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Nuclear magnetic resonance and imaging in very low fields is fundamentally limited by untruncated con-
comitant gradients, which cause severe distortions in image acquisition and volume selection if the gradient
fields are strong compared to the static field. In this paper, it is shown that gradient fields oscillating in
quadrature can be used for spatial encoding in low fields and provide substantial improvements over conven-
tional encoding methods using static gradients. In particular, cases where the maximum applied gradient field
�Bmax is comparable to or higher than the static field B0 over the field of view, i.e., �Bmax /B0�1, are
examined. With these gradients, undistorted volume selection and image encoding is possible because smaller
geometric phase errors are introduced during cyclic motion of the Hamiltonian. In the low field limit, slice
selection is achieved with a combination of soft pulse segments and a coherent train of hard pulses to average
out concomitant fields over the fast scale of the Hamiltonian.
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I. INTRODUCTION

Pulsed-field gradient nuclear magnetic resonance �NMR�
and magnetic resonance imaging �MRI� tomography1,2 rely
on Fourier encoding, a method by which the phase of the
transverse magnetization is modulated by the application of a
gradient in the component of the static field along some di-
rection. To reconstruct the morphology of an object, multiple
encodings are collected, and inverse Fourier transformation
of the data set provides a map of the local spin density. At
high fields, this description is accurate because the spin
Hamiltonian, which also contains perpendicular “concomi-
tant” components, is truncated by the strong Zeeman inter-
action. Truncation of the Hamiltonian is the averaging of
rapidly oscillating concomitant components of the gradient
field and is formally equivalent to first-order perturbation
theory. Thus, a pure gradient can never be created by Max-
well’s equations, however, truncation makes unidirectional
gradients possible in the rotating frame.

At low fields, this picture no longer provides an accurate
description of the spin dynamics. As the ratio �Bmax /B0 is
increased, the concomitant fields cause severe distortions in
the phase encoding and slice selection. ��Bmax is the maxi-
mum gradient field over the measurement region or field of
view.� When �Bmax /B0�1, for example, planes of isofre-
quency are bent into spheres whose radius equals one half
the field of view.3

Low-field NMR and imaging systems are of great interest
not only in chemistry and biomedicine, but also in physical
science applications because of the possibility of smaller and
portable devices with lower production and operational
costs. Operation at low fields places smaller requirements on
field homogeneity and the lower electromagnetic frequencies
penetrate easily through metal objects,4 while reducing dra-
matically the role of magnetic susceptibility artifacts. In-
creased T1 contrast for imaging has been reported.5 Also at-
tractive is the possibility for measuring scalar couplings in
microtesla fields6 and the simultaneous detection of multiple
nuclei with a single detector.

A portable low-field NMR device, the NMR MOUSE, has
been developed by Blümich et al.7 for materials and bio-
medicine. Applications to the characterization of products
from technical elastomers, skin, and coatings on iron sheets
have been demonstrated.8 More recently, an 8 kg mobile
scanner was developed using a Halbach magnet for measure-
ments of porosity and pore-size distributions of water-
saturated geological drilled cores.9 Such portable devices are
likely to be used in medical or paramedical applications in
the near future, or deployed on the field for geological sur-
veys, in research vessels or logging platforms,10 and for sur-
face measurements such as skin.11 Imaging in the earth’s
magnetic field was demonstrated by Stepisnik.12 Recent ad-
vances include imaging in microtesla fields using SQUID
detection5 and spectroscopy in a one-sided system.13

The move to lower fields is associated with a loss in sen-
sitivity due to the lower thermal polarization. These prob-
lems can be overcome with the use of hyperpolarized
gas14–17 and parahydrogen-induced polarization. Time-of-
flight remote NMR18 measurements in microfluidic devices
offer the possibility of noninvasive time-resolved imaging
for monitoring reaction kinetics on a chip19 with increased
sensitivity. Despite the broad interest in low-field NMR for
those many different areas of physics, problems still remain
having to do with the presence of concomitant gradients and
matching of the gradient tensor field to arbitrary desired ex-
citations of the spin system.

A recent approach by Meriles et al.20 uses a rapid train of
dc magnetic-field pulses to eliminate the overall phase accu-
mulated due to components of the concomitant field that are
perpendicular to the axis of the pulses. The pulse train pro-
vides spatial encoding along the direction of the pulse axis.
We have recently implemented the Meriles approach in �T
fields using superconducting quantum interference device
�SQUID� detection. Until now, SQUID imaging in low fields
has only been possible with very moderate field gradient
pulses, establishing a lower limit to the minimum time of an
encoding sequence. This is an extremely important experi-
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mental drawback whenever experiments are done in a non-
ideal environment, and severely limits the possibility of fast
measurements.

The Meriles method only applies at or near zero fields and
is expected to break down at higher fields ��mT� where the
dynamics are described by a rotating frame. This article dem-
onstrates that pairs of magnetic field gradients oscillating in
quadrature produce significantly improved performance for
spatial encoding and slice selection in low fields. In a regime
where conventional MRI approaches are either useless or at
best, perform poorly, the rotating gradient method takes ad-
vantage of stationary gradient-field components in the rotat-
ing frame to provide undistorted phase encoding. The re-
maining oscillatory components are linearly polarized rather
than circularly polarized and much less effective in perturb-
ing the intended trajectory. Slice selection is performed with
a combination of hard and soft pulses and rotating-frame
gradient fields with a coherent train of hard pulses designed
to eliminate the problematic concomitant field component.

II. UNIDIRECTIONAL MAGNETIC-FIELD
GRADIENTS

Unidirectional magnetic-field gradients are forbidden by
the curl-free and divergence-free conditions on the magnetic
field in a region with no currents. However, the electromag-
netic forces acting on charged or neutral particles can be
tailored for deflecting or trapping purposes using ac fields by
exploiting the time average of those fields.21,22 The principles
of electromagnetic traps are reviewed in an article by Wolf-
gang Paul.21 In this article, we examine the spin precession
in a time-averaged magnetic-field gradient as it applies to the
NMR problem of phase encoding.

A. Averaging Principle

The averaging principle for quantum spin systems of Hae-
berlen and Waugh,23 also known as Average Hamiltonian
Theory, is widely used in the analysis of NMR experiments.
The zeroth-order contribution to the Magnus expansion is
given by the time average of the Hamiltonian. Over small
time intervals, this zeroth-order description can often be used
to describe the evolution for complicated time dependences
in the Hamiltonian.

For example, consider a Hamiltonian H�� f ,�s� character-
ized by two widely different time scales: � f and �s. � f is the
fast scale and �s is the slow scale. Under certain conditions,
the time average over the fast scale is sufficient to describe
the dynamics of the spin system. Thus, for a Hamiltonian

H�t� = − ��Bx�t�Ix + By�t�Iy + Bz�t�Iz� �1�

describing the coupling of a spin I to a magnetic field B, the
dynamics in the limit of rapid oscillations are determined by
the time average

H��s� = − ��Bx��s�Ix + By��s�Iy + Bz��s�Iz� , �2�

where the bar indicates a time average over � f. Time-
averaged magnetic fields can be used to tailor the spatial
dependence of spin precession. In the general case, and for

descriptions over longer time intervals, higher-order terms in
the Magnus expansion are used for a full description.23,24

B. Interaction Representation

Consider a Hamiltonian H=−�I ·B for the interaction of a
spin I in a time-dependent magnetic field B, which consists
of a constant static component B�r̃�ẑ, an applied gradient
�r− r̃� ·�B�r̃� and an ac field B1. Using the summation con-
vention on i and j indices, the Hamiltonian is

H�I;B��r� = − �B�r̃�Iz − �Ii�rj − r̃ j�� jBi�r̃� − �I · B1, �3�

where r= �x ,y ,z� and r̃ is the origin. In what follows, we
include � into the scaling of B so the units of the gradient
tensor � jBi�r̃� are reported in rad/s/cm and the units of B are
in rad/s. We abbreviate �0=−B�r̃�, �1=−B1 and write HG

and HRF for the parts of the Hamiltonian pertaining to the
gradient and rf pulse, respectively.

Effecting a transformation to the interaction representa-
tion of the Zeeman interaction, ei�0Izt�·�e−i�0Izt, transforms the
Hamiltonian to

H� = ei�0Izt�− Ii�rj − r̃ j�� jBi�r̃� − I · B1�e−i�0Izt. �4�

The terms containing Iz are invariant to this rotation trans-
formation while Ix and Iy become time dependent. The com-
ponents of the applied gradient field in Ix and Iy are called
concomitant gradients in the NMR literature. In the limit of
high fields, i.e.,

��0� � ��rj − r̃ j�� jBi�r̃�� , �5�

they oscillate rapidly and average to zero. This phenomenon
is called truncation. Only the terms in Iz affect the spin dy-
namics at high fields. In low fields, the components in Ix and
Iy perturb the motion significantly and must be accounted for.
In particular, they may cause geometric phase errors to be
discussed later.

For related reasons, we shall discuss only the case of cir-
cularly polarized ac fields

B1�t� = B1�cos��0t + ��x̂ + sin��0t + ��ŷ� , �6�

which give rise to a stationary component in the rotating
frame about which rotations of the spins can be performed.
Linearly polarized ac fields B1�t�=B1 cos��0t�x̂ give rise to
an undesirable time-dependent component which perturbs
this motion.

C. Magnetic Resonance Imaging

In MRI experiments, equilibrium nuclear magnetization
proportional to the total longitudinal spin angular momentum
operator Iz=�i=1

N Iz,i is rotated into a transverse component,
say Ix, and phase encoded using magnetic-field gradients of
the form Iz�g ·r�, where g is the gradient vector with compo-
nents gi=�iBz. This is because in high fields, static gradient
components �iBx and �iBy are truncated in the interaction
representation, unless ac gradients are used. The quadrature
NMR signal measured is proportional to the volume integral
of the weighted trace
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F+�t� =� d3r Tr�I+eiIz	0
t g���·rd�Ix	�r�e−iIz	0

t g���·rd��


� d3r 	�r�eik·r, �7�

where k�t�=	0
t g���d� is a wave vector which can be varied

using a gradient wave form g���. The weighting factor 	�r�,
also loosely referred to as the “local spin density,” is propor-
tional to the total spin angular momentum operator �iIz,i con-
tained in a volume element d3r and is widely displayed as
grayscale intensity in MRI images. �	�r� also possibly re-
flects relaxation time weighting and/or specifics of the imag-
ing pulse sequence in more complicated experiments; see
Haacke25 for details.� Inverse Fourier transformation gives
the spin density 	�r�. This principle of Fourier encoding is
the basis of MRI.

In low fields, the time-evolution operator is no longer a
rotation about Iz of the form eik·rIz but corresponds to a rota-
tion about a mixture of axes Ix, Iy, and Iz due to the presence
of oscillating components in Ix and Iy. These concomitant
components impart a significant phase error to the spins. The
phase error is geometric in nature because it corresponds
mainly to a tilting of the rotation axis. In the next section, we
explore gradient schemes which avoid this problem.

It is customary to denote the maximum gradient field over
the field of view �FOV� or sample volume, i.e., the quantity
maxr�FOV 
 �r− r̃� ·�B
 by �Bmax. We also follow the con-
vention of writing B0=B�r̃� and fix the origin r̃=0 at the
center of the FOV. Significant distortions in the Fourier en-
coding arise when the ratio �Bmax /B0 is comparable to or
greater than one.

D. Rotating Frame Gradient Of The First Kind

In conventional MRI, magnetic-field gradients are typi-
cally generated by driving currents in electromagnetic coils
designed to create a gradient in the z component of the static
field.26 The pulses are dc currents, i.e., the carrier frequency
is zero. The contributions to the x and y components of the
static field are ignored because of truncation. Consider in-
stead two gradient coils, each driven by an ac current at the
NMR resonance �Larmor� frequency, but the current in the
first coil is 90° out of phase with the current in the second
coil. The total gradient field therefore “rotates” at the Larmor
frequency and can be used to generate stationary components
for use in Fourier encoding, as we describe in this paper. We
discuss two different configurations.

A gradient of the form

a�zx̂ + xẑ� �8�

is added to another gradient field rotated by 90° about the z
axis, with respect to the first one,

b�zŷ + yẑ� , �9�

but with the second field driven by a current that is 90° out
of phase with respect to the first field, i.e.,

a�t� = g cos��t + ��, b�t� = g sin��t + �� . �10�

Thus, the two gradient coils are geometrically orthogonal to
each other, whereas their currents are phase-orthogonal. The
contribution of this gradient field to the interaction represen-
tation Hamiltonian is

HG
�I���r� = zg cos �Ix + zg sin �Iy

+ g�x cos��t + �� + y sin��t + ���Iz. �11�

We note that the rotating-frame transformation of the in-
teraction representation refers to the rotation of spin space
angular-momentum operators Ix, Iy, and Iz rather than labo-
ratory frame coordinates �x, y, and z�. Taking �=0° gives a
time independent z gradient field in Ix, while �=90° gives a
time-independent z gradient field in Iy. The time dependence
of the gradient has been relinquished to an oscillating field
along Iz. It turns out that this type of Hamiltonian with lin-
early polarized oscillating components possesses better aver-
aging properties than one with rotating components. I will
show that it performs better Fourier encoding and volume
selection along z in low fields.

E. Rotating Frame Gradient Of The Second Kind

The second configuration utilizes a linear superposition of
a field

a�yx̂ + xŷ� �12�

with another field

b�− xx̂ − yŷ + 2zẑ� �13�

scaled by �. If these two fields are operated 90° out of phase,
their contribution to the interaction representation Hamil-
tonian is

HG
�II���r� = �− �xg sin��t + �� + yg cos��t + ���

�� I+ei�0t + I−e−i�0t

2
� + �xg cos��t + ��

− �yg sin��t + ���� I+ei�0t − I−e−i�0t

2i
�

+ Iz��2zg sin��t + ��� . �14�

In the special case �=1.0, this field has the following
features. The x gradient Hamiltonian in the rotating frame is
time-independent in Ix for �=90° or in Iy for �=0°. The y
gradient rotates at a rate 2�, while the z gradient oscillates in
Iz at rate �. Likewise, stationary y gradients in the rotating
frame can be obtained by taking

a�− yx̂ − xŷ� �15�

instead of

a�yx̂ + xŷ� , �16�

or equivalently, by inverting the sign of �.

F. Geometric Phase Of Encoding Gradient

We now look at the averaging properties of rotating-frame
gradients versus conventional gradients. Their performance
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can be quantified by a phase error, which corresponds to the
difference between the intended phase imparted by a station-
ary magnetic field gradient and the actual phase obtained in
the presence of time-dependent concomitant components.
For a magnetic moment M precessing about a magnetic
field B,

dM
dt

= M � B �17�

and it is possible to define a phase angle in the plane perpen-
dicular to B if the motion of B is slow enough. This example
of Berry’s phase for a classical spin has been treated classi-
cally using Hannay’s angle.27–29

Let B=Bb while �I ,�� are canonical action-angle vari-
ables on the sphere S2 with I=M ·b and � is the angle in the
�e1 ,e2� plane that is perpendicular to the unit vector b. The
two-form

dI Ù d� = − S sin  d Ù d� �18�

is proportional to the area element on S2 and defines a sym-
plectic form on S2. The Hamiltonian in action-angle vari-
ables has the form H�I ;B�=BI, where B plays the role of the
external parameter. At the end of a slow cycle in B, the
magnetic moment M is back on its circle of precession at
t=1 and its position is shifted by

��1� − ��0� = �
0

1

B�t�dt −
�

�I
 �pdBq� , �19�

where pªMz and q : =arctan �My /Mx�. dB denotes the ex-
terior derivative in the parameter space of the Hamiltonian
and

�pdBq� =
1

2�
�

0

2�

p��,I;B�dBq��,I;B�d� �20�

is the torus average, which arises in the adiabatic limit. In
this adiabatic limit, the geometric angle equals30

−
�

�I
 �pdBq� = ��C� , �21�

where ��C� is the solid angle subtended by the closed curve
C on the parameter manifold B=const. When the adiabaticity
is relaxed, it is still be possible to define a geometric phase if
the precession, which begins perpendicular to the effective
field, remains mostly perpendicular to it during the motion,
however, the geometric phase deviates from the above solid
angle formula.

Consider the following two closed curves where t varies
from 0 to 1 s. The arc trajectory,

BA�t� = ŷB1 sin � sin�2�t� + ẑB1
�1 − �sin � sin�2�t��2,

�22�

begins parallel to ẑ �t=0�, then tilts by an angle � toward −ŷ,
then toward +ŷ and back to ẑ �t=1�. The maximum angular
rate of rotation for BA about the x̂ axis is sin���2� rad/s,
which gives 0.63 rad/s for �=0.1 rad and 1.25 rad/s for �
=0.2 rad.

The circular trajectory

BC�t� = x̂B1 sin � cos�2�t� + ŷB1 sin � sin�2�t� + ẑB1 cos � ,

�23�

where � is the spherical polar angle measured from the ẑ
axis. The motion of BC is circular about the ẑ axis with
angular velocity 2� rad/s.

The above rates of change �2�, 0.63, and 1.25 rad/s� are
to be compared with the rate of precession of the magneti-
zation vector about the effective field B1=10 rad/s and
20 rad/s. Except for the case 2� rad/s, these cyclic trajec-
tories are adiabatic.

Table I shows numerical calculations of the geometric
phase obtained by evolving the initial condition M= x̂ over
one period where t ranges from 0 to 1. During the trajectory,
the total phase �tot=��1�−��0� is calculated as the total
angle traced by the magnetization vector M�t�, including all
windings, as the magnetization nutates about the ẑ axis while
mostly remaining near the xy plane. A conventional gradient
behaves like the BC�t� trajectory whereas the quadrature
rotating-frame gradient behaves as BA�t�. In the case of

TABLE I. The parameter f =100% � ���tot−�dyn� /�dyn� gives the percentage geometric phase relative to
the dynamical phase. The solid angle of the motion is ����=	d�=	0

2�	1
cos �d�cos �d�.

Trajectory
�

�rad�
B1

�rad/s�
�tot

�rad�
�dyn

�rad�
f

�%�
�tot−�dyn

�rad�
����
�sr.�

BA 0.1 10.0 9.89 9.87 0.2 0.02 0

0.1 20.0 19.75 19.75 0.02 0.005 0

0.2 10.0 9.98 9.87 1.1 0.11 0

0.2 20.0 19.77 19.75 0.1 0.02 0

BC 0.1 10.0 10.03 9.87 1.6 0.16 0.0314

0.1 20.0 19.78 19.77 0.05 0.01 0.0314

0.2 10.0 10.56 9.87 7.0 0.69 0.1252

0.2 20.0 19.86 19.75 0.6 0.11 0.1252
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quadrature rotating-frame gradients the relative phase errors,
as quantified by the f parameter, are considerably lower.

Figure 1 shows a comparison of the Hamiltonian cycles
for the case of conventional imaging gradient versus
rotating-frame gradient �type I�. The most obvious difference
is the respective solid angles during the motion.

III. FOURIER ENCODING

To compare the method to conventional phase encoding,
we numerically calculate the magnetization evolution under
time-independent gradients and quadrature rotating-frame
gradients. Rotations induced by rotating-frame gradients take
place about the Iy axis. Therefore, the magnetization is nu-
tated primarily in the xz plane. For conventional MRI gradi-
ents, magnetization is modulated about Iz, so that nutations
would be expected to take place in the xy plane. Deviations
to this expected behavior are due to nonsecular gradient
components.

Calculations were performed on a Pentium IV machine
using FORTRAN 90 code compiled using version 8.1 of the
Intel Fortran compiler for Linux. The density operator is
propagated from initial to final states, using at least 100 sub-
divisions of the time axis per oscillation period of the rotat-
ing frame to calculate the time-ordered product of matrix
exponentials31 U�Tc�=�i=1

100exp�−iHidt� to approximate the
propagator, where Hi is a step-function approximation to
H��t�. The only calculations involved are time evolutions

under the rotating-frame gradient Hamiltonian for a given
amount of time.

A. Conventional Imaging Gradients

Figure 2 illustrates the effects of concomitant gradient
fields on Fourier encoding for a Maxwell coil with field
g�xx̂+yŷ−2zẑ� and �Bmax /B0�1.0. The intent is to produce
a modulation along z. Instead of a linear phase dependence
along z, the modulation depends on x because of deviations
caused by the nonsecular concomitant fields. Here, �Bmax
=gFOV /2, where FOV=20 cm is the field of view. The dis-
tortions in the spatial encoding also depend on y, as can be
seen by comparing Fig. 2�A� to Figs. 2�B� and 2�C�, which
are plots of the magnetization following a constant gradient
pulse applied for 40 �s. The corresponding results for the
magnetization plots in yz planes identical to the xz planes are
due to the symmetry of this gradient. This renders the con-
ventional gradient useless when the ratio �Bmax /B0 is large.

Figure 3 shows similar plots of magnetization following a
constant gradient pulse ��Bmax /B0�1.0�, for a Golay pair as

FIG. 1. �Color online� Hamiltonian motions in the interaction
representation during one rotating frame oscillation for: �A� con-
ventional static imaging gradient with rotating concomitant fields
and �B� type I rotating frame gradient with linearly polarized con-
comitant component.

FIG. 2. �Color online� Conventional Fourier encoding along z
with Maxwell coil in the presence of concomitant gradients oper-
ated at constant current and �Bmax /B0�1.0. Curved surfaces rather
than planes of constant phase are produced. Magnetization along xz
for planes at �A� y=0 cm, �B�, y=0.5 cm, and �C� y=10 cm. En-
coding produced by applying a 62 872 rad/s /cm gradient in a
628 716 rad/s static field for 40 �s.
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used in conventional MRI. Such coils are normally used to
provide modulations along x and y. The total field is g�zx̂
+xẑ� and includes a concomitant component along z. This
component is responsible for the heavy distortions in the
modulation profile. Figure 3�A� shows the greatest distor-
tions in the xz �y=0 cm� plane. The least distortion is seen in
the plot of magnetization along xy, as shown in Fig. 3�C�, for
the plane z=0 cm. However, distortions increase with z, as
seen in Fig. 3�B� for the case z=10 cm.

In both cases of Maxwell or Golay pair coils, a similar
behavior is observed in which curved surfaces converging
towards a common attractor whose location, according to
Yablonskiy,3 is a focal point for these concentric surfaces and
the radius of curvature is Rc=B0 /g.

B. Rotating Frame Gradients

In Fig. 4 are plots of the magnetization profile in a 20 cm
field of view following 40 �s of evolution in a quadrature

rotating-frame gradient for which �Bmax /B0�1.0. Figure
4�A� shows a z modulation produced using a type I rotating-
frame gradient which is to be compared with the pattern of
Fig. 2�A�. The single focal point is split in two opposite
attractor points, resulting in lower overall curvature of the
phase profile. The smaller phase errors are due to the smaller
solid angle traced by the Hamiltonian trajectory.

If a square region is cut out of this magnetization profile
at 45° to the field of view �Fig. 4�, the modulation is close to
ideal, with displacements of the isofrequency sets along the
direction of curvature less than 5% of the length of the cor-
responding isofrequency segment. The area of this reduced
field of view is 1 /�2 the original field of view; this is equiva-
lent to undistorted Fourier encoding with �Bmax /B0�0.7.

To realize Fourier encoding of MRI slices in the xz and yz
plane, this type of gradient presents a substantial improve-
ment for imaging under conditions of strong gradient fields,
i.e., when �Bmax /B0�0.5, over conventional static gradi-
ents. A simulated MRI image is shown in the next section
which documents the improved spatial encoding.

Rotating frame type II gradients also provide improved
spatial encoding in the case of magnetization modulations
along x and y within an xz or yz slice, respectively. The
results in Figs. 4�B� and 4�C� were produced with a scaling
factor �=0.5. This choice of � reduces the impact of the
oscillating concomitant component along Iz, which is respon-
sible for much of the distortion in the encoding. This comes
at the price of a slight oscillatory perturbation in the static
concomitant component of the gradient along Iy; however,
results show that this error is tolerable. Again, this improved
performance can be understood in terms of geometric phase,
with the exception of a rotating 2� term in the transverse
plane. However, this component is small in the neighborhood
of y=0.

As for the case of a conventional static gradient, the mag-
netization profile degrades further as the plane is moved
away from the origin �data not shown�. However, for the
purposes of Fourier encoding a slice whose thickness is
1 cm, the profile is sufficiently constant across the slice
thickness when �Bmax /B0�1.0.

C. Image Acquisition

Distortions in the phase encoding ultimately translate into
image distortions. In the limit �k � →0, there are no signifi-
cant distortions to the phase encoding simply because there
is no evolution under the gradient fields. Distortions from
concomitant gradients increase with spatial frequency. To il-
lustrate image distortion effects, the phase encoding process
is simulated in Fig. 5.

A 128�128 single shot echo-planar imaging �EPI� read-
out, i.e., where k space is acquired continuously in a raster
fashion on a rectangular grid of size 128�128, is applied to
the 128�128 proton density maps of Figs. 5�A� and 5�C�.
Conventional high-field MRI images �Figs. 5�B� and 5�D��
faithfully represent the respective proton density maps while
acquisition in low field �Figs. 5�E� and 5�G�� suffers from
heavy distortions, ghosting and blurring over most of the
field of view ��Bmax /B0�3.2 at 10 cm from the center�.

FIG. 3. �Color online� Conventional Fourier encoding along x
with a saddle coil operated with constant current such that
�Bmax /B0�1.0. Magnetization is plotted �A� in the xz plane at y
=0 cm, in the xy plane at z=10 cm �B�, and at z=0 cm �C�. Encod-
ing produced by applying a 62 872 rad/s /cm gradient in a
628 716 rad/s static field for 40 �s.
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Most of these artifacts are absent over the middle 1/�2 re-
gion of the field of view in the case of quadrature rotating-
frame gradient encoding �Figs. 5�F� and 5�H��.

IV. VOLUME SELECTIVITY

The topic of volume selectivity is of central importance to
modern MRI. It concerns the excitation of nuclear spins only
within a desired volume. Conventional volume selection is
done by applying pulses in the presence of static gradient
fields. In the presence of concomitant gradients, conventional
methods are easily rendered useless. We explain how the
averaging principle can be used to combine conventional
with hard pulses and rotating-frame gradients to avoid such
distortions.

A soft pulse intermittently interrupted by a fast train of
coherent hard pulses at regular intervals is described by a
Hamiltonian with two time scales �HRF+HG����s ,� f�, where
�s is the slow time scale of modulations in the soft pulse
envelope and � f is the rapid scale of the hard pulse cycle.
Averaging over one period removes the dependence on the
fast scale, giving an effective Hamiltonian �HRF+HG����s�.
Consider the following two cases.

In the zero static field case, HG� =gzIx+gxIz and HRF�
=�1�t�Iy. Therefore,

�HRF + HG�� = �1�t�Iy + gzIx �24�

for a soft pulse �1�t�, which contains the coherent pulse train
of Eq. �A2� designed to remove Iz. In the low field case with
a type I gradient, HG

�I�
� is given by Eq. �11� with �=0°, so

that

�HRF + HG
�I��� = zgIx + �1�t�Iy + g�x cos��t� + y sin��t��Iz.

�25�

If 2� /� is large compared to the repetition period of the
hard pulse train, the time-dependent term is nearly constant
from the perspective of the coherent pulse train and the Iz
term vanishes. In the other limit, the time-dependent terms
oscillate rapidly and their effect is minimal. This is the case
of truncation at high field.

Consider the following two schemes for slice selection,
which assume an ac field polarized along Ix. The first scheme
uses a type I rotating-frame gradient whose Hamiltonian,
HG

�I�
� �Eq. �11��, can be made to provide a z gradient along Iy.

The second scheme uses a type II gradient �Eq. �14�� to
produce a stationary x or y gradient along Iy in the rotating
frame. We first rotate all Iz magnetization into Iy using a 90°
pulse and then apply a soft �narrow-band� 90° pulse along Ix
in the presence of a z gradient whose field is along Iy, i.e., a

FIG. 4. �Color online� Magne-
tization profile obtained after
40 �s of evolution in a
62 872 rad/s /cm gradient and
628 716 rad/s static field
��Bmax /B0�1.0� under �A� type I
and �B,C� type II rotating frame
gradients �with ��0.5�. In �B� x
and �C� y modulations are shown.
Subsets of the field of view where
the modulation in Mx is most uni-
form are enlarged.
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term gzzIy in the Hamiltonian. The soft pulse rotates Iy to-
wards −Iz within its bandwidth, and leaves spins unaffected
outside its bandwidth. With the excited spins along −Iz, spa-
tial encoding is then performed with a rotating-frame gradi-
ent. The MRI signal is contained in the x and z components
of the magnetization. A readout of the x component of mag-
netization provides the in-phase NMR signal while permit-
ting further subsequent encoding of this magnetization. To
get the quadrature component, a second acquisition with a
� /2 phase shift in the excitation will do. We now explain
how to generate the selective pulse.

Consider a soft pulse such as the Geen & Freeman32 wave
form. To produce a selective pulse which averages out the Iz
term to zero during its course, we modify the soft pulse by
inserting the following coherent train of hard pulses:

�2� − ��y� − � − ��z� − 2� − ��−z� − � − ��−y� − 2��n,

�26�

where � and 2� delays indicate intervals within which small
segments of the soft pulse are applied. The soft pulse is
interrupted at each hard pulse. The cycle is repeated until the
entire soft pulse is executed. We found that � should be
roughly three orders of magnitude less than the total pulse
duration for the averaging to be effective. The exact figure
depends on the shape of the soft pulse with smoother shapes
generally less demanding of the coherent train. The new
pulse will be slightly longer. Its length increases by the total
duration of the hard pulses added. This produces a pulse with
two widely different time scales over which we may average
out the fast scale.

For strong concomitant gradients ��Bmax /B0�1.6�, con-
ventional MRI slice selection schemes are incapable of pro-
ducing slices without a severe amount of distortion, as seen
in Figs. 6�A� and 6�D�. The slice profile, which should be
rectangular, is heavily distorted into a spherical shell with
significant amounts of excitation occurring outside the in-
tended slice. Figures 6�B� and 6�C� illustrate slice selection
on axis �y=0 cm� along x or y using a type II rotating-frame
gradient with �=1.0. While the performance is slightly de-
graded when going off axis ��y � =10 cm�, as seen in Figs.
6�E� and 6�F�, the degradation is far less important than the
conventional case of Figs. 6�A� and 6�D�, and such distor-
tions are only significant near the edges ��y � �8 cm� of the
volume.

The case of conventional slice selection with an applied z
gradient from a Maxwell coil ��Bmax /B0�1.6� is shown in
Figs. 6�G� and 6�H�. Although the performance is slightly
better than a Golay pair generating an orthogonal slice on
axis �compare Figs. 6�H� and 6�A��, the slice profile suffers
from a heavy elliptical curvature and strong contamination
originating from outside the intended volume. It is clear that
conventional MRI gradient encoding performs poor slice se-
lection in the regime �Bmax /B0�1.6. In contrast, a type I
rotating-frame gradient provides clean slice selection both on
and off axis, as seen in Figs. 6�I� and 6�J�. It was found that
this type I gradient performs equally well in the asymptotic
regime �Bmax /B0�25 �data not shown�.

V. DISCUSSION

Rotating-frame gradients possess better properties for spa-
tial encoding than conventional static gradients in the ultra-

FIG. 5. �Color online� Single shot EPI using proton density maps �128�128� as input parameters �A,C� for a Cartesian grid phantom
�A,B,E,F� and axial slice of human brain �C,D,G,H�. The 20 cm field of view �yz plane� is phase encoded in 128�128 steps by simulating
an echo-planar readout. �B,D� High-field images with conventional MRI encoding gradients ��Bmax /B0�0.1�. �E,G� Conventional low-field
MRI images ��Bmax /B0�3.2� with saddle pair and Maxwell coils. �F,H� Low-field images ��Bmax /B0�3.2� with quadrature rotating-frame
gradients. Gradient strength was 26 741 rad/s /cm. Field strength was 85 120 rad/s.
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low-field regime, where nonsecular terms in the Hamiltonian
must be included in the analysis. Since the nutations of mag-
netization under the gradient primarily occur about an axis in
the transverse plane, the gradients act as excitation pulses
and the effects of magnetic-field inhomogeneities and sus-
ceptibility artifacts during gradient evolution are not of con-
cern.

Quadrature ac excitation and rotating-frame gradient
fields reduce the impact of nonsecular terms in the Hamil-
tonian. These improvements are most beneficial when Fou-
rier encoding coronal or sagittal planes �xz or yz�, as seen in
Fig. 4, or when selecting a slice in a strong gradient �Fig. 6�.
The EPI images of Fig. 5 demonstrate that nearly undistorted
image encoding is possible in regimes where the concomi-
tant gradient fields are several times stronger than the Zee-
man field.

While the time dilation factor in the average Hamiltonian
H�0��= 1

2 �aIx+cIz� characterizing the coherent part of the se-
lective pulse �see Appendix� is equivalent to scaling down
the gradient amplitudes by a factor of 2, the results of Fig. 6
show that slice selection can be done in conditions where
�Bmax /B0�25. This regime is well beyond the scope of ap-
plicability of conventional slice selection pulse and gradient
methods. Immunity to distortions �Fig. 6� can be achieved
under conditions where the gradient field is an order of mag-
nitude larger than the static field. Applications are not limited
to imaging, but include undistorted pulsed-field gradient dif-
fusion measurements and coherence pathway selection in
low fields.

Radio frequency gradients have been successfully imple-
mented for NMR spectroscopy and imaging by several
investigators,33–35 however, their advantageous properties for
low-field imaging when used in quadrature appear to have
been overlooked. The gradient fields discussed herein can be

generated using tuned and matched circuits.33 Rapid point
readouts interleaved with oscillating gradient pulses have
been implemented by Raulet et al.33 and may require active
feedback36 or Cartesian feedback37 approaches to rapidly
suppress coil ringing. While rf power deposition from oscil-
lating gradients and rf pulses is an important concern at high
fields because of the strong electric fields and associated
sample heating, this is not an issue at low fields, where con-
tributions from the electric field are negligible and energy
absorption is orders of magnitude lower.

A. Further Challenges

A number of important issues in low-field NMR still re-
main. Intrinsically low thermal polarization states may re-
quire the use of hyperpolarized agents or prepolarization
with a stronger field. Detection of weak signals requires
more sensitive detection methods such as SQUID or laser
magnetometer. With portable NMR devices, the static mag-
netic field B�r�, which varies both in strength and direction
over space, is more conveniently described by a tensor field
� jBi�r� upon which a general spin excitation scheme attempts
to match the evolution in a spatially varying gradient affect-
ing any component of the local field. A recent approach to
tackle variations in the static field amplitude uses “shim
pulses” to impart an arbitrary spatial phase profile to com-
pensate for the effects of gradients in the static field.38

The spin excitation problem is not unlike the case of zero-
field NMR,39,40 where a single axis of quantization is not
well defined. Scaling and time-reversal sequences in zero
field have been extensively studied41–45 and represent the
three-dimensional generalizations of spin echoes and decou-
pling sequences. For example, a three-dimensional spin echo
can be generated which reverses the sign of Ix, Iy, and Iz

FIG. 6. �Color online� Comparison of static and type II rotating-frame gradients for slice-selection in the case �Bmax /B0�1.6: Plots
�A,D� are the slice-selection profiles for a saddle-pair gradient along x for xy planes at y=0 and −10 cm, respectively. �B,E� is the x slice
selection using type II gradients with a stationary x gradient. �C,F� is the y slice selection for a type II gradient with stationary y gradient
field. Parameters were �=15.75 �s, subunit duration; 126 �s; pulse duration; 10 ms; 79 subunits per pulse, gradient; 1605 rad/s /cm, static
field; 10 080 rad/s �1 cycle lasts 623 �s; there are 16 cycles across the pulse duration�. Comparison of slice selection along z for a
conventional Maxwell coil and a type I rotating frame gradient: Plots �G,H� are for the static Maxwell coil. �I,J� are for a type I gradient. xz
planes are aligned according to: �G,I� 10 cm off center and �H,J� on axis. Parameters were �=15.75 �s, subunit duration � 126 �s, pulse
duration � 10 ms, 79 subunits per soft pulse, gradient � 1605 rad/s /cm, static field � 10 080 rad/s �1 cycle lasts 623 �s; there are 16
cycles across the pulse duration� so that �Bmax /B0�1.6 and FOV=20 cm. Nearly identical performance is obtained at �Bmax /B0�25.
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components.43 Therefore, time-reversal echoes can be gener-
ated regardless of which spin operator describes the local
quantization axis. For the general case of excitation, match-
ing and shimming in low fields, sequences of noncommuting
pulses and gradients could be useful and are being worked
on at present as an extension of the present work.

Consider the case of an inhomogeneous static field B�r�
=B�r�b�r� whose magnitude B�r�=−�0�r� and direction
b�r� varies in space. The axis of quantization of the spin is a
function of space: I�=I��r�. The Zeeman interaction of a
spin in this magnetic field is

H = �0�r�T0
�1��I��r�� , �27�

where T0
�1��I��= Iz�, T±1

�1��I��= � �1/�2�I±� are the rank 1 irre-
ducible tensor operators for spin I�.

If I is the spin operator in an inertial frame independent of
r, this Hamiltonian can be expressed as the Euler rotation

H = �0�r��m=−1

1
D0m

�1����r��Tm
�1��I� , �28�

where ��r�= �� ,� ,0��r� are Euler angles relating the two
frames I ,I� at the point r in space and D0m

�1����r�� are ele-
ments of the rank 1 Wigner rotation matrix. � is the tilt angle
of the axis I� with respect to I. A transformation to the in-
teraction representation using U�t�=ei��0�tIz, where �B0�=
−��0� is the average magnetic-field strength, gives for small
values of �

H = − �0�r�
�

�2
e−i�T−1

�1��I�e−i��0�t + ���0�r� − ��0��

+ �0�r���T0
�1��I� + �0�r�

�

�2
ei�T1

�1��I�ei��0�t. �29�

In high fields, the phase factors ei��0�t average to zero and
truncation leaves

H = ���0�r� − ��0�� + �0�r���T0
�1��I� , �30�

the effects of which can easily be refocused using Hahn ech-
oes. Upon going to weaker fields, the phase factors become
quasistationary and can be eliminated using rotating-frame
versions of the time-reversal sequences of Llor and Pines.43

This time-reversal averaging is more efficient if the coeffi-
cient ��0�r� is small. This corresponds to the case of weak
curvatures in the magnetic field B. A similar analysis can
also be made for rank 2 tensorial interactions.

VI. CONCLUSION

In this paper, I have shown that distortions in the Fourier
encoding at ultralow magnetic fields can be substantially re-
duced by using quadrature rotating-frame gradients. These
impart significantly less geometric-phase errors in the encod-
ing. Rather than attempting to eliminate them, the concomi-
tant fields are utilized to provide the required encoding. Cal-

culations show that phase-encoded and slice-selective MRI is
possible in ultralow fields using a class of pulses that are
combinations of soft and hard pulses to average out undesir-
able gradient components in low fields.
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APPENDIX: COMPOSITE SELECTIVE PULSES

Suppose we would like to eliminate the Iy term of the
Hamiltonian and use the Ix term for spatial encoding. Two
possible approaches can be considered. The first method
eliminates Iy by a fast train of 180° pulses applied along Ix.
This transforms Iz→−Iz and Iy→−Iy and the Iy and Iz terms
of the effective Hamiltonian vanish in the limit of short in-
terpulse spacings.

The second method eliminates only the Iy term and is
required in the following situation: ac or dc field along Ix,
slice-selective gradient field along Iz, and concomitant gradi-
ent along Iy. Consider the sequence of four pulses,

�2� − ��x� − � − ��y� − 2� − ��−y� − � − ��−x� − 2��n.

�A1�

The refocusing pulses are short, hard pulses, in between
which the spins evolve under an arbitrary Hamiltonian of the
form H��t�=a�t�Ix+b�t�Iy +c�t�Iz. Over this period of dura-
tion 8�, this pulse sequence produces a time-averaged
Hamiltonian H�0��= 1

2 �aIx+cIz�, where a is the time average
of a. The Iy term is o��� and the scaling factor 1 /2 for Ix and
Iz causes a time dilation. Similarly, the following sequence
removes the Iz term:

�2� − ��y� − � − ��z� − 2� − ��−z� − � − ��−y� − 2��n.

�A2�

It is worth noting that these multipulse sequences are not
immune to pulse imperfections. For example, if the � pulses
are replaced by �1−��� in the above analysis, the pulse error
� appears in first order in the time-averaged Hamiltonian,
i.e., H�0��= 1

2 �aIx+cIz�+O1���Ix+O2���Iy +O3���Iz, where
Oi����M ��� for some M �R. Compounding these errors
over the entire train of pulses typically leads to significant
distortions even if the errors are inhomogeneities of a few
percent. Therefore, composite pulses or correcting super-
cycles should be used to relinquish pulse errors to higher
order in � �see, for example, Refs. 46–48�.
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