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The anisotropy of the nonlinear static dielectric response of inorganic relaxor ferroelectrics of lead magne-
sium niobate �PMN� type is studied in the framework of the spherical random bond–random field model.
Assuming that the shape of a polar nanoregion �PNR� and thus its dipole moment is modified by the action of
homogeneous lattice strains, the anisotropic part of the interaction between the PNRs is derived. This interac-
tion is bilinear in the electric field as well as in the order parameter field components, and gives rise to an
effective field-dependent interaction strength, which depends both on the magnitude and the direction of the
electric field. In addition to the isotropic intrinsic nonlinearity of the system studied earlier, we thus obtain an
anisotropic part of the nonlinear response. By comparing the results with the experimental data of Tagantsev
and Glazounov �Appl. Phys. Lett. 74, 1910 �1999�� for PMN we calculate the temperature dependence of the
anharmonicity coefficients in the effective free energy of the system.
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I. INTRODUCTION

Relaxor ferroelectrics have long been attracting consider-
able attention not only in view of their potential applicability
to a number of practical devices, but also because of their
interesting physical properties.1 In contrast to conventional
ferroelectrics, relaxors are characterized by slow relaxation
and a strong frequency dispersion of the dielectric permittiv-
ity, and by the absence of macroscopic symmetry change
down to the lowest temperatures. Typical representatives are
the mixed ABO3 perovskite oxides such as PbMg1/3Nb2/3O3
�or PMN�, but in recent years a number of inorganic and
organic materials have been found to exhibit the same kind
of relaxor behavior. In addition to the above normal or
proper relaxors, there is a group of materials such as stron-
tium barium niobate �SBN�,2 in which ferroelectric long
range order and a relaxorlike dispersion coexist. It is be-
lieved that in the case of these “improper” relaxors the con-
cept of diffuse phase transition, originally proposed for PMN
and related systems,3 may be applicable.

A common feature of relaxor systems is the existence of
polar clusters or nanoregions �PNRs�,4 which appear as a
result of compositional fluctuations in a highly polarizable
lattice. Similar to dipolar glasses, these PNRs are coupled
through long range random dipolar interactions or random
bonds and are subject to local random electric fields. In con-
trast to dipolar glasses, however, the lengths of the dipolar
moments of PNRs are not fixed, but rather have a broad
statistical distribution. By assuming a generalized gamma
distribution one obtains the so-called spherical random
bond–random field �SRBRF� model of relaxor
ferroelectrics,5,6 which is exactly solvable. The SRBRF
model has several limitations. Specifically, the model is static
and thus applicable to phenomena occurring in the ergodic
relaxor phase or to quasistatic phenomena in the nonergodic
phase. The linear static dielectric susceptibility �1 calculated
from the SRBRF model corresponds to the field-cooled static
susceptibility, which is measured by cooling the system
slowly in a small bias field and monitoring the surface

charge.7 Thus the calculated static susceptibility will not ex-
hibit a broad temperature maximum, which is a typical fea-
ture of the low frequency response of relaxors and is essen-
tially a dynamic effect.8 Since random fields are present, the
Edwards-Anderson �EA� order parameter q is nonzero at all
temperatures, and does not mark the transition into the non-
ergodic relaxor state. For the same reason, the isotropic part
of the third order nonlinear susceptibility �3 does not diverge
at the ergodic-nonergodic transition, but only exhibits a peak
whose width depends on the strength of the random fields.

Here and in the following, the linear and nonlinear sus-
ceptibilities are defined, as usual, in terms of an expansion of

the physical polarization P� in powers of the applied static

electric field E� . For a general orientation of the field we can
write

P� = Ps,� + �
�

�1
��E� + �

��

�2
���E�E� − �

���

�3
����E�E�E�

+ ¯ . �1�

In relaxors, the spontaneous polarization Ps,���=x ,y ,z� is
zero, and in case of inversion symmetry the second order
nonlinear response �2

��� will be zero as well. Note that we
have introduced the third order nonlinear susceptibility ten-
sor �3

���� with a negative sign though sometimes the oppo-
site sign is chosen.

In a cubic relaxor, the linear susceptibility �1
�� is replaced

by a scalar, �1. It should be noted, however, that in PMN the
quasistatic linear susceptibility measured in a weak applied
field is slightly anisotropic9 because the field breaks the av-
erage cubic symmetry. Here we will consider the linear sus-
ceptibility in cubic systems in zero applied field, which is
isotropic. For fields along a symmetry direction �p�, say,

�100�, �110�, or �111�, we expect that P� will be parallel to E�

and Eq. �1� will contain a single component of P� and E� along
�p�.

It has been found experimentally in PMN that the longi-
tudinal nonlinear susceptibility �3 shows a strong anisotropy
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with respect to the orientation of the field.9,10 For a field
along �100� one finds �3

�100��0, whereas �3
�111�	0 for

E� � �111�. Thus for PMN and related systems, Eq. �1� can be
written in a simplified form10

P = �1E − �3
�p�E3 + ¯ . �2�

The purpose of the present work is to discuss the origin of
the anisotropic nonlinear dielectric response of relaxor ferro-
electrics within the framework of the SRBRF model. We
propose a mechanism based on the deformation of PNRs due
to lattice strain fluctuations, which gives rise to a change of
magnitude and orientation of the PNR dipole moment. This
then leads to a field-dependent effective interaction between
the PNRs, from which the anisotropic part of the nonlinear
susceptibility can be derived. According to this mechanism,
the anisotropy of �3 is intimately related to the existence of
PNRs and thus seems to be a unique feature of relaxor fer-
roelectrics, which so far has not been observed in spin and
dipolar glasses.

II. LINEAR AND NONLINEAR RESPONSE OF RELAXORS

It has been recognized a long time ago that the linear
susceptibility �1 of a relaxor deviates from the Curie-Weiss
�CW� behavior over a wide temperature range.3 Viehland et
al.11 pointed out that there exists a close analogy between
relaxors and spin—or rather dipolar—glasses and that the
linear susceptibility of a relaxor can be described by the
well-known formula derived originally for spin glasses,12

�1 = C0
1 − q�T�

T − 
�1 − q�T��
. �3�

Here C0 is an effective CW constant, and q�T� is a general-
ized EA order parameter, which is nonzero at all tempera-
tures. The temperature dependence of q�T� can be extracted
from the experimental data, and C0 and the effective CW
temperature 
 are determined from the asymptotic high-
temperature behavior of �1. Note that Eq. �3� is analogous to
the static susceptibility of conventional ferroelectrics if we
set 
=Tc, and assume that q=0 for T�Tc, and q= P2 for
T	Tc, where P is a dimensionless dielectric polarization
proportional to P.

In relaxor ferroelectrics, the order parameters q and P can
be introduced in the framework of the replica approach ap-
plied to the SRBRF model. They are then obtained as solu-
tions of two coupled equations5,6

q = �2J2�q + /J2��1 − q�2 + P2/3, �4a�

P = ��J0P + gE��1 − q� . �4b�

The SRBRF model is based on infinite range random inter-

actions Jij and random fields h� i acting on the PNRs. The
mean interaction strength is given by �Jij�av=J0 /N, the ran-
dom field variance is defined by �hi�hj��av=�ij���, whereas
J measures the degree of bond randomness, i.e.,

J2/N = �Jij
2 �av − J0

2. �5�

Throughout, we will consider the case without long range
order, namely, J0	 �J2+�1/2.

Writing P= �g /v0�P, the linear susceptibility is obtained
from Eq. �4b� in terms of J0, q, dipole moment g, and aver-
age volume v0=V /N of a PNR as follows:

�1 = �g2

v0
� ��1 − q�

1 − �J0�1 − q�
. �6�

Comparing with Eq. �3�, we readily see that the SRBRF
model implies C0=g2 / �k�0v0� and 
=J0 /k. In the presence

of an external field E� , the order parameter q becomes field
dependent, q→q�E ,T�, and thus �1→�1�E ,T�. Note that
since Eqs. �4� are independent of the orientation of the field,
both q and �1 are fully isotropic. Also, q is an even function,
and P an odd function of E, implying that �2=0. The longi-
tudinal third order nonlinear susceptibility �3 can then be
calculated using the relation

�3 = −
1

2
	 �2�1�E�

�E2 

E=0

. �7�

As discussed in more detail below, the directional depen-
dence of �3 can be introduced into the model by considering
a new coupling mechanism, which leads to a field dependent
coupling parameter J0, namely,

J0
�p��E� = J0�0� + GpE2, �8�

where the index p specifies the direction of the field ��p�
= �100� , �110� , �111�� and Gp is the corresponding propor-
tionality parameter. A field dependence of this type had ear-
lier been found empirically7,13 by studying the �E−T� phase
diagram of PMN and PLZT. We can split �3 into its isotropic
and anisotropic part and write

�3
�p� = �3,is + �3,an

�p� , �9�

with

�3,is = −
1

2
	 ��1

�q

d2q

dE2

E=0

=
kTv0

3

3g4D�q�
�1

4, �10�

where D�q���1−q�2�1−�2J2�1−q��1−3q−2 /J2��, and

�3,an
�p� = −

1

2
	 ��1

�J0

d2J0

dE2 

E=0

= − Gp
v0

g2 �1
2. �11�

To illustrate the behavior of the linear and nonlinear static
response, �3,is and �3,an are plotted in Fig. 1 as functions of
temperature for five different values of the random field
strength . The remaining parameters of the SRBRF model
were chosen as J /k=219±4 K and  /J2=0.001, which are
the representative values for PMN.14 The remaining param-
eter J0 is given by J0 /k=79.7 K as shown in Sec. IV. Since,
as discussed below, the relative magnitudes of �3,is and �3,an
are not known a priori, the sign of �3,an was chosen as posi-
tive and the vertical scales are in arbitrary units. Also shown
in the inset is the behavior of the quasistatic linear field-
cooled susceptibility. As expected, by increasing the random
field strength , the anomaly in �3,is is smeared, and both
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�3,an and �1 become monotonically decreasing functions of
temperature.

The remaining task is to calculate the anisotropy param-
eters Gp from the SRBRF model. It should be noted that
instead of the replica approach used here, one can formulate
the problem in terms of exact eigenstates and eigenvalues of
the random matrix Jij.

15 The present formulation has the ad-
vantage that the EA order parameter q appears explicitly in
the results, thus facilitating a comparison with the empirical
formula, Eq. �3�.

III. MECHANISM OF ANISOTROPIC
NONLINEAR RESPONSE

We consider a model system of PNRs, which are charac-

terized by the order parameter field S� i, i=1,2 , . . . ,N, assum-
ing that the dipole moment of the ith PNR is equal to p� i

=gS� i, where g is a unit dipole moment. In the SRBRF model,
the components Si� span the entire space, but are restricted

by the global spherical condition �i=1
N �S� i�2=3N. The interac-

tion with an external electric field E� is formally described by
the Hamiltonian

Hext = − �
i=1

N

�
�,�=1

3

g��E�Si�, �12�

where g��=g���. We now assume that the dipole moment is
deformed by the homogeneous strain fluctuations u��, giving
rise to a modified interaction

H̃ext = − �
i

�
����

u��g����E�Si�. �13�

The tensor g���� represents the strain derivative of g�� and
can be regarded as a measure of the local electrostriction
effect due to the deformation of PNRs by the strain. The
microscopic mechanism of this deformation has not yet been
proposed, however, similar effects due to an external electric
field have been investigated earlier.16 Note that g����

=g����, etc., but g�����g����.
The elastic energy is given by

Hel =
1

2
V �

����

u��C����u��, �14�

introducing the elastic constants C����. In equilibrium, the

strains are eliminated from H̃ext+Hel, transforming H̃ext into

H̃ext = −
1

2V
�
ij

�
����

b����E�E�Si�Sj�, �15�

where

b���� = �
��������

g������
T C��������

−1 g������, �16�

and g������
T =g������.

The i� j terms in Eq. �15� represent an additional inter-
action between the PNRs due to homogenous strain fluctua-

tions under the influence of an external field E� . Thus H̃ext can
be regarded as a field-dependent contribution to the unper-
turbed isotropic SRBRF Hamiltonian. The resulting effective
SRBRF Hamiltonian can be written as

Hef f = −
1

2�
ij

�
��

Jij
��Si�Si� − �

i�

hi�Si�, �17�

introducing a new field-dependent random bond interaction

Jij
�� = Jij��� +

1

V
�
��

b����E�E�. �18�

In a system with macroscopic cubic symmetry, b���� will
have the full cubic symmetry. Thus we can use the Voigt
notation bij, i , j=1,2 , . . . ,6, where b11=b1111, b12=b1122,
b1212=b44, etc. We will be interested in the special case
where the applied field is along one of the cubic symmetry
directions �p�. The coordinate system can then be rotated in

such a manner that E� = �E ,0 ,0�. The relevant components of
b����

�p� in the new system along �p� are then

�100�: b1111
�p� = b11, �19a�

b1212
�p� = b1313

�p� = b44; �19b�

�110�: b1111
�p� = �b11 + b12 + 2b44�/2, �20a�

b1212
�p� = �b11 − b12�/2, �20b�

b1313
�p� = b44; �20c�
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FIG. 1. Isotropic �lower� and anisotropic �upper graph� quasi-
static nonlinear response as functions of temperature, calculated
from Eqs. �10� and �11�, respectively, and plotted for several values
of random field strength  /J2. The inset shows the corresponding
temperature dependence of the linear susceptibility.
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�111�: b1111
�p� = �b11 + 2b12 + 4b44�/3, �21a�

b1212
�p� = b1313

�p� = �b11 − b12 + b44�/3. �21b�

The field-dependent interaction �18� can thus be written

Jij
�� = Jij +

1

V
b�1�1

�p� E2, �22�

and for the mean interaction strength J0 appearing in Eq. �6�
we recover Eq. �8� with

Gp = b1111
�p� /v0. �23�

The contribution of homogeneous strains considered
above is expected to be dominant provided that the average
size of PNRs is large compared to the lattice constant. For
example, in PMN the lattice constant is a�0.404 nm,
whereas the average PNR size is R3.2 nm.17

IV. COMPARISON WITH EXPERIMENTS

The quasistatic nonlinear susceptibility �3 as given by
Eqs. �9�–�11� can be measured directly by cooling the system
slowly in a small static field.7,9 A number of dynamic tech-
niques are also in use, yielding a frequency dependent com-
plex nonlinear permittivity �3���.10,18 In the ergodic relaxor
phase above the freezing temperature, the �→0 limit of the
real part of �3��� is expected to converge towards the qua-

sistatic value �3. For any orientation of the field E� , the mea-
sured �3 is always a sum of an isotropic and an anisotropic
component.

In conventional ferroelectrics, Landau theory predicts that
the isotropic part of �3 diverges as �T−Tc�−4 at the critical
temperature Tc. For T�Tc, this follows from Eq. �6� after
setting J=0 and =0, i.e., no randomness, which also im-
plies q=0. Thus the divergence is due entirely to the factor
�1

4. For T	Tc, however, one must include the spontaneous
polarization as well as the fact that �2�0. This then leads to
a negative value of �3 below Tc. The anisotropic part of �3,
as given by Eq. �11�, is not expected to be applicable to
ferroelectrics, however, it may be relevant to improper relax-
ors where long range order exists.

In proper relaxors, random fields ��0� prevent �3,is

from diverging near Tf �J /k, whereas �3,an is always ex-
pected to be finite.

Equation �2� can formally be inverted to yield the equa-
tion of state10

E� = AP� + �
���

B����P�P�P� + ¯ �24�

for a general direction of the polarization P� and field E� .
From Eq. �2� we see that A=A�q�=1/�1, where �1 is given
by Eq. �6�.

Equation �24� can formally be derived from the effective
free energy

F�P� ,q� =
3

2
F�q� +

1

2
A�q�P2 +

1

4 �
����

B�����q�P�P�P�P�

+ ¯ − E� · P� �25�

by applying the equilibrium condition �F /�P�=0. Here, the
zero-field free energy F�q� is given by6

�v0F�q� =
�2J2q2

2
−

1

1 − q
− log�1 − q� − �2�1 − q� .

�26�

The effective functional �25� could, in principle, be de-
rived from the exact free energy of a relaxor in the SRBRF

model, F0=F0�P� ,q�� ,r�� ,z�, where q�� and r�� are two
generalized order parameter tensors.6 The EA order param-
eter is here given by q= �1/3�Tr q, whereas Tr r=3. Further-
more, z is a Lagrange multiplier enforcing the spherical con-
dition. It is easily verified that the stability conditions

�F0�P� ,q� /�P�=�F0�P� ,q� /�q=0, where F0�P� ,q� is the
functional �25� without the B���� term, simply lead to Eqs.
�4�. The stable solutions of these equations must obey the
saddle-point conditions �2F0 /�P�

2 �0 and �2F0 /�q2	0, in
accord with standard spin glass theories.19

In a system with cubic symmetry we can write10

B���� = B12������� + ������ + ������� + �B11 − 3B12�e����,

�27�

where B11 and B12 are two independent parameters, intro-
duced here in such a manner that B1111=B11 and B1122
=B1212=B12, etc. Furthermore, e����=1 if �=�=�=� and 0
otherwise. Inserting Eq. �24� into Eq. �1� we find

B���� =
�3

����

�1
4 . �28�

For a symmetry direction �p�, and with the aid of Eqs.
�9�–�11�, this leads to

B1111
�p� =

�3
�p�

�1
4 =

kTv0
3

3g4D�q�
− Gp

v0

g2 �1
−2, �29�

and using Eq. �23� we finally have

B1111
�p� =

kTv0
3

3g4D�q�
−

b1111
�p�

g2 �1
−2. �30�

The coefficients B1111
�p� for the three symmetry directions

are given by

B1111
�100� = B11, �31�

B1111
�110� =

1

2
�B11 + 3B12� , �32�

B1111
�111� =

1

3
�B11 + 6B12� . �33�

Thus the anisotropic nonlinear response is determined by just
two independent parameters, B11 and B12.

20
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By measuring �3
�p� and �1 one can thus obtain the param-

eters B11 and B12 appearing in the free energy functional
�25�, and from these one can, in principle, deduce the values
of the coefficients bij. Note that B1111

�p� , just like �3
�p�, consists

of an isotropic and an anisotropic part, each having a differ-
ent temperature dependence. The isotropic part can be elimi-
nated by forming the differences between the corresponding
values of �3

�p� for two different directions,10 for example,

�3
�100� − �3

�110�

�1
4 = B1111

�100� − B1111
�110� =

1

2
�B11 − 3B12� . �34�

It then follows from Eq. �30� that

B0 � B11 − 3B12 =
b0

g2�1
2 , �35�

where b0�2b44+b12−b11. It is easily shown that for any pair

of directions �p� , �p��, the difference B1111
�p� −B1111

�p�� is always
proportional to B0, or equivalently to b0.

The so-called scaled nonlinear susceptibility a3=�3 /�1
4 is

readily obtained from the measured �3 and �1 and is often
used to discriminate between the normal ferroelectric and
relaxor behavior of a system under study. For example, in a
uniaxial ferroelectric above Tc, one has a3=B, where B is the
fourth order coefficient in the free energy expansion, and a3
is thus expected to behave as a3�T−Tc��−2�. In mean field,
�=2� and a3const as T→Tc+0. Below Tc, however, a3
=−8B, implying that a3 makes a jump to a negative value at
Tc, since B is expected to be continuous at Tc.

In a normal relaxor, a3 consists of an isotropic and an
anisotropic part according to Eq. �9�. The isotropic compo-
nent shows a peak anomaly due to the factor 1 /D�q� in Eq.
�10�, whereas the anisotropic part behaves as a3�1

−2, and
hence increases monotonically with temperature. Estimates
based on an empirical model9 suggested that in PMN the
isotropic part might be much smaller than the contribution
from the field dependent coupling as given by Eq. �8�.
Since �3

�100��0 for E� � �100�, it follows that B11�0 as
indeed observed.10,20 On the other hand, �3

�111�	0 implies
that B11+4B12	0.

Assuming the parameters bij to be approximately con-
stant, the temperature dependence of the parameter B0 can be
determined by Eqs. �35� and �6�. We find

B0 = a0�T/�1 − q� − J0/k�2, �36�

where a0=b0k2v0
2 /g6.

In PMN, Tagantsev and Glazounov10 determined B0 ex-
perimentally as a function of temperature in the range
270 K	T	325 K and found B0�0, implying that B11
�3B12 and b11	b12+2b44 in this temperature range.

In Fig. 2 we plot the calculated temperature dependence
of the coefficient B0 in PMN using the parameter values14

J /k=219±4 K and  /J2=0.001. The inset shows a fit to
the data of Tagantsev and Glazounov,10 from which the
remaining parameters J0 /k=79.67 K and a0=2.79
�103 m5 V C−3 K2 have been determined. The agreement
appears to be good in the available temperature range. For
the above values of the parameters J, J0, and  /J2 the order

parameter q in Eq. �36� has a rather small but finite value at
temperatures T�J /k, and does not contribute significantly to
the calculated value of B0. The fact that the measured coef-
ficient B0 agrees with the calculated temperature dependence
does not constitute a proof that the experiment in PMN sup-
ports the SRBRF model at all temperatures. The experiment
merely proves the mean field type interaction J0 between
polar nanoregions, rather than the regime of applicability of
the SRBRF model. New experiments in a broader tempera-
ture range would be necessary to test the predictions of the
present calculation.

From a0 we can estimate the value of the coefficient b0
appearing in Eq. �35�. Using the value11 C01.25�105 K to
obtain the ratio g2 /v0, and assuming that g10e0 nm, where
e0 is the elementary charge, we find b0�54.8e0 nm5/V. This
corresponds to an average PNR volume v0�19.8 nm3, in
reasonable agreement with the estimates from inelastic neu-
tron scattering data.17

Quasistatic measurements of the field-cooled nonlinear re-
sponse in PMN revealed no anomaly at the freezing tempera-
ture Tf,

7,9 suggesting that �3,an is the dominant component of
the static response. On the other hand, earlier dynamic
measurements14 have shown an increase of �3 on approach-
ing Tf, which has been attributed to the isotropic part of the
response. This apparent inconsistency can be explained in
the framework of a dynamic approach by considering the
experimental frequency dependent nonlinear response and by
assuming that it is essentially given by its anisotropic com-
ponent �3,an���. This response should then be proportional to
�1���2 according to Eq. �11�, and its temperature dependence
will thus exhibit the typical broad frequency peak structure
and dispersion of the zero-field-cooled dynamic linear re-
sponse.

V. CONCLUSIONS

We have proposed a mechanism of anisotropic nonlinear
dielectric response in relaxor ferroelectrics, which is based
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FIG. 2. Calculated temperature dependence of the coefficient
B0=B11−3B12 in relaxor ferroelectric PMN, plotted on a logarith-
mic vertical scale. The inset shows a fit to the data from Ref. 10.
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on the deformation of polar nanoregions and corresponding
changes in their dipole moments by homogeneous strain
fluctuations. The corresponding expressions for the linear
and third order nonlinear field-cooled static susceptibilities
were obtained within the framework of the SRBRF model of
relaxor ferroelectrics. The isotropic component of the static
third order nonlinear response, �3,is, has a peak anomaly at
the static freezing temperature, but remains finite due to the
presence of random fields. The anisotropic component �3,an
depends on the direction of the applied field, and was evalu-
ated for fields along the cubic �100�, �110�, and �111� direc-
tions. A general expression for the nonlinear response in
terms of the anharmonicity coefficients of an effective free

energy functional for the SRBRF model has been obtained.
The temperature dependence of the anharmonicity coeffi-
cients in relaxor ferroelectric PMN has been calculated and
compared to the experimental data by Tagantsev and
Glazounov.10
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