High-pressure Raman scattering and structural phase transition in YCrO₄ Y. W. Long, L. X. Yang, Y. Yu, F. Y. Li, R. C. Yu, S. Ding, Y. L. Liu, and C. Q. Jin* National Lab for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China (Received 11 April 2006; revised manuscript received 18 June 2006; published 23 August 2006) The high-pressure structural properties of the zircon-type $YCrO_4$ with space group $I4_1/amd$ were investigated using Raman scattering techniques in a diamond anvil cell up to 28.9 GPa at room temperature. The abrupt changes in Raman spectra indicate that a pressure-induced structural phase transition occurs at a lower pressure 3.0 GPa, but a wide pressure region up to 15.1 GPa is needed to complete this phase transition. Moreover, the high-pressure phase can be quenched at ambient conditions. We calculated the mode Grüneisen parameters and assigned the new phase to be a scheelite-type structure in $I4_1/a$ symmetry based on the fact that the Raman spectrum of the new phase is similar to that of the scheelite-type $YCrO_4$ prepared at moderate pressure and temperature conditions. The effects of $3d^1$ electronic configuration on phase transition pressure and unusual Raman vibrations were discussed. ## DOI: 10.1103/PhysRevB.74.054110 PACS number(s): 61.50.Ks, 62.50.+p, 33.20.Fb #### I. INTRODUCTION Zircon- and scheelite-type compounds with the chemical composition ABX_4 are kinds of attractive materials in theoretical studies as well as in applied realms related to solidstate scintillators, laser host materials, and optoelectronic devices. 1-5 The high-pressure structural properties of these materials have received renewed interest due to the significant advancements in integrated diamond anvil cell (DAC) techniques and synchrotron radiation as an available light source in experiments. It was shown that, at a moderate pressure, the tetragonal zircon-type compounds with space group $I4_1/amd$ (Z=4) would transform into another tetragonal scheelite phase.^{6–13} In this structural phase transition process, coordination anions for A and B cations keep invariable, while the structural symmetry will decline into $I4_1/a$ (Z =4). In addition, experiments indicated that the tetragonal scheelite-type phase also is unstable under high pressure. When pressure further increases, it usually evolves toward a more compacted monoclinic structure concomitant with the increase of coordination number of the B-site cation. 14-22 Detailed descriptions on the interesting high-pressure structural behaviors of the scheelite-type compounds were reported in Ref. 22. YCrO₄ crystallizes into a tetragonal zircon-type lattice at ambient conditions.²³ It consists of the edge-sharing CrO₄ and YO₈ structural units. Along *a*-axis direction, the larger YO₈ dodecahedra directly connect each other, while they alternately link with the compacted CrO₄ tetrahedra along *c*-axis direction. The constitution of YCrO₄ was described in more detail in Ref. 24. Due to the unusual out-shell electronic configuration (3*d*¹4*s*⁰) of Cr⁵⁺ ion, magnetic properties were widely studied for YCrO₄ as well as for other isostructural *R*CrO₄ series materials,²⁵⁻²⁹ where *R* denotes rare earth elements except for La and Ce. However, no attention has been paid to the high-pressure structural behaviors of these compounds, even though the zircon-type structure is rather sensitive to pressure due to the less compacted constitution We present here the high-pressure Raman scattering investigations of YCrO₄ in order to explore pressure effects on crystal structure at room temperature. In addition, d-electronic contributions to phase transition pressure (P_c) and Raman vibrations were qualitatively studied. #### II. EXPERIMENTAL High pressure was generated using an improved Mao-Bell-type DAC with 500 μ m culets up to 28.9 GPa in this experiment. The highly pure YCrO₄ polycrystalline powder synthesized using conventional solid-state reaction method²⁹ was carefully loaded into a 250 µm stainless-steel gasket hole. The mixture of 4:1 methanol-ethanol was used as pressure transmitting medium to obtain a hydrostatic pressure condition. Pressures were calibrated by ruby luminescence technique.30,31 Raman spectra were recorded in backscattering geometry in the frequency region from 100 to 1000 cm⁻¹, using a LABRAM-HR confocal laser Micro-Raman spectrometer (HR800). The 532 nm line of the Verdi-2 solid-state laser was used as a Raman excitation source. A 25× microscope objective lens was applied in order to focus the laser beam and collect the scattered light. The instrument resolution was 1 cm⁻¹. All the measurements were carried out at room temperature. # III. RESULTS AND DISCUSSION ### A. Raman spectrum of YCrO₄ at ambient conditions Figures 1(a) and 1(b) show some representative Raman spectra of YCrO₄ in the lower-frequency $(100-650 \, {\rm cm}^{-1})$ and higher-frequency $(700-1000 \, {\rm cm}^{-1})$ regions at different pressures, respectively. Group theory analysis³² predicted that there are twelve Raman active phonon modes $(2A_{1g}+4B_{1g}+B_{2g}+5E_g)$ for the zircon-type compounds in $I4_1/amd$ symmetry (D_{4h}^{19}) . In our present experiment, eight Raman active phonon modes are discernable at ambient conditions. According to the assignment methods proposed by Jayaraman *et al.*,³³ six of them can be assigned as the internal vibration modes of CrO_4 tetrahedra: symmetric stretching ν_1 (A_g) , antisymmetric stretching ν_2 $(A_g$ and $B_g)$, antisymmetric bending ν_2 $(A_g$ and $B_g)$; and FIG. 1. (Color online) Some representative Raman spectra that show the nonreversible structural transition of $YCrO_4$ at different pressures in (a) $100-650~cm^{-1}$ and (b) $700-1000~cm^{-1}$ frequency regions, respectively. Raman shift (cm⁻¹) ν₃(Ε₋) $v_3(B_0)$ 800 5.6 GPa 3.0 GPa 0.1 MPa 900 other two are assigned as the external translation modes of ${\rm CrO_4}$ units: T ($B_{\rm g}$ and $E_{\rm g}$). Furthermore, the stretching and bending modes reflect the vibrations of Cr-O and O-Cr-O bonds in ${\rm CrO_4}$ tetrahedra, respectively. From the ambient-pressure Raman spectrum as shown in Fig. 1, it is known that the phonon frequencies of the stretching modes are higher than those of other modes. In addition, the intensity of ν_1 (A_g) mode is the strongest and ν_2 (B_g) the weakest. All of these are well in agreement with the general rule of Raman modes of the zircon-type compounds as reported in Ref. 34. However, when compared with many other isostructural compounds such as CaCrO₄ and RVO_4 (R=Y, Dy, and Tb), $^{6.7,12}$ there is a large increase in the phonon frequency of ν_4 (B_g) mode in YCrO₄. This is related to the FIG. 2. (Color online) Raman spectrum at the highest pressure 28.9 GPa. The inset shows the ruby luminescence spectrum at this pressure. effects of $3d^1$ electronic interactions of Cr^{5+} ions as discussed later. #### B. Pressure-related Raman spectra As presented in Fig. 1, the Raman active modes of the zircon-type YCrO₄ are rather sensitive to pressure. Just when pressure reaches 3.0 GPa, all the lower-frequency Raman peaks, as well as the ν_3 (E_g) peak have disappeared. In addition, seven new Raman peaks (sign with ω_1 , ω_2 , ω_3 , ω_5 , ω_7 , ω_8 , and ω_9 , respectively) are exhibited clearly. These are indicative of structural phase transition in YCrO₄. With pressure increasing to 5.6 GPa, two additional new Raman peaks $(\omega_4 \text{ and } \omega_6)$ also appear accompanying with the vanish of ν_3 (B_{σ}) mode. However, the intensity of ω_6 and ω_7 Raman peaks decline quickly with pressure due to the pressureinduced broadened effect so that they cannot be identified up to 8.2 GPa. In addition, it is notable that the zircon-phase ν_1 (A_{σ}) vibrational mode always coexists with the new-phase Raman modes in a wider pressure region, and it just becomes ambiguous as pressure increases to 15.1 GPa. At this pressure, the new-phase ω_4 and ω_8 Raman peaks also have become indiscernible, and the ω_2 and ω_3 Raman peaks tend to overlap. Then with pressure up to 18.2 GPa, only the ω_0 Raman peak is observable. To further explore whether there is other possible structural phase transition, pressure is promoted to the highest 28.9 GPa. But only two large humps are observed in the whole phonon frequency region, as shown in Fig. 2. The sharp broadening of Raman peak probably results from pressure-driven structural disordering and/or the reduced hydrostatic pressure condition in DAC. But the ruby luminescence spectrum (see the inset in Fig. 2) shows the obvious separation and the fine symmetry for R_1 and R_2 peaks at 28.9 GPa. Therefore, structural disordering is the main cause for Raman peaks broadening under higher pressure. As a matter of fact, pressure-induced structural disordering or even amorphization is often observed.^{35,36} FIG. 3. (Color online) Raman spectra in the decompression process. Eventually, we gradually released pressure to the lowest 0.5 GPa, and only the new-phase Raman peaks were observed in the whole decompression process as shown in Fig. 3. Accordingly, it is concluded that the structural phase transition occurred at 3.0 GPa is nonreversible. The top pattern in Fig. 1 also presents the pressure-released Raman spectrum to 0.5 GPa in order to demonstrate the nonreversibility for this phase transition. The pressure dependence of Raman phonon frequencies in the compression process from 0 to 18.2 GPa is shown in Fig. 4. Linear least-square fittings were performed on these data as shown by the solid lines in the figure. The slopes of phonon frequency versus pressure, as well as the ambient-pressure frequencies are listed in Table I. These results are useful to calculate the mode Grüneisen parameters. ### C. Zircon to scheelite phase transition in YCrO₄ #### 1. Determination of the new phase Pressure-related Raman spectra have shown that the structural phase transition is sluggish under high pressure in our experimental time scale (staying about 15 min at one pressure). Although this transition has occurred at a lower pressure 3.0 GPa, it will not complete until pressure reaches FIG. 4. (Color online) Pressure dependence of phonon frequencies of YCrO₄ during compression from 0 to 18.2 GPa. Open squares and circles correspond to the zircon and scheelite phase, respectively. The vertical dotted line presents the observed P_c . Solid lines are linear least-square fittings giving the $d\omega_i/dp$. 15.1 GPa. In order to accelerate the structural transition, it probably is feasible to apply an appropriate temperature during compression. Most recently, we have successfully obtained a bulk YCrO₄ sample at moderate temperature and pressure (P < 8 GPa) (Ref. 24) conditions using a set of cubic anvil apparatus. This sample exhibits a different crystal structure from the zircon-type phase, just like the powder x-ray diffraction patterns shown in Fig. 5. Structural refinement results²⁴ reveal that it has a tetragonal scheelite-type crystal structure with space group $I4_1/a$. In particular, the scheelite-type YCrO₄ shows a similar Raman spectrum with that of the new phase of YCrO₄ observed in our Raman scattering experiment, as presented in Fig. 6. Therefore, we can reasonably conclude that the new phase occurred at 3.0 GPa also has a scheelite-type crystal structure in $I4_1/a$ symmetry (C_{4h}^{0}) . Actually, a large number of available experimental data also support the fact that the zircon-type phase seemingly always transforms into a nonreversible scheelite phase at an appropriate pressure.^{6–13} #### 2. Mode Grüneisen parameters for both phases Table I lists the ambient-pressure phonon frequencies ω_{0i} , their pressure derivatives $d\omega_i/dp$ and mode Grüneisen parameters γ_i for both phases of YCrO₄. It is known that the Cr-O bond stretching modes exhibit the larger Raman shift with pressure. In addition, the ω_1 mode of the scheelite phase shows a negative pressure derivative. The mode Grüneisen parameters were calculated using the formula: $\gamma_i = (B_0/\omega_{0i})(d\omega_i/dp)$, where B_0 and ω_{0i} are the bulk modulus and the ambient-pressure phonon frequencies, respectively. The $d\omega_i/d_p$ and the scheelite-phase ω_{0i} come from the linear fitting results as described above. Errandonea *et al.* have recently put forward an experiential criterion: $B_0(\text{GPa}) = (610 \pm 110) Z_A/d_{A-O}^3$ to calculate the scheelite-phase bulk modulus, 22 where Z_A is the formal charge for A-site cation, | Zircon phase | | | | Scheelite phase | | | | |-----------------------|-----------------------------------|--|------------|-----------------|------------------------------------|--|------------| | Raman
mode | ω_{0i} (cm ⁻¹) | $d\omega_{\rm i}/dp$ (cm ⁻¹ GPa ⁻¹) | γ_i | Raman
mode | $\omega_{0i} \ (\mathrm{cm}^{-1})$ | $\frac{d\omega_i/dp}{(\text{cm}^{-1}\text{GPa}^{-1})}$ | γ_i | | $T(B_{\rm g})$ | 149 | 0.6 | 0.38 | ω_1 | 153 | -1.2 | -1.09 | | $T(E_{\rm g})$ | 162 | 0.71 | 0.42 | ω_2 | 186 | 2.4 | 1.79 | | $\nu_2 (B_g)$ | 257 | 2.0 | 0.74 | ω_3 | 232 | 1.1 | 0.66 | | $\nu_2 (A_g)$ | 362 | 1.8 | 0.47 | ω_4 | 312 | 2.3 | 1.02 | | $\nu_4 (B_{\rm g})$ | 552 | 3.6 | 0.62 | ω_5 | 355 | 1.8 | 0.70 | | $\nu_3 (B_{\rm g})$ | 778 | 4.2 | 0.51 | ω_6 | 421 | 2.3 | 0.76 | | ν_3 $(E_{\rm g})$ | 818 | 4.0 | 0.46 | ω_7 | 555 | 2.1 | 0.53 | | $\nu_1 \ (A_{\rm g})$ | 863 | 4.6 | 0.51 | ω_8 | 747 | 3.1 | 0.58 | | | | | | ω_{0} | 804 | 3.0 | 0.52 | TABLE I. The ambient-pressure phonon frequencies ω_{0i} , pressure derivatives of frequencies $d\omega_i/dp$, and mode Grüneisen parameters γ_i for various Raman modes of the zircon- and scheelite-type YCrO₄. and d_{A-O} is the average A-O distance (in Å) in AO_8 units. Consequently, the bulk modulus of the scheelite-type $YCrO_4$ can be estimated to be 139 GPa (the d_{Y-O} used here was determined to be 2.37 Å based on the refinement results²⁴). Kusaba et al.9 analyzed the mechanism of structural phase transition from zircon to scheelite and proposed that the density would increase by about 10% when this transition happened under high pressure. In addition, it was reported that the bulk modulus and the density obey the following relationship: $B_{02}/B_{01} = (\rho_{02}/\rho_{01})^4$ in the zircon-scheelite phase transition (B and ρ denote the bulk modulus and the density, and the subscripts 1 and 2 present the zircon and scheelite phase, respectively).^{39,40} Therefore, the bulk modulus of the zircon-type YCrO₄ could be calculated to be 95 GPa, and the corresponding mode Grüneisen parameters also were obtained, as shown in Table I. Due to the changes of bond lengths in the zircon-scheelite transition in ABO_4 compounds, Raman phonon frequencies of the B-O stretching modes usually will decrease, as reported in Refs. 6, 7, 10, and 12. As far as YCrO₄ is concerned, the ambient-pressure phonon frequency of ν_1 (A_g) FIG. 5. (Color online) X-ray powder diffraction patterns and the corresponding indices for the zircon- and scheelite-type YCrO₄. vibrational mode declines from 863 cm^{-1} to 804 cm^{-1} as listed in Table I. According to the expression of force constant κ : $\nu = 1/2\pi\sqrt{\kappa/m}$ (ν and m denote phonon frequency and atomic renormalized mass, respectively), the Cr-O bond strength will decrease by about 3.5%. It implies that the Cr-O bond lengths in CrO₄ units will increase, and the density of the CrO₄ polyhedra probably will decline when phase transition happens. Therefore, we think that the increase of density in the zircon-scheelite transition in YCrO₄ does not directly result from the reduction of coordination polyhedra, but from their more efficient packing as well as the elimination of structural voids among polyhedra, just as Reid *et al.* reported on the prototype of the zircon ZrSiO₄.³⁷ # 3. Effects of 3d electrons on Pc and Raman vibrations Table II lists a series of physical parameters, such as phase transition pressure P_c , ionic radii, ³⁸ and so on for some FIG. 6. (Color online) Raman spectra of (a) the pressure-released YCrO₄ to 0.5 GPa and (b) the scheelite-type YCrO₄ prepared using moderate temperature and pressure conditions. ABO_4 type $\nu_4 (B_g)$ $P_{\rm c}$ $R_{BO_4}^{a}$ (cm^{-1}) (GPa) (Å) Reference Compound (A) R_{BO_A}/R_A CaCrO₄ 6.0 1.48 464 12 1.12 1.66 $YCrO_4$ 3.0 1.019 1.745 1.712 552 this work YVO_4 1.019 487 6 and 8 7.5/8.5 1.755 1.722 DyVO₄ 1.027 1.755 482 7 6.5 ± 0.3 1.709 $TbVO_4$ 6.6 ± 0.6 1.040 1.688 480 1.755 ZrSiO₄ $19.7/23 \pm 1$ 0.84 1.66 1.98 11 and 10 TABLE II. Phase transition pressure P_c , the radii of A-site cation and BO_4 units and their ratios, phonon frequencies of ν_4 (B_g) mode for a series of ABO_4 zircon-type compounds. available data of ABO₄ zircon-type compounds at room temperature. Due to the smaller A-site cation radius as well as the more compacted BO₄ coordination polyhedra, the $A^{4+}B^{4+}O_4$ -type ZrSiO₄ displays the highest phase transition pressure. In addition, this type of compound usually has a larger bulk modulus, and potentially can be used as a kind of superhard materials.³⁹ For $A^{3+}B^{5+}O_4$ - and $A^{2+}B^{6+}O_4$ -type compounds, it was reported that P_c would increase with the increase of the ratio R_{BO_4}/R_A , where R_{BO_4} and R_A present the radii of BO_4 units and A-site cation. 41 R_{BO_4} were calculated according to the plus rule $R_{BO_4}=R_B+R_O$ using Shannon's ionic radii ($R_{\rm O}$ was set to be 1.40 Å).³⁸ The values of $R_{\rm A}$, $R_{B{\rm O}_4}$ and $R_{B{\rm O}_4}/R_A$ for different compounds are shown in Table II. It is known that only YCrO₄ deviates from the criterion mentioned above. Unlike other compounds listed in Table II with inert-element-like B-site cation configuration, there is a $3d^1$ electron in the out shell of Cr^{5+} ion in YCrO₄. During the compression, the cooperative interactions of these electrons will influence the system energy. As a result, the phase transition pressure of YCrO₄ is no more consistent with the criterion. In our views, $P_{\rm C}$ is related to both ionic radius and electronic configuration in the zircon-type compounds. In addition, Raman scattering experiments showed that aside from the Cr-O bond stretching modes, the phonon frequencies of other modes usually do not exceed 500 cm⁻¹ in ABO_4 zircon-type compounds as presented in Table II. However, YCrO₄ exhibits unusual Raman vibrations. As a specific example, the frequency of the bending mode ν_4 (B_g) reaches to 552 cm⁻¹. We believe that the unusual Raman vibrations in YCrO₄ also are related to the effects of $3d^1$ electrons. The interactions of d electrons will influence the bond lengths and angles in CrO_4 polyhedra. Thereby it results in the unusual Raman behaviors of $YCrO_4$. # IV. CONCLUSION The high-pressure Raman scattering was performed on the zircon-type YCrO₄ in 0-28.9 GPa at ambient temperature. The crystal structure of this compound sensitively depends on pressure. When pressure increases to 3.0 GPa, the tetragonal zircon phase will evolve toward a new phase. However this phase transition cannot complete until 15.1 GPa. The pressure-released Raman spectra show that the high-pressure new phase is quenchable to ambient conditions. Based on the similar Raman spectra, we assigned the new phase to be the same structure with our scheelite-type YCrO₄ in I4₁/a symmetry prepared at moderate temperature and pressure conditions. The mode Grüneisen parameters were calculated according to the fitting results and the experiential criterion for bulk moduli. The cooperative interactions of d electrons in Cr^{5+} ions will influence the system energy and the bond lengths and angles of CrO₄ tetrahedra. These are responsible for the unusual P_c and Raman vibrations observed in YCrO₄. ### **ACKNOWLEDGMENTS** This work was supported by the NSF and the Ministry of Science and Technology of China through Research Projects No. 2002CB613301, No. 2005CB724402, No. 50321101, No. 50332020, and No. 50371099. ^aReference 38. ^{*}Corresponding author. Email address: Jin@aphy.iphy.ac.cn ¹M. Ishii and M. Kobayashi, Prog. Cryst. Growth Charact. Mater. **23**, 245 (1991). ²N. Faure, C. Borel, M. Couchaud, G. Basset, R. Templier, and C. Wyon, Appl. Phys. B: Lasers Opt. **63**, 593 (1996). ³ M. G. Jani, F. L. Naranjo, N. P. Barnes, K. E. Murray, and G. E. Lockard, Opt. Lett. **20**, 8 (1995). ⁴M. Kobayashi, M. Ishi, Y. Usuki, and H. Yahagi, Nucl. Instrum. Methods Phys. Res. A 333, 429 (1993). ⁵ M. Nikl, P. Bohacek, N. Mihokova, N. Solovieva, A. Vedda, M. Martini, G. P. Pazzi, P. Fabeni, M. Kobayashi, and M. Ishii, J. Appl. Phys. 91, 5041 (2002). ⁶ A. Jayaraman, G. A. Kourouklis, G. P. Espinosa, A. S. Cooper, and L. G. Van Uitert, J. Phys. Chem. Solids 48, 755 (1987). ⁷S. J. Duclos, A. Jayaraman, G. A. Kourouklis, A. S. Cooper, and R. G. Maines, J. Phys. Chem. Solids **50**, 769 (1989). - ⁸ X. Wang, I. Loa, K. Syassen, M. Hanfland, and B. Ferrand, Phys. Rev. B **70**, 064109 (2004). - ⁹ K. Kusaba, T. Yagi, M. Kikuchi, and Y. Syono, J. Phys. Chem. Solids **47**, 675 (1986). - ¹⁰E. Knittle and Q. Williams, Am. Mineral. **78**, 245 (1993). - ¹¹ W. Van Westrenen, M. R. Frank, J. M. Hanchar, Y. Fei, R. J. Finch, and C. S. Zha, Am. Mineral. 89, 197 (2004). - ¹² Y. W. Long, W. W. Zhang, L. X. Yang, Y. Yu, R. C. Yu, S. Ding, Y. L. Liu, and C. Q. Jin, Appl. Phys. Lett. **87**, 181901 (2005). - ¹³ Y. W. Long, L. X. Yang, S. J. You, Y. Yu, R. C. Yu, C. Q. Jin, and J. Liu, J. Phys.: Condens. Matter 18, 2421 (2006). - ¹⁴W. I. F. David and A. M. Glazer, Phase Transitions 1, 155 (1979). - ¹⁵L. E. Depero and L. Sangaletti, J. Solid State Chem. **129**, 82 (1997). - ¹⁶ A. Grzechnik, K. Syassen, I. Loa, M. Hanfland, and J. Y. Gesland, Phys. Rev. B **65**, 104102 (2002). - ¹⁷S. R. Shieh, L. C. Ming, and A. Jayaraman, J. Phys. Chem. Solids 57, 205 (1996). - ¹⁸A. Sen, S. L. Chaplot, and R. Mittal, J. Phys.: Condens. Matter 14, 975 (2002); Phys. Rev. B 68, 134105 (2003). - ¹⁹ A. Grzechnik, W. A. Crichton, M. Hanfland, and S. Van Smaalen, J. Phys.: Condens. Matter 15, 7261 (2003). - ²⁰ S. Li, R. Ahuja, Y. Wang, and B. Johansson, High Press. Res. 23, 343 (2003). - ²¹V. Panchal, N. Garg, A. K. Chauhan, B. Sangeeta, and S. M. Sharma, Solid State Commun. 130, 203 (2004). - ²²D. Errandonea, J. Pellicer-Porres, F. J. Manjón, A. Segura, C. Ferrer-Roca, R. S. Kumar, O. Tschauner, P. Rodriquez-Hernández, J. Lopez-Solano, S. Radescu, A. Mújica, A. Muñoz, and G. Aquilanti, Phys. Rev. B 72, 174106 (2005). - ²³ V. H. Schwarz, Z. Anorg. Allg. Chem. **332**, 137 (1963). - ²⁴Y. W. Long *et al.* (unpublished). - ²⁵ E. Jimenez, J. Isasi, and R. S. Puche, J. Solid State Chem. **164**, 313 (2002); J. Alloys Compd. **312**, 53 (2000). - ²⁶R. S. Puche, E. Jimenez, J. Isasi, M. T. F. Diaz, and J. L. G. Munoz, J. Solid State Chem. **171**, 161 (2003). - ²⁷ K. Tezuka and Y. Hinatsu, J. Solid State Chem. **160**, 326 (2001). - ²⁸ E. Jimenez, P. Bonville, J. A. Hodges, P. C. M. Gubbens, J. Isasi, and R. S. Puche, J. Magn. Magn. Mater. **272**, 571 (2004). - ²⁹E. J. Melero, N. H. van Dijk, W. H. Kraan, P. C. M. Gubbens, J. Isasi, and R. S. Puche, J. Magn. Magn. Mater. **288**, 1 (2005). - ³⁰G. J. Piermarini, S. Block, J. D. Barnett, and R. A. Forman, J. Appl. Phys. 46, 2774 (1975). - ³¹ H. K. Mao, J. Xu, and P. M. Bell, J. Geophys. Res. **91**, 4673 (1986). - ³²S. A. Miller, H. H. Caspers, and H. E. Rast, Phys. Rev. **168**, 964 (1968). - ³³ A. Jayaraman, B. Batlogg, and L. G. Van Uitert, Phys. Rev. B 28, 4774 (1983). - ³⁴ A. Muller, E. J. Baran, and R. O. Carer, Struct. Bonding (Berlin) 26, 81 (1976). - ³⁵S. K. Deb, M. Wilding, M. Somayazulu, and P. F. McMillan, Nature 414, 528 (2001). - ³⁶D. Errandonea, M. Somayazulu, and D. Häusermann, Phys. Status Solidi B 235, 162 (2003). - ³⁷ A. F. Reid and A. E. Ringwood, Earth Planet. Sci. Lett. 6, 205 (1969). - ³⁸R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751 (1976). - ³⁹H. P. Scott, Q. Williams, and E. Knittle, Phys. Rev. Lett. 88, 015506 (2002). - ⁴⁰D. L. Anderson, Geophys. J. R. Astron. Soc. **13**, 9 (1967). - ⁴¹D. Errandonea, F. J. Manjon, M. Somayazulu, and D. Hausermann, J. Solid State Chem. **177**, 1087 (2004).