondegenerate equilibrium state, an
assumption used in the derivation of the TAP free energy.
This condition is expressed as positivity of the spin-glass
susceptibility �SG. It is easy to find by summing the leading-
order �N−1� diagrammatic contributions5 that the spin-glass
susceptibility has in the SK model the following representa-
tion:

�SG 

1

N
�
ij

�ij
2 =

1

N
�

i

�ii
2

1 − �
j

�2Jij
2 � j j

2
. �6a�

This representation of the spin-glass susceptibility was de-
rived diagrammatically but it is valid quite generally as long

as the right-hand side �rhs� of Eq. �6a� remains non-negative,
that is if

1 � �
j

�2Jij
2 � j j

2 . �6b�

We show in Appendix A that representation �6a� can be de-
rived also nonperturbatively using a theorem of Pastur and
continuity of the resolvent for the inverse nonlocal suscepti-
bility.

Realizing that the local susceptibility in the TAP theory
reads

�ii = 1 − mi
2 �6c�

we find that the stability condition from Eq. �2� equals the
condition on positivity of the spin-glass susceptibility, Eq.
�6b�. Positivity of the spin-glass susceptibility is a feature
that each consistent solution must possess. If it is broken,
then the phase space of the order parameters is incomplete
and some relevant fluctuations have not been taken into ac-
count appropriately. Note that in general positivity of the
spin-glass susceptibility does not coincide with positivity of
the eigenvalues of the nonlocal susceptibility. Only squares
of the eigenvalues of the latter contribute to the former. The
spin-glass susceptibility may become negative even if the
linear susceptibility is positive, that is for a local minimum
of the TAP free energy.

The TAP theory was derived assuming that the resulting
free energy leads to a single �nondegenerate� stable thermo-
dynamic state. That is, the TAP equations �4� lead to a single
physical solution that can be separated from nonphysical
ones by finite energy gaps. We know, however, that this is
not the case in the spin-glass phase. Hence the TAP free
energy is internally consistent only in the high-temperature
phase, where it leads to a single stable equilibrium state. One
must be more careful when extending the TAP approach to
the low-temperature phase. There we cannot separate the
physical solutions of the TAP equations from the nonphysical
ones breaking stability condition �2�. We must modify the
TAP approach to situations with many quasiequilibrium and
unstable states degenerate in free energy.

III. THERMODYNAMIC HOMOGENEITY AND
MULTIPLE TAP STATES

The existence of many solutions of the TAP equations
degenerate in free energy hinders the existence of a stable
macroscopic equilibrium state and does not allow to perform
the thermodynamic limit. In a degenerate case we cannot fix
a single solution when enlarging the volume of the system
and large fluctuation do not extinguish in the thermodynamic
limit. Different unstable solutions of the TAP equations de-
generate in free energy can be distinguished only by initial
conditions, being the only input to Eqs. �4�. This means that
the TAP free energy is effectively not thermodynamically
homogeneous, since it does not depend only on spatial den-
sities of extensive variables. One way to handle a multitude
of quasiequilibrium states in the TAP approach is to assume
infinite barriers between different TAP states �independence
of different solutions of the TAP equations� and use Eq. �1�.
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We can, however, avoid assumption �1� in that we do not a
priori exclude interaction between different TAP states.
Since different solutions of the TAP equations belong in the
beginning to independent separate parts of the phase space,
we can introduce for each TAP solution its own replica of the
spin variables and sum up thermal fluctuations for each so-
lution separately. This is actually the concept of real replicas
that has been used by the author to derive the RSB solution
from the demand of thermodynamic homogeneity of the av-
eraged free energy.19 In the TAP approach without averaging
over randomness we can give a transparent physical interpre-
tation to real spin replicas.

Let us assume that we have � different TAP solutions
�distinguished by their history�. Since different solutions are
initially thermodynamically independent we introduce inde-
pendent spin replica for each TAP solution and replicate
�-times the original phase space. The partition function on
this replicated phase space can be represented as �Tr e−�H��

=Tr� exp���a=1
� H��=Tr� exp���a=1

� ��i,jJijSi
aSj

a+�iSi
a��,

where each replicated spin variable Si
a is treated indepen-

dently, i.e., the trace operator Tr� operates on the �-times
replicated phase space. The free energy of a �-times repli-
cated system is just �-times the free energy of the nonrepli-
cated one, if it is thermodynamically homogeneous. We now
break independence of individual spin replicas and add a
small �infinitesimal� homogeneous perturbation breaking
replica independence �H�	�=�i�a
b	abSi

aSi
b. We could also

break replica independence inhomogeneously by a site-
dependent symmetry-breaking field 	ii

ab. Since the stability
condition for the TAP theory, Eq. �2�, is global, we are ef-
fectively able to break replica dependence only globally as
we demonstrate in the next section.

It is not the field 	ab connecting different replicas that is
of physical interest. We are interested in the linear response
of the system to this perturbation. We derived18 that after
switching off the field 	ab the �-times replicated TAP free
energy reads

F� =
1

�
�
a=1

� ��
i

Mi
a��i

a + �J2�
b=1

a−1

�abMi
b	

−
1

4�
i,j

�Jij
2 �1 − �Mi

a�2��1 − �Mj
a�2�

−
1

2�
i,j

JijMi
aMj

a +
�J2N

2 �
b=1

a−1

��ab�2�
−

1

��
�

i

ln Tr exp��2J2 �
a
b

�

�abSi
aSi

b + ��
a=1

�

�h + �i
a�Si

a	 .

�7�

In this expression local magnetizations Mi
a and local internal

magnetic fields �i
a are configurationally dependent Legendre

conjugate variational variables determined from stationarity
equations analogously to the TAP equations �4�. Apart from
these parameters we introduced �ab, a�b, averaged overlap
local susceptibilities representing a linear response to the
replica-mixing field 	ab. They are global �translationally in-

variant� variational variables, Legendre conjugates to the
symmetry breaking fields 	ab. It is straightforward to verify
that at the saddle point we have �ab=N−1�i�Si

aSi
b�T

− Si
a�TSi

b�T�, where ¯�T stands for thermal averaging.
Free energy F� from Eq. �7� becomes independent of the

replication index � and reduces to the TAP free energy if
�ab=0. This is just the case when the convergence criterion
for the TAP theory, Eq. �2�, holds. A difference between the
original TAP free energy and that from Eq. �7� emerges only
in regions with unstable states in the TAP equations. Free
energy �7� can hence be viewed upon as a general form of
the TAP-like free energy for one configuration of spin cou-
plings. Different replica indices correspond to different solu-
tions of mean-field equations. Unlike the TAP approach the
different states in free energy �7� are allowed to interact via
the overlap susceptibility �ab.

If free energy F� is thermodynamically homogeneous it
should not depend on the replication parameter �. We already
know that this is not the case, at least for the averaged TAP
free energy, when stability condition �2� is broken.19 If ther-
modynamic homogeneity is broken we must use the new
order parameters so as to restore this fundamental property.
Only thermally homogeneous systems possess nondegener-
ate stable equilibrium states extremizing a free-energy func-
tional and can be extended uniquely to infinite volumes. In
our construction, it is the matrix of overlap susceptibilities
that should restore thermodynamic homogeneity in the TAP
approach.

We now impose the condition of thermodynamic homo-
geneity on free energy �7� in that we demand the existence of
a unique thermodynamic state. That is, all spin replicas must
be equivalent and must lead to the same order parameters.
This property can be quantified as follows:

Mi
a 
 Si

a�T = Mi, �8a�

�ab = �ba, �8b�

��a1, . . . ,�a�� = ��b1, . . . ,�b�� . �8c�

Equation �8a� says that at the level of local magnetizations
different spin replicas are indistinguishable. That is, the in-
ternal local magnetic fields are replica independent, �i

a=�i.
Conditions �8b� and �8c� restrict the matrix of overlap sus-
ceptibilities to be symmetric with rows �columns� being only
permutations of each other. We remind that �aa=0. The ma-
trix �ab contains then only �−1 independent parameters. that
can be cast into groups of identical values. If we set
�K��K−1� ¯�!�1 we may choose �1−1-times a value
�1, ��2−�1�-times an overlap �2, and so on up to
��K−�K−1�-times an overlap �K.

As the last step we must determine the structure of the
matrix �ab with the above restrictions that would lead to an
analytic free-energy functional of variables �1 , . . . ,�K and
�1 , . . . ,�K. The easiest way to determine the most general
available structure of �ab is to use a hierarchical construc-
tion. It starts with K=1 and increases the number of different
values of the overlap susceptibilities only if the solution with
K different values becomes unstable. In the case K=1 the
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matrix of the overlap susceptibilities is uniquely determined
by a multiplicity �1 of the only value �1. We examine this
particular case in detail in the next section. If the theory with
K=1 is unstable, we build up a theory with K=2 values of
the overlap susceptibility, �1 and �2. We assume that not only
the individual replicas are equivalent but also blocks of rep-
licas describing the solution with K=1 are equivalent. That
is, the diagonal elements in the solution with K=1 are re-
placed by matrices �1��1 with zero on the diagonal and �1
on the off-diagonal positions. The remaining off-diagonal el-
ements in the solution with K=2 are filled with the value �2.
In this way we go on to higher hierarchies. We end up with
an ultrametric structure of the Parisi RSB solution. It is of

essential importance that the ultrametric structure allows for
an analytic representation of the hierarchical free energy with
K different values of the overlap susceptibility. In fact, the
ultrametric arrangement of the overlap susceptibilities �ab

seems to be the most general structure in which the free
energy is an analytic function of parameters �l, �l for l
=1, . . . ,K.

Inserting the ultrametric structure with K hierarchies of
�ab in Eq. �7� and after K-times applied the Hubbard-
Stratonovich transformation linearizing the spin variables in
the exponent of exp��2J2�a
b�abSi

aSi
b� we obtain an analytic

representation of the K-level hierarchical generalization of
the TAP free energy

FK��1,�1, . . . ,�K,�K� = −
1

4�
i,j

�Jij
2 �1 − Mi

2��1 − Mj
2� −

1

2�
i,j

JijMiMj

+ �
i

Mi��i +
1

2
�J2Mi�

l=1

K

��l − �l−1��l	 +
�J2N

4 �
l=1

K

��l − �l−1��l
2 +

�J2N

2
�1

−
1

��K
�

i

ln��
−



D�K�¯�
−



D�1�2 cosh���h + �i + �
l=1

K

�l
��l − �l+1	���1

¯ ��K/�K−1� . �9�

We abbreviated D�l
d�le
−�l

2/2 /�2� and used �0=1, �K+1

=0. Notice that in our derivation �1
�2
 ¯ 
�K=� and
�1��2� ¯ ��K�0. Free energy �9� should be an extre-
mum with respect to matrix �ab so that a thermodynamically
homogeneous free energy is produced. Thermodynamic ho-
mogeneity is achieved in free energy �9� if it does not depend
on �K. This is equivalent to vanishing of �K. Since the trivial
solution �l=0 always satisfies the stationarity equations for
any l=1, . . . ,K, free energy �9� with K hierarchies is thermo-
dynamically homogeneous if �K=0 is the only physical so-
lution of the respective stationarity equation. Nonexistence
of a nontrivial solution for �K determines the number of
hierarchical levels needed to achieve a globally stable solu-
tion.

Both sets of parameters �l and �l must be treated varia-
tionally and their physical values must be determined from
respective stationarity equations. The equilibrium multiplic-
ity factors �l

eq, determined from �FK /��l=0, no longer need
be integers, form an increasing sequence, and they even can
be smaller than one. As discussed in Ref. 19 the stationarity
equations for �l have two solutions, �l

eq�1 and �l
eq�1. The

latter case is actually the physical one, since it minimizes
thermodynamic inhomogeneity, if it occurs. The value �l

1 determines then a portion of the phase space �relative
number of lattice sites� of one TAP solution influenced by the
existence of other TAP solutions. With a homogeneous, site-
independent overlap susceptibility all spins in each solution
are equivalent. The exponent �l then says that �N spins on
average are influenced by other TAP solutions.19

Free energy �9� is the most general analytic continuation
of the TAP free energy to the low-temperature phase. If
condition �2� is obeyed for �l=0, l=1, . . . ,K and
FK��1 ,�1 , . . . ,�K ,�K�=FTAP. Free energy FK is self-
averaging and it is numerically identical with the RSB free
energy with K hierarchical levels as derived in Ref. 19. In the
extension of the TAP theory, Eq. �9�, the RSB order param-
eters are induced by thermal fluctuations and serve as media-
tors of interaction between different TAP solutions.

IV. ONE-LEVEL HIERARCHICAL TAP THEORY

Representation �9� of a configurationally dependent free
energy is rather complicated. It is a futile activity to try to
solve the corresponding stationarity equations for a chosen
configuration of spin couplings in full generality before ex-
ploring suitable simplifications. Moreover, it is not necessary
to reconstruct the complete spatial distributions of site-
dependent local magnetizations when we are interested in
thermodynamic quantities determined by lattice sums. Since
free energy �9� is self-averaging, in most situations we can
replace the sums over the lattice sites by averages over the
distribution of random spin couplings. Thereby we perform
this averaging within linear response theory and with the
fluctuation-dissipation theorem. That is, we use the same av-
eraging rules to Eq. �9� as used on FTAP in deriving the SK
solution. This direct way of averaging of FK leads to the
Parisi solution with K hierarchical levels.18,19

To demonstrate explicitly that free energy �9� is a non-
trivial extension of the TAP free energy in the low-
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temperature phase also for fixed configurations of spin cou-
plings we resort our analysis of this free energy to the
solution with K=1, that is, to the one-level hierarchical so-
lution.

A. Stationarity equations

It is straightforward to reduce the general expression for
the hierarchical free energy FK to the case K=1 with �1=�
and �1=�. We obtain

F1��,�� = −
1

4�
i,j

�Jij
2 �1 − Mi

2��1 − Mj
2�

−
1

2�
i,j

JijMiMj +
�J2N

4
���� − 1�� + 2�

+ �
i

Mi��i +
1

2
�J2�� − 1��Mi	

−
1

��
�

i

ln � D�i�2 cosh���h + �iJ�� + �i����.

�10�

Free energy F1�� ,�� is represented in closed form and is
analytic in all its variables Mi, �i, �, and �. It reduces to the
TAP expression if �=0, which is the case when Eq �2� is
fulfilled by the local magnetizations Mi.

The stationarity equation for the site-dependent local
magnetization follows from �F1 /��i=0 from which we ob-
tain

Mi = �����h + �i;�,��tanh���h + �i + �J������ 
 �i
���ti��,

�11a�

where

�i
� 
 �����h + �i;�,�� =

cosh����h + �i + �J����
cosh����h + �i + �J������

�11b�

is a density matrix. We denoted X�����=�D�X���.
The internal local magnetic field �i is determined from

�F1 /�Mi=0 which results in

�i = �
j

JijMj − Mi��J2�� − 1�� + �
j

�Jij
2 �1 − Mj

2�	 .

�11c�

In addition to the site-dependent order parameters we
must determine the physical �stationary� values of the homo-
geneous parameters � and �. From the equation �F1 /��=0
we obtain

� =
1

N
�

i

��i
���ti

2�� − �i
���ti��

2� . �12a�

The multiplicity parameter � is derived from �F1�� ,�� /��
=0 leading to an explicit equation

� =
4

�2J2

N−1�
i

�ln cosh���h + �i + �J������ − lncosh����h + �i + �J������
1/��

��2Q + ��
, �12b�

where we denoted Q
N−1�iMi
2.

Global equations �12� complete local stationarity equa-
tions �11�. Free energy, Eq. �10�, together with stationarity
equations �11� and �12� define an analytic theory in the entire
space of the input parameters. They reduce to the TAP theory
in the high-temperature phase but generally differ from it in
the spin-glass phase. The spin-glass phase is characterized
apart from local magnetizations also by two global param-
eters � and �. The principal difference between free energy
F1 and FTAP is in the � integral. This integration stands for
thermal equilibration of the replicated spins, that is, for sum-
mations of spin configurations in the phase space determin-
ing other TAP solutions. Alternatively we can understand the
� integration as a thermally weighted averaging of the initial
conditions for the TAP equations. Due to the dependence of
TAP states on the initial conditions an additive homogeneous
internal magnetic field �J�� emerges. If the interaction be-
tween different TAP solutions �initial and final configurations
of local magnetizations� vanishes, �=0, free energy F1 re-
duces to FTAP.

There are also other situations, when F1=FTAP. If �=1,
functional F1 is independent of � and we recover the TAP
free energy. The TAP free energy is recovered also in the
limits �→ and �→0. In the former case the � integration
reduces to a saddle point at which ��=�2
. We explicitly
obtain the limiting �→ value of free energy

F̄1��,�̄i� = −
1

4�
i,j

�Jij
2 �1 − Mi

2��1 − Mj
2� −

1

2�
i,j

JijMiMj

+ �
i

Mi��i +
1

2
�J2�2Mi	

+
1

�
�

i

� �̄i
2

2
− ln�2 cosh���h + �i + J��i���	

�13�

being now a functional of Mi , �̄i, and �. At the saddle point
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�̄i=�J�Mi and we find that �F̄1 /��
0, that is, free energy
F1 in the limit �= does not depend on � and we recover the
TAP free energy.

In the limit �→0 the annealed randomness in the fluctu-
ating field � reduces to a quenched one and the one-level
hierarchical free energy reduces to

F1��,0� =
�J2N

4
��2 − �� −

1

4�
i,j

�Jij
2 �1 − Mi

2��1 − Mj
2�

−
1

2�
i,j

JijMiMj + �
i

Mi��i −
1

2
�J2�Mi	

−
1

�
�

i
� D�i ln�2 cosh���h + �i + �iJ����� .

�14�

In this representation we can absorb the fluctuating field �i
into the internal magnetic field �i and add the Gaussian �
integration to the summation over the lattice sites. After the
substitution �i=�i+�iJ�� we find �=1−Q, where again we
denoted Q=N−1�iMi

2, and recover the TAP free energy.
It is clear from the above analysis that Eq. �12b� has al-

ways two solutions, one for �
1 and the second for ��1.
In the former case it is a maximum of free energy and in the
latter one it is a minimum. We show in the next section that
the solution for ��1 is an unstable extremum of free energy
�10� and hence the only physically acceptable, stabilizing
extension of the TAP free energy is that with �
1. Free
energy �10� offers a physical interpretation of the order pa-
rameters � and �. The last term on the left-hand side �lhs� of
Eq. �10� is the genuine interacting part of the free energy. It
is a local free energy of Ising spins in a random magnetic
field �iJ�� due to spin configurations of the replicated spins
�other TAP solutions�. The � integral stands for thermal av-
eraging of the replicated spins and the exponent �
1 ex-
presses a weight with which the replicated spins affect the
local partition function. That is, effectively just �N spins are
influenced by configurations of the replicated spins.

B. Stability conditions

Saddle-point equations �11� and �12� should lead to an
extremum of free energy F1�� ,��. The free energy for fixed
homogeneous parameters � and � as a functional of only
local magnetizations Mi, when Eq. �11c� for the local mag-
netic field is used, should be a minimum. Only then the
nonlocal susceptibility is positive semidefinite. The nonlocal
susceptibility in the one-level hierarchical TAP theory is de-
fined analogously as in the standard TAP theory and reads

��−1�ij = − �Jij + �ij��2J2�1 − Q − �1 − ���� +
1

�ii
	 .

�15�

The local inhomogeneous susceptibility in this case is

�ii = 1 − Mi
2 − �1 − ����i

���ti
2�� − �i

���ti��
2� . �16�

The fundamental consistency condition �positivity of the
spin-glass susceptibility� is Eq. �6b� with the local suscepti-
bility �ii from Eq. �16� and reads

1 �
�2J2

N
�

i

�1 − �1 − ���i
���ti

2�� − ��i
���ti��

2�2. �17�

If this condition is fulfilled free energy F1�� ,�� from Eq.
�10� is a physically acceptable and consistent solution for
local magnetizations Mi, homogeneous overlap susceptibility
� and multiplicity factors �. It is evident from Eq. �17� that if
a TAP solution breaks condition �2�, that is Eq. �17� for �
=1, and we increase � to higher values we worsen the insta-
bility of the TAP solution. To improve upon the incurred
instability of the TAP solution we must evidently decrease
the multiplicity factor � to values lower than 1. That is, we
must maximize free energy with respect to the matrix of
overlap susceptibilities.

If Eq. �17� does not hold we are unable to find a stable
equilibrium state that would not depend on initial conditions
and would be separable from other macroscopic states by a
finite gap in free energy. The degeneracy of the TAP free
energy hence has not been lifted in free energy �10� com-
pletely. To improve upon this deficiency we must go to a
theory with a higher number of hierarchies K�1. It is evi-
dent that the two-level free energy F2��1 ,�1 ,�2 ,�2� reduces
to F1�� ,�� if either �2=0 or �1=�2. It is straightforward to
demonstrate that breakdown of condition �17� leads to an
instability of equality �2=0 and the second overlap suscep-
tibility �2 starts to peel off from its zero value.

In the generalized TAP theory with local magnetizations
Mi, internal magnetic fields �i and homogeneous overlap
susceptibilities �1 ,�1 , . . . ,�K ,�K as order parameters, mini-
mization of the TAP free energy with respect to local param-
eters does no longer play an essential role for stability of
macroscopic states. This condition is replaced in the hierar-
chical extension of the TAP theory by a more important con-
dition, an extremum with respect to the homogeneous order
parameters, overlap susceptibilities �l with their multiplici-
ties �l for l=1,2 , . . . ,K. Extremum of the hierarchical free
energy with respect to homogeneous parameters leads to an
extremum in thermodynamic inhomogeneity of free energy.
Since only �l
1 lead to minimization of thermodynamic
inhomogeneity, we must maximize free energy to achieve the
least inhomogeneous state. Free energy F1 may hence also
become unstable when the one-level solution does not maxi-
mize free energy and solutions with a higher number of hi-
erarchical levels �different values for the overlap suscepti-
bilities� produce a higher free energy. This happens if
equation �2=�1 becomes unstable and a new value of �2

�1 emerges. This happens if the following stability condi-
tion is broken19

1 �
�2J2

N
�

i

�i
����1 − ti

2�2��. �18�

Unlike Eq. �17� condition �18� gets stabilized with increasing
�. In the TAP theory with �=0 both conditions coincide.

It is necessary that both conditions, Eqs. �17� and �18�, are
satisfied for the equilibrium values of all order parameters so
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that free energy �10� leads to stable thermodynamic states for
almost all configurations of spin couplings. It depends on the
equilibrium value of the parameter � which of these two
conditions is �more� broken and hence responsible for the
eventual instability of the one-level TAP free energy F1. It is
Eq. �18� that makes the solution for �→0 unstable, TAP free
energy from Eq. �14�. It is Eq. �17� that leads to instability of
solutions with �→1, TAP free energy �3�. Note that in the
averaged theory the relevant instability condition of the ex-
tended TAP theory corresponds to the stability of the one-
step RSB scheme.

C. Asymptotic solution near the critical point

Stationarity equations �11� and �12� in full generality are
difficult to solve for a fixed configuration of spin couplings.
One can, however, investigate the behavior of the order pa-
rameters close to the spin-glass transition. In particular, one
can explicitly confirm that the TAP solutions become un-
stable below the spin-glass transition whenever condition �2�
is broken. We prove in this section that if Eq. �2� is broken
the overlap susceptibility � becomes positive and the multi-
plicity factor �� �0,1� deviates from its equilibrium value
from the high-temperature phase.

The small parameter in the low-temperature phase is the
overlap susceptibility. We hence expand all necessary quan-
tities from stationarity equations �11� into powers of �. We
will need the two leading nontrivial orders. The asymptotic
form of the local magnetization at the AT line reads

Mi � 	i − �2J2�1 − ��	i�1 − 	i
2��

+ �4J4�1 − ��	i�1 − 	i
2��2 − � − �3 − 2��	i

2��2,

�19�

where we denoted 	i=tanh���h+�i��. In expansion �19� we
assumed that the internal magnetic field is fixed, although its
stationary value also depends on �. This dependence will be
evaluated at the end of our calculations.

The difference on the rhs of Eq. �12a� must be expanded
into the first two orders in �. We obtain with the above
notation

�i
���ti

2�� − �i
���ti��

2 � �2J2�1 − 	i
2�2�

− �4J4�1 − 	i
2�2�2 − � − �8 − 5��	i

2��2.

�20�

We will need to expand the global parameter Q=N−1�iMi
2 in

Eq. �12b�. Also this parameter must be expanded to the first
two powers of �. We obtain directly from Eq. �19�,

Q � 	i
2�av − 2�2J2�1 − ��	i

2�1 − 	i
2��av� + �4J4�1 − ��

�	i
2�1 − 	i

2��5 − 3� − �7 − 5��	i
2��av�

2, �21�

where we abbreviated Xi�av=N−1�iXi. This notation, origi-
nating in self-averaging property of local variables, we also
use in the following formulas.

Next we denote

� =
4

�2N
�

i

�ln cosh���h + �i + �J������

− lncos h����h + �i + �J������
1/�� .

We expand this function to O��3� and use it together with
Eq. �21� for the evaluation of the expansion of both sides of
Eq. �12b�. Using the program MATHEMATICA we end up with

� = ���2Q + �� − � � ��2�1 − �2J2�1 − 	i
2�2�av

+ 2
3�4J4��1 − 	i

2�2�3 − 2� − �11 − 8��	i
2��av� .

�22�

Before we proceed with solving the asymptotic forms of
equations �12a� and �12b� we must determine the � depen-
dence of the equilibrium value of the internal magnetic field
�i. It is sufficient for our purposes to expand this field only to
linear power and we replace �i→�i

0+��̇i. The local magne-
tization changes accordingly,

	i � mi + �1 − mi
2����̇i, �23�

where we denoted mi=tanh���h+�i
0�� the TAP local magne-

tization with the fluctuating internal magnetic field �i
0 deter-

mined by the TAP equation �4b�. We derive an equation for
��̇i from Eq. �11c�. We have

��̇i = �2J2��1 − �� + Q̇�Mi + �
j

��Jij − �ij�
2J2�1 − Q��Ṁ j .

�24a�

Further on, we obtain from Eq. �19� for Ṁi=dMi /d� an
asymptotic relation

Ṁi � �1 − mi
2����̇i − �2J2�1 − ��mi� . �24b�

The equation for Q̇ follows directly from expansion �21�.
Combing the above equations and using the definition for

the TAP susceptibility we come to a solution

��̇i � �2J2�1 − ���mi − 2�2J2 mi
2�1 − mi

2��av

�1 − mi
2� �

j

�ij
TAPmj	 .

�24c�

To reach a representation in closed form we must evaluate
sums with the linear susceptibility of type
N−1�ij�ij

TAPf�mi�g�mj�. We derive an explicit formula for
such sums in Appendix B.

With explicit expressions for the sums with the nonlocal
susceptibility we have at hand all necessary ingredients to
resolve the asymptotic form of equations for the global order
parameters near the critical point. We first use Eq. �B11� to
evaluate

�1 − 	i
2�2�av � �1 − mi

2�2�av − 4�1 − mi
2�2mi��̇i�av�

= �1 − mi
2�2�av

+ 4�2J2�1 − ��mi
4�1 − mi

2��av�

− 8�4J4mi
2�1 − mi

2��avmi
2�1 − mi

2�2�av� .

�25�
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With this result the asymptotic form of the equation for the
overlap susceptibility reads

�2J2�1 − mi
2�2�av − 1 � �4J4���1 − mi

2��2 − � − 2�5 − 3��mi
2

+ �4 − ��mi
4��av + 8�2J2�1 − ��mi

2

��1 − mi
2��avmi

2�1 − mi
2�2�av� �26�

while the equation for the multiplicity factor � can be rewrit-
ten to

�2J2�1 − mi
2�2�av − 1 �

2
3�4J4���1 − mi

2��3 − 2�

− 2�7 − 5��mi
2 + �5 − 2��mi

4��av

+ 12�2J2�1 − ��mi
2

��1 − mi
2��avmi

2�1 − mi
2�2�av� .

�27�

Both equations �26� and �27� are in fact defining equa-
tions for the overlap susceptibility �. The left-hand sides of
both equations are identical and become positive in the low-
temperature phase when condition �2� is broken. Since the
solutions from both equations must lead to the same unique
value of � we must equal the right-hand sides of these equa-

tions. As a result we obtain an equation for the value of the
parameter � along the AT line of critical points. Its solution
reads

� �
2mi

2�1 − mi
2�2�av

�1 − mi
2�3�av

. �28�

Parameter � obtained from Eq. �28� is the limiting value of
the low-temperature solution at the AT line. It is positive at
finite magnetic field. This causes no problem, since we know
that the high-temperature solution obeying the consistency
condition �2� is independent of � �thermodynamically homo-
geneous�. To determine the deviation of � from its value at
the AT line in the spin-glass phase we must go to higher
orders of the expansion in �.

With the above solution for the multiplicity factor we can
use either Eq. �26� or Eq. �27� to determine the overlap sus-
ceptibility �. The solution for this parameter is physical only
if the rhs of Eqs. �26� and �27� is positive. We can conclude
already from Eq. �28� that this cannot be the case down to
zero temperature along the AT line. The geometric parameter
� must be smaller than one. We have a critical value �c of
this parameter at which the rhs of Eqs. �26� and �27� vanish,
namely

�c = 2
�1 − mi

2��1 − 3mi
2��av�1 − mi

2��1 − 3mi
2 + 2mi

4��av

�1 − mi
2��1 − 4mi

2��av
2 − mi

2�1 − mi
2���1 − mi

2��1 − 2mi
2��av + mi

4�1 − mi
2���1 − mi

2��1 − 9mi
2��av

. �29�

Using the solution for � from Eq. �28� on the lhs of Eq. �29�
we obtain an equation for a critical value of the magnetic
field �temperature� above �below� which the above
asymptotic solution breaks down and we must go to higher-
order terms in the expansion in the overlap susceptibility. We
hence experience a crossover in the behavior of the homoge-
neous order parameters along the instability �AT� line if we
go to high magnetic fields. While in low magnetic fields the
overlap susceptibility is determined from a linear equation
�26�, we have a quadratic equation determining the leading
asymptotic term near the AT line in high magnetic fields. The
instability of the TAP equation in high magnetic fields is a
rather complex task and will be presented in a separate pre-
sentation.

V. SUMMARY AND CONCLUSIONS

We analyzed the low-temperature thermodynamics of
mean-field models of spin glasses. In particular, we concen-
trated on the behavior of thermodynamic potentials for indi-
vidual configurations of spin couplings. For this purpose
Thouless, Anderson, and Palmer proposed a construction of a
configurationally dependent free energy of the Sherrington-
Kirkpatrick model. The derivation of the TAP free energy is,
however, valid only if a convergence or stability condition

�2� is obeyed. Typical configurations of spin couplings in the
spin-glass phase either do not allow for solutions of the TAP
equations satisfying this condition or produce a multitude of
solutions degenerate in free energy macroscopically many of
which break Eq. �2�. This situation naturally evokes a num-
ber of questions about the TAP construction: �1� Is it com-
plete? �2� Does it produce stable equilibrium states? �3� Does
the thermodynamic limit exist? Finally, we know that the
exact solution of the SK model is the Parisi RSB scheme.
The order parameters introduced by the replica trick are not
manifested in the TAP thermodynamic potentials. Hence, we
should answer another question: �4� At what stage do the
RSB order parameters emerge?

Presently, it is predominantly assumed that the TAP
theory is complete as it is and contains all necessary order
parameters from which we can construct the exact solution.
It does not produce a single equilibrium state, but rather
exponentially many locally stable and unstable states sepa-
rated by infinite energy barriers and �almost� degenerate in
free energy. Hence a weighted sum �1� of local free-energy
minima is to be taken into account to construct a global
equilibrium state with which we can construct the thermody-
namic limit. The only information missing in the TAP ther-
modynamic potentials is the complexity, i.e., the number of
available TAP states, local minima of the TAP free energy.
There is, however, no trace of the RSB order parameters in
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the TAP construction and they are introduced only in course
of averaging over the quenched randomness in spin cou-
plings.

In this paper we proposed alternative answers to the
above urgent questions about the TAP construction and its
relation to the RSB order parameters. We explicitly demon-
strated that the TAP free energy for situations with broken
stability condition �2� is unstable. The TAP approach be-
comes incomplete and must be enriched by new order pa-
rameters. The necessity for the enhancement of the TAP con-
struction emerges due to the need to lift degeneracy in the
TAP free energy that cannot separate stable from unstable
states. Unlike the existing approaches we do not need to
assume impenetrable energy barriers between different TAP
states. We allow for energy flows between these states if it is
thermodynamically convenient and if it leads to stabilization
of equilibrium states. The energy flow between them is me-
diated and controlled by new homogeneous order param-
eters, overlap susceptibilities. These additional order param-
eters are determined thermodynamically from stationarity
equations so that to achieve a thermodynamically homoge-
neous free energy with �marginally� stable equilibrium states.
The overlap susceptibilities introduced in the proposed ex-
tension of the TAP construction of a configurationally depen-
dent free energy are directly related to the Parisi RSB order
parameters. They coincide after averaging over spin cou-
plings. Since the configurationally dependent free energy
with overlap susceptibilities is self-averaging, averaging over
randomness is performed within linear response theory and
with the fluctuation-dissipation theorem as in the case of the
SK solution.

We demonstrated in this paper that the TAP construction
is incomplete in the low-temperature phase, the TAP states
are unstable and decay into a composite state described by
inhomogeneous local magnetizations and homogeneous
overlap susceptibilities. The extended free energy from
which the physical values of the order parameters are deter-
mined is self-averaging with a well-defined equilibrium state
and thermodynamic limit. The RSB order parameters, the
overlap susceptibilities, emerge due to thermal fluctuations
as mediators of interaction between different TAP states. Av-
eraging over randomness is harmless and does not change
the structure of the phase space of the order parameters.

When compared with the existing treatments of the ther-
modynamic behavior of spin-glass models we can conclude
that the hierarchical TAP free energy �9� reduces to the TAP
one for equilibrium states described by local magnetizations
satisfying condition �2�. The proposed extension of the TAP
construction may then seem redundant, since only TAP solu-
tions being local minima satisfying Eq. �2� are physically
relevant. It is, however, not the case. The proper analytic
continuation of the TAP approach to unstable states guaran-
tees a consistent description of all states without a tedious
way of the separation of locally stable and unstable solutions
of the TAP equations. Moreover, the interaction between the
TAP solutions introduced by the overlap susceptibilities
changes the structure of the underlying phase space and the
value of free energy. The hierarchical TAP theory does not
require solving numerically the TAP equations for typical
configurations of spin couplings in finite volumes or to cal-

culate the complexity of the TAP theory. To determine ther-
modynamic properties of the SK model we can directly av-
erage the configurationally dependent free energy in the
thermodynamic limit, which is a significant simplification.
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APPENDIX A: SPIN-GLASS SUSCEPTIBILITY AND THE
RESOLVENT

The averaged local susceptibility � and the spin-glass sus-
ceptibility �SG can be derived from the resolvent constructed
from the inverse nonlocal susceptibility. The inverse of the
nonlocal susceptibility is a second derivative of free energy
and can generally be represented as

��−1�ij = − �Jij + �ij� 1

�ii
+ �

j

�2Jij
2 � j j	 . �A1�

The resolvent for a complex energy z �scaled by � in the
same way as the inverse susceptibility� is defined

G�z� =
1

N
Tr�z1̂ − �̂−1�−1. �A2�

The averaged local susceptibility and the spin-glass suscep-
tibility can be derived from the resolvent as

� =
1

N
�

i

�ii = − G�0� , �A3a�

�SG =
1

N
�
ij

�ij
2 = − �dG�z�

dz
�

z=0
. �A3b�

In the Sherrington-Kirkpatrick model we have � j�
2Jij

2 � j j
=�2J2�=−�2J2G�0�. We now use a theorem of Pastur20 for
the resolvent of matrices with off-diagonal elements being
Gaussian random variables with variance J2 /N. When ap-
plied to the inverse susceptibility we obtain for �G�z�
=G�z�−G�0�,

�G�z� = −
1

N
�

i

�ii
2�z − �2J2�G�z��

1 − �ii�z − �2J2�G�z��
. �A4�

Using the definition of the spin-glass susceptibility, Eq.
�A3b� we obtain

�SG =

1

N
�

i

�ii
2

�1 + �2J2�G�0��ii�2

1 −
�2J2

N
�

i

�ii
2

�1 + �2J2�G�0��ii�2

. �A5�

Assuming continuity of the resolvent at origin z=0 we have
�G�0�=0 and we end up with representation �6a�.
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Note that the resolvent representation �A4� does not ex-
clude a nontrivial solution for �G�0�. Setting z=0 in Eq.
�A4� we obtain an equation

�G�0� = �2J2�G�0�
1

N
�

i

�ii
2

1 + �2J2�G�0��ii
�A6�

allowing for a nontrivial solution if the stability condition �2�
is broken. This nontrivial solution was used by Plefka in
Refs. 16 and 17 in his extension of the TAP theory. If we
choose the nontrivial solution for �G�0� dictated by analyt-
icity of the resolvent in the complex plane, the spin-glass
susceptibility is no longer represented by Eq. �6a� but rather
by Eq. �A5� and remains positive in the spin-glass phase. The
new parameter �G�0��0 cannot, however, be derived from
a free energy and does not possess a diagrammatic represen-
tation. It is not a proper symmetry-breaking order parameter
of microscopic origin. Moreover, with this parameter we
break continuity of the resolvent and

lim
z→0

G�z� � G�0� = −
1

N
�

i

�ii. �A7�

The last equality is the definition of the averaged local sus-
ceptibility, Eq. �A3a�. The discontinuity makes a physical
interpretation and explanation of the order parameter �G�0�
difficult. We can only observe that positivity of �G�0� for-
mally expresses a deviation from the fluctuation-dissipation
theorem. There is no evidence or indication that the TAP
solutions really lead to a discontinuous resolvent and
�G�0��0 in the spin-glass phase. An alternative way how to
reach thermodynamic consistency and positivity of the spin-
glass susceptibility within a microscopic construction pro-
vided by the hierarchical free energy with a fluctuation-
dissipation theorem in the extended phase space with real
spin replicas is offered in this paper.

APPENDIX B: SUMS WITH THE NONLOCAL MEAN-
FIELD SUSCEPTIBILITY

The mean-field approximation is a single-site theory in
that it effectively decouples distinct lattice sites. The decou-
pling of distinct lattice sites leads to a simplification of sums
with nonlocal functions. These sums can be converted in the
mean-field theory to uncorrelated lattice sums with site-local
functions. Correlation between different sites enters mean-
field expressions only via homogeneous global parameters
being again uncorrelated sums over lattice sites.

In the spin-glass mean-field theory we are interested in
sums with the nonlocal susceptibility of the form

C�f ,g� =
1

N
�
ij

�ij f�mi�g�mj� . �B1�

The only nonlocal term in the susceptibility is the spin ex-
change �Jij. It is the off-diagonal part of the susceptibility
that makes the evaluation of sums from Eq. �B1� difficult.
We hence use the following representation for the nonlocal
susceptibility:

�ij = �ii��ij + �
k

��Jik�kj	
= �ii + �ii��Jij + �

k

�Jik�kk�Jkj

+ �
k�j

�
l�i

�Jik�kk�Jkl�ll�Jlj + ¯ 	� j j , �B2�

where the primed sum does not allow for repetition of site
indices. It means that only self-avoiding random walks con-
tribute to the inverse matrix in the formal solution to Eq.
�B2�.

Representation �B2� can easily be proved by a diagram-
matic expansion when the definition of the TAP susceptibil-
ity �5� is used. We successively exclude repeating site indices
in the multiple sums of the expansion for the inverse of the
rhs of expression �5�. The diagonal element of the suscepti-
bility �ii was determined along this line, e.g., in Ref. 5.

Since the site indices in Eq. �B2� are decoupled we can
use the following functional representation for the spin ex-
change of the SK model

�Jij =
�2J2

N
��imj + mi� j� . �B3�

We denoted �i
�ii� /�mi. Representation �B3� is a conse-
quence of the fact that just squares of the spin coupling Jij
contribute to the sum C�f ,g�. The paired spin exchange to
the given one Jij connecting lattice sites i and j can be ex-
tracted from the endpoint functions of local magnetizations
mi and/or mj. A more detailed proof of Eq. �B3� can be found
in Ref. 18.

Using Eq. �B3� we can represent the off-diagonal suscep-
tibility �̃ij =�ij −�ii�ij as

�̃ij =
�2J2

N
��i�iimj� j j + mi�ii�i� j j + �iXj + mi�iiY j� ,

�B4�

where we denoted global parameters Xj =�kmk�̃kj and Y j
=�k�k�̃kj. Note that the differential operator �i acts to the
right on functions of the local magnetization mi only. The
lattice sums in the definition of the global parameters Xj and
Y j should avoid the fixed index j. In the mean-field approxi-
mation we can neglect this restriction, since the difference is
only of order O�N−1�.

It is straightforward to find from Eq. �B4� an equation for

Xi = �2J2��kmk�kk�avmi�ii + mk
2�kk�av�i�ii

+ �kmk�kk�avXi + mk
2�kk�avYi� , �B5�

where we denoted as in the main text Xk�av
N−1�kXk.
Analogously we find

Yi = �2J2��k�k�kk�avmi�ii + �kmk�kk�av�i�ii

+ �k�k�kk�avXi + �kmk�kk�avYi� . �B6�

To represent the solution for these parameters concisely
we denote l=�2J2�1−mi

2�2�av and r=�2J2mi
2�1−mi

2��av.
Then
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Xi =
�1 − l��l − 2r�mi�ii + r�i�ii

�1 − l�2 + 2r�2 − l�
�B7�

and

Yi = �2l − r�
− 2mi�ii + �1 − l��i�ii

�1 − l�2 + 2r�2 − l�
. �B8�

Inserting Eqs, �B7� and �B8� in Eq. �B4� we obtain

�ij = �ii�ij +
�2J2

N��1 − l�2 + 2r�2 − l��

���1 + 2r − l���i�iimj� j j + mi�ii� j� j j�

− 2�l − 2r�mi�iimj� j j + r�i�ii� j� j j� . �B9�

Equation �B9� holds only in the leading N−1 order. Hence the
second term on the rhs contributes only to the off-diagonal
part and to lattice sums with the nonlocal susceptibility.

This representation is still a rather complicated expres-
sion. Fortunately, we need to know for our purposes the non-
local susceptibility only along the AT line for which l=1. In

this case the nonlocal susceptibility reduces to

�ij = �ii�ij +
�2J2

2N
�2�i�iimj� j j + 2mi�ii� j� j j + �i�ii� j� j j�

−
�1 − mk

2��1 − 3mk
2��av

mk
2�1 − mk

2��av�1 − mk
2�2�av

mi�iimj� j j . �B10�

Using this result for functions f�mi�=mi�1−mi
2� and g�mj�

=mj in Eq. �B1� we find an explicit representation for a sum
with the nonlocal susceptibility at the AT line needed in Eq.
�25�,

1

N
�
ij

�ijmi�1 − mi
2�mj =

�2J2

2
�1 − mk

2�2�av�1 − mk
2�

��1 − 3mk
2��av. �B11�

Notice that the nonlocal susceptibility �B9� diverges at the
critical point of the SK model only at zero magnetic field
where r=0.
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