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The thermoelastic properties of tantalum have been investigated over its theoretical high-pressure bcc solid
phase �up to 26 000 K at 10 Mbar� using an advanced first-principles approach that accurately accounts for
cold, electron-thermal, and ion-thermal contributions in materials where anharmonic effects are small. Specifi-
cally, we have combined ab initio full-potential linear-muffin-tin-orbital electronic-structure calculations for
the cold and electron-thermal contributions to the elastic moduli with phonon contributions for the ion-thermal
part calculated using model generalized pseudopotential theory. For the latter, a summation of terms over the
Brillouin zone is performed within the quasiharmonic approximation, where each term is composed of a strain
derivative of the phonon frequency at a particular k point. At ambient pressure, the resulting temperature
dependence of the Ta elastic moduli is in excellent agreement with ultrasonic measurements. The experimen-
tally observed anomalous behavior of C44 at low temperatures is shown to originate from the electron-thermal
contribution. At higher temperatures, the main contribution to the temperature dependence of the elastic moduli
comes from thermal expansion, but inclusion of the electron- and ion-thermal contributions is essential to
obtain quantitative agreement with experiment. In addition, the pressure dependence of the moduli at ambient
temperature compares well with recent diamond-anvil-cell measurements to 1.05 Mbar. Moreover, the calcu-
lated longitudinal and bulk sound velocities in polycrystalline Ta at higher pressure and temperature in the
vicinity of shock melting ��3 Mbar� agree well with data obtained from shock experiments. However, at high
temperatures along the melt curve above 1 Mbar, the B� shear modulus becomes negative, indicating the onset
of unexpectedly strong anharmonic effects. Finally, the assumed temperature dependence of the Steinberg-
Guinan strength model obtained from scaling with the bulk shear modulus is examined at ambient pressure.
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I. INTRODUCTION

Vital to the understanding of the mechanical properties of
metals is the multiscale linkage between atomic-level elastic
and defect properties1 and continuum-level constitutive mod-
els, such as the well-known Steinberg-Guinan and Steinberg-
Lund strength models.2 One fundamental link between these
length scales is the single-crystal elastic moduli, which on
the one hand are determined at the atomic level from quan-
tum mechanics, while on the other hand, when suitably av-
eraged, they are also observed to provide both pressure and
temperature scaling of the macroscopic yield strength, as in-
deed is assumed in most of the continuum-level models. Ex-
perimentally, the elastic moduli in typical bcc metals such as
tantalum �Ta� are observed to stiffen under the application of
pressure,3 but to soften as the temperature increases.4,5 Mod-
ern electronic-structure methods based on density functional
theory6 �DFT� can treat the zero-temperature pressure depen-
dence of single-crystal elastic moduli from first principles,7,8

and in the case of Ta these have been predicted all the way to
10 Mbar in pressure. Treating the corresponding temperature
dependence, and more generally the full temperature-
pressure thermoelasticity, is a more formidable challenge,
however. In this regard, there has been recent work on new
approaches to thermoelasticity for metals with applications
to simple metals �Mg �Ref. 9�� and to transition metals �Ta
�Ref. 10��. Here we present an alternative first-principles
method relevant to transition metals with small anharmonic
effects, which is expected to include the group-VB bcc met-
als V, Nb, and Ta,11 at least near ambient pressure. We are

also currently extending our approach to include anharmonic
effects, and this extension will be reported in a subsequent
second paper in this series.

The present focus on Ta is motivated by several additional
factors as well. First, this metal is a prototype d-transition
metal for high-pressure investigations, with a high melting
temperature and a single solid bcc phase stable over a wide
range of pressure,12 which makes it a good candidate for
both equation of state and materials strength calibration. Tan-
talum has also been a recent favorite bcc metal for advanced
methodology development aimed at structural and thermody-
namic properties as well as elasticity, defects, and the multi-
scale modeling of mechanical properties.1,7,10,13–16 In this re-
gard, Ta shares in common with other central transition
metals the challenging physics issues of �i� directional
d-electron bonding, requiring robust electronic-structure
methods and an accurate treatment of angular as well as ra-
dial interatomic forces, and �ii� a high density of electronic
states near the Fermi level and significant electronic excita-
tion at high temperatures, requiring an explicit treatment of
electron-thermal as well as ion-thermal contributions to ther-
modynamic and mechanical properties.

The electron-thermal contribution to thermoelasticity in
transition metals can be treated in a reasonably straightfor-
ward manner by extending cold or zero-temperature DFT
electronic-structure calculations of elastic moduli to finite
temperature.10,13 To treat the ion-thermal contribution, how-
ever, one must additionally address the more difficult issue
of phonons and their strain dependence at arbitrary tempera-
tures and pressures. Three contrasting current approaches to
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the latter ion-thermal contribution to thermoelasticity can be
identified: �i� Monte Carlo �MC� simulation with exact fluc-
tuation formulas, as have been recently elaborated for simple
metals9; �ii� cell-model treatments of lattice vibrations, such
as the particle-in-a-cell �PIC� model of Gülseren and
Cohen10; and �iii� the quasiharmonic �QH� phonon formal-
ism of Wallace,17 as will be used in the present work.

The MC simulation approach is very general but requires
an explicit and differentiable representation of the total en-
ergy of the system. This is possible for both simple and tran-
sition metals using first-principles DFT-based generalized
pseudopotential theory �GPT�.18 For the limiting case of
simple metals, where both angular forces and electron-
thermal contributions can be neglected, the MC approach has
been implemented with GPT interatomic potentials and ap-
plied to hcp and bcc Mg at high pressures and temperatures.9

We are also currently extending this approach to bcc
transition metals using model-GPT �MGPT� multi-ion
potentials,13,19 as will be reported in our subsequent second
paper in this series. The principal advantage of the MC
method is that it exactly accounts for anharmonic ion effects
through rigorous fluctuation formulas that incorporate all in-
ternal relaxations. At the same time, the MC method is com-
putationally very intensive, so there remains considerable in-
terest in less expensive approaches, especially for cases
where anharmonic effects are small.

The PIC model of Gülseren and Cohen10 replaces the full
phonon problem with that of a single vibrating ion moving
in a cage defined by its frozen neighbors. This permits the
incorporation of anharmonic effects at some level of approxi-
mation, although the accuracy of this approach is not known
a priori. The principal advantage of the PIC model is that
it is simple enough to be coupled directly to a DFT pseudo-
potential electronic-structure method employed in a supercell
geometry, and the ion-thermal contribution to thermo-
elasticity can be calculated self-consistently as a function
of temperature and pressure without the introduction of any
additional parameters. Nonetheless, this too is a rather com-
putationally intensive procedure. The remaining cold and
electron-thermal contributions to the elastic moduli are ob-
tained using the full-potential, linearized augmented-plane-
wave �FP-LAPW� electronic-structure method. Gülseren and
Cohen have used their approach to study high-temperature
effects on the elastic moduli of Ta up to 4 Mbar in
pressure.10

Our present approach to thermoelasticity in bcc transition
metals combines two computational techniques: the full-
potential, linear-muffin-tin-orbital �FP-LMTO� electronic-
structure method as developed by Wills and collaborators20

and the MGPT interatomic-potential method.13,19 These
methods have been closely linked and used in tandem to treat
successfully a wide range of structural, thermodynamic, de-
fect, and mechanical properties of bcc transition metals, with
Ta as a prototype.13 The MGPT multi-ion potentials for Ta
well reproduce most relevant zero-temperature properties
that can be calculated with the FP-LMTO method. Here
MGPT is used to obtain the ion-thermal component of the
thermoelasticity, while the FP-LMTO method is used to cal-
culate the cold and electron-thermal components. To obtain
the ion-thermal component, MGPT multi-ion potentials have

been directly implemented in the QH phonon formalism of
Wallace.17 The advantages of the QH-MGPT approach are
principally twofold. First, this method is orders of magnitude
less computationally demanding than either MC simulation
or the self-consistent PIC model. Second, for any given ma-
terial the QH-MGPT approach provides a very useful base
line for any further investigations of anharmonic effects, as
could be accomplished, for example, through MC-MGPT
simulation. Our approach has been used to investigate the
temperature dependence of the elastic moduli in bcc Ta. That
is for all temperatures and pressures below the theoretical
melt line, which extends from T=3 400 K at P=0 Mbar to
T=26 000 K at P=10 Mbar.13 As discussed below, our re-
sults compare reasonably well �to within about 10%� with
available static experimental data for temperatures up to
melt4,5,21 and for high pressures to 1.05 Mbar.3 In addition,
for polycrystalline Ta at more extreme conditions our calcu-
lated aggregate sound velocities agree well with available
dynamic shock compression experiments.22 At the same
time, we find evidence of increasingly strong anharmonic
effects near melt above 1 Mbar. To make a connection to
constitutive strength models, we also compare our calculated
average shear modulus with results obtained from the
Steinberg-Guinan strength model.2

In Sec. II, the present formalism for bcc-metal ther-
moelasticity in the quasiharmonic limit is presented along
with the specifics regarding our computational approach. In
Sec. III, we present and compare our calculated results for Ta
with available experimental data and then we summarize our
work and draw conclusions in Sec. IV.

II. QUASIHARMONIC FORMALISM AND
COMPUTATIONAL APPROACH

A. Thermoelasticity at high temperature and pressure

In this section, we discuss the present QH formalism and
the computational details that compose our calculation of the
temperature and pressure dependence of single-crystal elastic
moduli in bcc transition metals. In the usual way and follow-
ing Moriarty et al.,13 the Helmholtz free energy A for a metal
at volume � and temperature T can be written as a sum of
cold, electron-thermal, and ion-thermal contributions:

A��,T� = E0��� + Ael��,T� + Aion��,T� , �1�

where E0 is the zero-temperature total energy of the elec-
tronic ground state—i.e., here the frozen bcc lattice; Ael rep-
resents the electron-thermal contribution from finite-
temperature electrons; and Aion represents the ion-thermal
contribution arising from ion motion—i.e., bcc phonons—at
the same temperature. Here � is taken as the volume per
atom or atomic volume and A is the free energy per atom.
The total hydrostatic pressure in the metal is

P��,T� = − � �A��,T�
��

�
T

, �2�

with corresponding relations for its three components. Other
thermodynamic quantities and their components are defined
similarly.

ORLIKOWSKI, SÖDERLIND, AND MORIARTY PHYSICAL REVIEW B 74, 054109 �2006�

054109-2



For the electron-thermal free energy, temperature is incor-
porated into Ael=Eel−TSel through �i� self-consistent changes
in the electronic density of states �DOS�, n�� ,� ,T�; �ii� a
broadened occupation of the DOS via the Fermi-Dirac dis-
tribution function f�� ,T�; and �iii� the electronic entropy

Sel��,T� = − kB� d� n��,�,T��f��,T�ln�f��,T��

− �1 − f��,T��ln�1 − f��,T��	 . �3�

Changes in the DOS and its occupation can arise both from
the effects of temperature for fixed structure and from struc-
tural disorder due to ion motion. We consider only the former
here and evaluate all electron-thermal contributions for the
perfect bcc lattice.

In general, the ion-thermal free energy has both quasihar-
monic and anharmonic components:

Aion��,T� = Aqh��,T� + Aah��,T� . �4�

Here we work entirely within the quasiharmonic approxima-
tion, where Aah=0 and the phonons interact only weakly and
are determined by zero-temperature forces. Anharmonic ef-
fects will be considered in our subsequent second paper, but
any additional electron-phonon coupling is neglected. The
familiar result for the remaining quasiharmonic phonon free
energy can be written

Aqh��,T� =
1

N


�
�1

2
� �� + kBT ln�1 − e−���/kBT	� , �5�

where kB is Boltzmann’s constant and �� represents an indi-
vidual phonon frequency. The summation is over �=ks,
where a regular k-point mesh of the irreducible part of the
Brillouin zone is used and where s represents the individual
phonon branches. It should be noted that in general �� is
dependent on volume, but not on temperature.

With this partitioning of the Helmholtz free energy, the
individual contributions to the isothermal elastic moduli,
Cijkl

T , are calculated by taking the strain derivatives on Eq.
�1�. With the displacement given as u=X−x, between the
reference configuration X and the strained configuration x,
the displacement gradient is then given by uij =�ui /�Xj and
the Lagrangian strains are �ij =

1
2 �uij +uji+
kukiukj�. Thus, the

derivative with respect to the strain on the Helmholtz energy,
Eq. �1�, is

Cijkl
T =

1

�
� �2A

��ij � �kl
�

T��
, �6�

where �� indicates that all other strains are held fixed. This
yields the individual cold, electron-thermal, and ion-thermal,
contributions to the elastic moduli:

Cijkl
T = Cijkl

0 + Cijkl
el + Cijkl

ion . �7�

In general, for a material under a hydrostatic pressure P, as
represented by a stress tensor �ij

0 =−P	ij, the stress-strain co-
efficients Bijkl

T defined by Wallace17 according to

�ij�x,T� = �ij
0 �X,T� + 


kl

Bijkl
T �kl + ¯ �8�

are the most convenient quantities to consider. The coeffi-
cients Bijkl and Cijkl are related through the general expres-
sion

Bijkl =
1

2
��il	 jk + � jl	ik + �ik	 jl + � jk	il − 2�ij	kl� + Cijkl,

�9�

which is equally valid for either isothermal or adiabatic
moduli. For cubic materials, where there are three indepen-
dent elastic moduli at a given volume or pressure, this ex-
pression yields the well-known relationships �in Voigt nota-
tion� B11=C11− P, B12=C12+ P, and B44=C44− P. In the
high-pressure physics community, it is customary to refer to
the Bijkl as the pressure-dependent elastic moduli of the ma-
terial and indeed to denote them as Cijkl. Here we retain the
Wallace notation defined above for clarity. Physically, the
Cijkl are elastic moduli with the reference system taken as the
uncompressed perfect crystal at its equilibrium volume �0
and zero pressure, whereas the Bijkl are the moduli with the
reference system taken as the compressed perfect crystal at
volume � and pressure P. The Bijkl thus have the same in-
terpretation at each volume or pressure considered.

To compare with experiment, the isothermal moduli Bijkl
T

must also be transformed to the adiabatic moduli Bijkl
S by the

following relation:

Bijkl
S − Bijkl

T =
T�

C�
� ��ij

�T
�

�
� ��kl

�T
�

�

, �10�

noting that Bijkl
S −Bijkl

T =Cijkl
S −Cijkl

T . For an isotropic material
this relationship is simplified, since the stress tensor is
�ij =−P	ij. Also, C� can be replaced by CV, the specific heat
at constant volume, for cubic materials under hydrostatic
pressure. In this case Eq. �10� leads to the useful results �in
Voigt notation�

B44 = B44
S = B44

T �11�

and

B11
S − B11

T = B12
S − B12

T =
T�

CV

2BT

2 , �12�

where 
 is the usual thermal expansion coefficient 

=�−1�� /�T
P and BT is the isothermal bulk modulus BT

=�� P /��
T= 1
3 �B11+2B12�. From Eq. �12�, it follows that

the adiabatic bulk modulus is just

BS = BT +
T�

CV

2BT

2 �13�

and that the shear modulus B�= 1
2 �B11−B12� is that same for

either the isothermal or adiabatic case. At zero pressure, of
course, B� and B44 reduce to C� and C44, respectively, and
the familiar notation for the shear moduli is recovered.

In practice we determine the three independent isothermal
moduli Bijkl

T and their components at a given volume and
temperature from the bulk modulus BT via the equation of
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state, Eq. �2�, corresponding to a pure volume deformation of
the metal, and from the shear moduli B� and B44 via volume-
conserving tetragonal and orthorhombic deformations.7,23

B. Computational methods

The cold and electron-thermal contributions to the elastic
moduli of our Ta prototype are calculated from first prin-
ciples using the FP-LMTO method.7,20 This all-electron, full-
potential DFT method is very robust, and in the past it has
been successfully applied to calculate the structural, me-
chanical, and defect properties of many d-transition metals
including Ta.7,14,24 Here, we build on previous FP-LMTO Ta
calculations of the cold elastic moduli to 10 Mbar in
pressure7 and use the same computational prescription but
with the inclusion of temperature. In this approach, all rela-
tivistic effects are included: the core electrons are treated by
solving the Dirac equation and the spin-orbit interaction is
accounted in a variational fashion for the valence states.25

This is a full-potential method that does not have any shape
approximations to either the one-electron potential or to the
charge density. This is accomplished by dividing the crystal
into two regions: muffin-tin spheres surrounding each atom
and the remaining interstitial volume. Within the spheres,
centered at each atomic site and moving rigidly with the
atom under deformation, a Bloch sum of linear-muffin-tin
orbitals and an expansion in terms of structural constants
describe the wave functions. In the interstitial region, the
wave functions are expanded in Hankel and Neumann func-
tions and with Bessel functions. Also, in the interstitial re-
gion, the kinetic energy can be nonzero and is described by a
double-basis set for the semicore states 5s, 5p, and 4f and
for the valence states 6s, 6p, 5d, and 5f �the use of the
double basis reduces truncation errors in the expansions�. For
the exchange-correlation functional in DFT, the generalized
gradient approximation �GGA� by Perdew et al.26 is used.
The electron temperature is incorporated through the Fermi-
Dirac distribution as previously mentioned, and the elec-
tronic entropy is calculated via Eq. �3�. The free energy cal-
culations for Ta are well converged to the �Ry level, where
approximately 2000 k points over the irreducible part of the
Brillouin zone for the smallest of volumes was determined to
be satisfactory. For each volume considered �seven volumes
total�, the shear elastic moduli B� and B44 were calculated for
seven to nine temperatures. In each case this was accom-
plished by calculating the free energy as a function of shear
strain relative to the compressed lattice and then fitting the
result with a suitable quadratic function to extract the cold
plus electron-thermal modulus.

The remaining ion-thermal contribution to the Ta elastic
moduli is calculated with the complementary MGPT multi-
ion potentials derived from DFT-based generalized pseudo-
potential theory.18,19 The MGPT potentials fully account for
the directional bonding arising from partially filled d bands
in central transition metals, which is important to the reliable
calculation of structural and mechanical properties in these
materials. For the bulk metal at volume �, the GPT total-
energy functional that defines the potentials is of the form

Etot�R1, . . . ,RN� = NEvol��� +
1

2

i,j

�v2�ij ;��

+
1

6 

i,j,k

�v3�ijk;�� +
1

24 

i,j,k,l

�v4�ijkl;�� ,

�14�

where R1 , . . . ,RN denotes the positions on the N ions in the
metal and the prime on each sum over ion positions excludes
all self-interaction terms where two indices are equal. The
leading volume term in this expansion, Evol, as well as the
two-, three-, and four-ion interatomic potentials v2, v3, and
v4, are volume-dependent, but structure-independent quanti-
ties and thus transferable to all bulk ion configurations, ei-
ther ordered or disordered, including the deformed solid. For
the perfect bcc solid, Etot=E0, the cold energy in Eq. �1�. In
Eq. �14�, the ion-ion pair potential v2�ij ;��=v2�Rij ,�� at
fixed volume is a one-dimensional function of the radial dis-
tance Rij between the ion sites i and j. The three- and four-
ion potentials are the corresponding three and six-
dimensional functions, v3�ijk ;��=v3�Rij ,Rjk ,Rki ,�� and
v4�ijkl ;��=v4�Rij ,Rjk ,Rkl ,Rli ,Rki ,Rlj ,��, respectively. In
the full first-principles GPT, these are all long-ranged
nonanalytic functions, however, so that the multi-ion poten-
tials v3 and v4 cannot be readily tabulated for application
purposes. This has led to the development of the model GPT
or MGPT for bcc transition metals.19 Within the MGPT, the
multi-ion potentials are systematically approximated by in-
troducing canonical d bands and other simplifications to
achieve short-ranged analytic forms, which can then be ap-
plied to both static and dynamic simulations. To compensate
for the approximations introduced into the MGPT, a limited
amount of parametrization is allowed in which the volume-
dependent coefficients of the modeled potential contributions
are constrained by first-principles theoretical data on funda-
mental quantities or, if desired and available, the correspond-
ing experimental data. In this form, the MGPT has proven to
provide a robust framework for performing accurate and pre-
dictive atomistic simulations on bulk transition metals.

In the present work, we have used the optimized Ta
MGPT potentials recently developed for application to struc-
tural, thermodynamic, defect, and mechanical properties in
the 0–10-Mbar pressure range.13,15 The constraining physi-
cal data in this case have been obtained from our first-
principles FP-LMTO calculations,7,14 augmented by a small
amount of experimental data near ambient conditions. As a
consequence the present MGPT potentials are highly consis-
tent with the FP-LMTO results and, in particular, well repro-
duce the cold equation of state and the cold shear moduli
over the entire 10-Mbar pressure range. The latter compari-
son is shown in Fig. 1. In addition, the potentials yield
good phonons over this same pressure range, with the pre-
diction of a Grüneisen parameter with a nonlinear volume
dependence.13 The Ta MGPT potentials also have been suc-
cessfully applied to many related problems, including melt-
ing and resolidification, point-defect formation and migra-
tion, dislocation structure and mobility, and grain-boundary
structure.13,15,27
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The ion-thermal contribution to Cijkl
T in Eq. �7� is obtained

from the strain differentiation of Aqh�� ,T�, which can be
written as the Brillouin-zone summation

Cijkl
ion =

1

�


�

� �����,ijkl�n̄� +
1

2
� + 
�,ij
�,klT�� n̄�

�T
�

�
� ,

�15�

where n̄�= �e− ��� � kBT −1�−1 is the Bose-Einstein distribution
and the strain derivatives of the phonon frequencies are de-
fined as


�,ij = −
1

��
� ���

��ij
�

��
, �16�

��,ijkl =
1

��
� �2��

��ij��kl
�

��
. �17�

Again �� means that all other strains are held fixed. The
quantity 
�,ij is the generalized Grüneisen parameter. In prin-
ciple, these derivatives can be obtained by formal strain dif-
ferentiation of the dynamical matrix, but here this is a formi-
dable task due to the complex many-body nature of the
MGPT total energy, Eq. �14�. Therefore, we have instead
developed a numerical procedure to evaluate the quantities

�,ij and ��,ijkl by expanding �� in powers of �ij,

���x,�ij� = ���X� + 

ij

a�,ij�ij + 

ijkl

b�,ijkl�ij�kl + ¯ ,

�18�

where the expansion coefficients a�,ij and b�,ijkl are propor-
tional to the desired quantities 
�,ij and ��,ijkl, respectively. In
this procedure, �� is calculated for a series of small defor-
mations in an analogous manner to that of determining the

zero-temperature elastic moduli. The result is then fitted with
Eq. �18� and the expansion coefficients obtained. For a cubic
system, volume-conserving orthorhombic and tetragonal de-
formations, as well as a uniform compression of the system,
give useful combinations of the expansion coefficients from
which 
�,ij and ��,ijkl can be obtained and the ion-thermal
elastic moduli calculated via Eq. �15�. For the Brillouin-zone
summation in Eq. �15�, we have found no change in results
for a regular k-point mesh of more than 500 points. Ion-
thermal components to the Ta elastic moduli were thereby
calculated at a total of 18 volumes with at least 40 tempera-
ture points for each volume.

III. RESULTS AND COMPARISONS

In this section we discuss our calculated results, with an
emphasis on comparison with experiment at both ambient
and extreme conditions and on making contact with the im-
pact of thermoelasticity on constitutive strength modeling.
As has been indicated, the calculations of the cold, electron-
thermal, and ion-thermal components of the Ta elastic
moduli and pressure were performed over individual grids of
volume and temperature via the aforementioned FP-LMTO
and MGPT methods. These separate contributions were then
brought together through interpolation for each � ,T point of
interest, using Birch-Murnaghan-type28 fits in the volume �
and polynomial fits in the temperature T. As above, the no-
tation Cijkl will be used for P=0 and Bijkl when P�0 in the
general case, while specific elastic moduli will be written in
contracted Voigt notation.

A. T and P dependence

We first consider the temperature and pressure depen-
dence of the single-crystal Ta elastic moduli. Our adiabatic
elastic moduli at ambient pressure and temperature condi-
tions are given in Table I and compared with experimental
data from several sources. The latter include accurate ultra-
sonic measurements29,30 as well as high-pressure diamond-
anvil-cell �DAC� measurements extrapolated to zero pres-
sure. The DAC results for Cijkl

S were obtained by a stress and
angle-resolved x-ray diffraction �SAX� technique3 and in the
case of the bulk modulus also from independent DAC

TABLE I. The present calculated adiabatic elastic moduli in Ta
at ambient conditions �P=0, T=300 K� compared to experimental
data, with all quantities in Mbar. Note C44

S =C44
T =C44.

C11
S C12

S C44
S C� BS

Present theory 2.58 1.55 0.74 0.52 1.89

Katahara et al.a 2.66 1.61 0.82 0.53 1.96

Featherston and Neighboursb 2.61 1.57 0.82 0.52 1.92

Cynn and Yooc 2.47 1.76 0.84 0.36 2.00

Cynn and Yood 1.94

aReference 29.
bReference 30.
cReference 3.
dReference 12.

FIG. 1. Zero-temperature shear elastic moduli in bcc Ta over the
10-Mbar pressure range of interest in this paper, as calculated from
the FP-LMTO method and from the present MGPT multi-ion inter-
atomic potentials.
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equation-of-state measurements.12 It should be noted that the
DAC-SAX results have significantly larger error bars than
the other data. Our calculated results are in generally good
accordance with ultrasonic data, with the largest discrepancy
being a 10% underestimate in the value of C44

S .
For the temperature dependence of the Ta elastic moduli,

we present in Fig. 2 our calculated results in the range
0–3500 K at ambient pressure together with data taken from
ultrasonic measurements.4,30 The overall agreement of the
present results with experiment is very good at all tempera-
tures, even near melt. Both theory and experiment indicate
significant thermal softening in C11

S and C44
S at high tempera-

ture. As discussed below, the overall observed trend towards
softening of the elastic moduli at high T is due to thermal
expansion—i.e., the decrease in the cold contribution Cijkl

0

with increasing volume—but the electron- and ion-thermal
contributions play significant quantitative roles in their de-
tailed behavior. In particular, the anomalous temperature be-
havior of C44

S �non-T4 decrease for low T and non-T decrease
for high T� discussed in Ref. 4 is obtained in our calcula-
tions. Also plotted in Fig. 2 for comparison are the Ta elastic
moduli calculated by Gülseren and Cohen 10 with their PIC
method.

To provide further insight into the thermal dependence of
the Ta elastic moduli, we present in Figs. 3 and 4 the separate

cold, electron-thermal, and ion-thermal contributions to the
shear moduli C� and C44. For this purpose, we have factored
the cold component Cijkl

0 from Eq. �7� obtaining the thermal
components to Cijkl as relative fractions �ijkl

el =Cijkl
el /Cijkl

0 and
�ijkl

ion =Cijkl
ion /Cijkl

0 to the cold component, so that

Cijkl = Cijkl
0 �1 + �ijkl

el + �ijkl
ion � . �19�

These definitions can be applied to either isothermal or adia-
batic moduli and likewise to Bijkl. In C� as well as C44, the
cold component to the modulus �top panels of Figs. 3 and 4�
contributes a major part of the high-temperature softening.
This directly reflects the thermal volume expansion required
to maintain zero pressure. In both cases, however, the
electron- and ion-thermal components are equally important
to the overall thermal dependence of the modulus. Interest-
ingly, the roles of the two thermal components interchange in
their importance in the two cases. For C� �bottom panel of
Fig. 3� the ion-thermal component is a factor of 3 larger in
value than the electron-thermal component and is negative,
thus helping to soften C� near melt, whereas for C44 �bottom
panel of Fig. 4� the electron-thermal component increasingly
contributes to the overall softening of that modulus as melt is
approached. It is primarily the electron-thermal component
that is responsible for driving C44 away from its expected T4

low-temperature behavior and T high-temperature behavior.
We next turn to comparisons with experiment at high

pressure and high temperature. In Fig. 5 we compare our
calculated high-pressure adiabatic moduli Bijkl

S at 300 K with
room-temperature data obtained from DAC-SAX measure-
ments to 1.05 Mbar �105 GPa�.3 Over this pressure range
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FIG. 2. For single-crystal Ta at ambient pressure, the present
calculated adiabatic elastic moduli �solid lines� and corresponding
ultrasonic data �Refs. 4 and 30� �solid circles and triangles� are
compared as a function of temperature up to melt. Previous calcu-
lations via the PIC method �Ref. 10� �dashed lines� are also shown.
Note that C44

S =C44
T =C44 and that C11

S �C12
S �C44

S at all tempera-
tures, which is consistent with bcc lattice stability up to melt.
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FIG. 3. The present calculated Ta shear modulus C� and its

components as a function of temperature at ambient pressure. Top
panel: the full calculated C� �solid line� and its cold component
�dotted line� together with experimental data �Ref. 4� �solid circles�.
Bottom panel: the relative electron-thermal �dot-dashed line� and
ion-thermal �dashed line� components to C�, as defined in Eq. �19�.
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and up to about 2 Mbar, we predict linear dependences of
B11

S , B12
S , and B44

S on pressure that appear consistent with the
data, although the error bars in DAC-SAX measurements
become quite large above 0.7 Mbar.

At higher pressures and temperatures in Ta, contact with
shock experiments can be made through the measured sound
velocity,22 which can be obtained in both the bulk solid and
the liquid and is frequently used as a diagonstic to detect
shock melting. In such an experiment, the sound velocity of
a macroscopic, polycrystalline sample is measured along the
Hugoniot of the material, which is a locus of final shock
states reached from a common initial state �P0 ,T0�. To deter-
mine the principal Hugoniot, which is the path of interest
here, it is sufficient to take P0=0 and T0=300 K, and to
calculate the Hugoniot path in pressure and temperature from
the FP-LMTO- and MGPT-derived Ta equation of state.13

The adiabatic moduli Bijkl
S �P ,T� can then be calculated along

the same path and used to estimate the isotropic, polycrys-
talline aggregate sound speed for Ta through the bulk modu-
lus BS and average shear modulus G.8,10,17 The latter is here
obtained by averaging the rigorous Hashin-Shtrikman
bounds g1 and g2 for an isotropic polycrystal:21

G =
1

2
�g1 + g2� , �20�

where

g1 = B� +
3

5

B44 − B�
− 4
1

,

g2 = B44 +
2

5

B� − B44
− 6
2

, �21�

with


1 = − 3
BS + 2B�

5B��3BS + 4B��
,


2 = − 3
BS + 2B44

5B44�3BS + 4B44�
. �22�

Our calculated longitudinal sound velocity vlong
=��BS+4G /3� /�, where � is the density, is plotted in Fig. 6,
for the bcc solid and is seen to coincide well with the solid
phase shock data.22 Near 3 Mbar the measured sound veloc-
ity drops to its bulk value, vbulk=�BS /�, which is the value
attained when the shear moduli G goes to zero as the bcc
solid melts and transforms to a liquid. In Fig. 6 our calcu-
lated bulk sound velocity is that for the solid bcc phase rather
than the liquid, but good agreement with the data is main-
tained. In this regard, the difference between the solid and
liquid bulk moduli in Ta is expected to be small, since the
volume change at the calculated shock melt temperature of
approximately 11 000 K is only a few percent. Hence, we
expect only small changes to the bulk sound velocity above
the shock melt point. Additionally, for comparison, the cal-
culated shear sound velocity, vshear=�G /�, in the bcc solid is
plotted in Fig. 6.
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A related measure relevant to the sound velocities for
single crystals is the elastic anisotropy ratio A. Here we use
the definition8 A=2�B44−B�� /B11 for a cubic system. For bcc
tantalum we give in Fig. 7 �top� the pressure dependence of
A�P ,T=300 K�, where it is seen that there is a rapid de-
crease in value until approximately 1 Mbar then A increases
to over 0.3 at 10 Mbar. This is qualitatively similar to previ-
ous tantalum results at T=0 K for the ratio B44/B� obtained
by FP-LMTO and also by MGPT calculations.13 At ambient
conditions the present theory yields a ratio of A=0.20, which
compares well to the experimental ratio of A=0.22 based on
data of the Katahara et al.29 While the DAC-SAX data3 con-
firm the initial decrease in A with pressure, a close compari-
son between theory and experiment is not possible, because
the error bars for the data �not shown in Fig. 7� are large.
Also given in Fig. 7 �bottom� is the anisotropic ratio along
the melt line. The theoretical melt line extends from T
=3400 K at P=0 to T=26 000 K at P=10 Mbar. Electron-
and ion-thermal effects stiffen B44 relative to B� and remove
the minimum seen in the top panel, so that A is significantly
increased at all pressures. This behavior is detailed below in
terms of the individual moduli along the melt.

As a final example of predicted thermoelastic behavior in
Ta, we consider the behavior of the single-crystal bcc shear
elastic moduli B� and B44 along the high-pressure melt curve.
In Fig. 8 we plot our calculated shear elastic moduli and their
components along this path. It is seen that B44 increases more
or less linearly with pressure, which is similar to its behavior
at low temperature. In contrast, B� decreases monotonically
with pressure, becoming negative beyond about 1 Mbar.
This behavior is driven by the large negative ion-thermal

contribution calculated in the quasiharmonic limit. However,
full molecular dynamics �MD� simulations of the high-
temperature solid with the same MGPT potentials13 demon-
strate that the bcc structure is everywhere stable up to melt.
Since the MD simulations implicitly include anharmonic ef-
fects, this implies that B� should remain everywhere positive
and that here there are large missing anharmonic contribu-
tions. These latter contributions are currently being investi-
gated with our full MC-MGPT approach to be reported in
our subsequent second paper.

B. Implications for constitutive modeling

In this section we briefly discuss the implications of our
advanced treatment of thermoelasticity on constitutive mod-
els of strength. Such models typically scale the strength at
ambient conditions to high pressure and temperature through
the average shear modulus G�P ,T�. In particular, this is done
very explicitly in the well-known and widely used Steinberg-
Guinan �SG� strength model.2 The SG model includes a phe-
nomenological relation for G�P ,T� appropriate to macro-
scopic polycrystalline material that is essentially a modified
Taylor series expansion to first order in both pressure and
temperature:

G�P,T� = G0�1 +
1

G0

dG

dP

P

�1/3 +
1

G0

dG

dT
�T − 300�� , �23�

where G0=G�P=0,T=300 K� and where �=� /�0. The as-
sumed pressure dependence in Eq. �23� has been previously
validated in the case of Ta to about 6 Mbar using our first-
principles FP-LMTO results.7 Here we focus only on the
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Hashin-Shrikman bounds. Experimental data from Ref. 22: solid
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temperature dependence contained in the final term of Eq.
�23�. Specifically, we consider G�P=0,T�=G0�1+A0�T
−300��, where A0=1/G0�dG /dT� is evaluated at zero pres-
sure and T=300 K. Using the present single-crystal elastic
moduli, we have calculated the corresponding Voigt average
Gv�0,T�=1/5�2C��0,T�+3C44�0,T�� and compared the re-
sult with SG in Fig. 9. �Using the alternative Hashin-
Shtrikman average of the shear modulus considered above,
we obtain similar results.� The ambient-temperature shear
modulus G0 used in the SG model for Ta has an empirical
value of 0.69 Mbar, while we calculate 0.64 Mbar, reflecting
our underestimate of C44 from Table I. For A0, the SG model
gives −0.13 �kK�−1 compared to our calculated value of
−0.10 �kK�−1. As shown in Fig. 9, the SG model describes
the overall linear trend of the experimental data from near
the Debye temperature �226 K� to about 1500 K, corre-
sponding to about half of the melt temperature. However,
below 200 K and above 1500 K both experiment and the
present theory indicate a significant departure from a linear
temperature dependence for G�0,T�.

The linear temperature dependence of G�P ,T� assumed in
the SG model is a common assumption that is widely used in
analytical modeling of the shear modulus.31,32 If a more ac-
curate description is required, then a full calculation such as
that presented here must be performed, where both the
electron- and ion-thermal contributions are taken into ac-
count. This leads one away from simple analytical models
but to equally tractable, tabular representations of the elastic
moduli.

IV. CONCLUSIONS

We have presented in this paper an approach to ther-
moelasticity for transition metals that self-consistently com-
bines a first-principles FP-LMTO treatment of cold and
electron-thermal components of elastic moduli with a
quantum-based MGPT treatment of the ion-thermal compo-
nent. Here the latter has been developed entirely within the
quasiharmonic phonon approximation, leading to a very
computationally efficient method that is applicable to mate-
rials and/or temperature-pressure regimes where anharmonic
effects are small. As a prototype, we have extensively ap-
plied this approach to bcc tantalum over wide ranges of tem-
perature and pressure, up to 26 000 K at 10 Mbar. In this
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regard, we have demonstrated through comparison with ex-
periment that the method well describes �i� the temperature
dependence of the single-crystal elastic moduli at ambient
pressure all the way to melt, including anomalous nonlinear
behavior at low and high temperatures; �ii� the pressure de-
pendence of the elastic moduli at ambient temperature to
above 1 Mbar; and �iii� longitudinal and bulk sound veloci-
ties of the polycrystal along the Hugoniot up to and includ-
ing shock melting near 3 Mbar. At the same time, we find
that the B� shear modulus becomes negative at high tempera-
ture along the melt curve above 1 Mbar in pressure. Since
full MD simulations �where anharmonicity is implicitly
treated� indicate that the bcc structure remains everywhere
mechanically stable, we conclude that anharmonic contribu-
tions to the thermoelasticity become important in this re-
gime. These missing anharmonic effects will be treated in
our more general MC-MGPT ion-thermal approach to be re-

ported in a subsequent paper of this series. Finally, in the
context of constitutive strength models, we have validated
the assumed linear temperature dependence of the shear
modulus G�P ,T� for Ta in the range extending from the De-
bye temperature to the half of the melt temperature. In the
future it should be possible to use general treatments of ther-
moelasticity such as the present one to develop more accu-
rate models of G�P ,T� for high-pressure and -temperature
constitutive modeling applications, as required.
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