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We argue that the high temperature superconductivity in cuprate compounds may be supported by interaction
between copper-oxygen layers mediated by in-plane plasmons. The strength of the interaction is determined by
the c-axis geometry and by the ab-plane optical properties. Without making reference to any particular in-plane
mechanism of superconductivity, we show that the interlayer interaction favors spontaneous appearance of the
superconductivity in the layers. At a qualitative level the model describes correctly the dependence of the
transition temperature on the interlayer distance, and on the number of adjacent layers in multilayered homolo-
gous compounds. Moreover, the model has a potential to explain �i� a mismatch between the optimal doping
levels for critical temperature and superconducting density and �ii� a universal scaling relation between the dc
conductivity, the superfluid density, and the superconducting transition temperature.
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The layered structure of the cuprates is a well established
fact1 related to a strong anisotropy in their electronic and
optical properties.2 The common feature of all cuprates—
famous for their ability to exhibit superconductivity at high
transition temperatures—is the presence of conducting CuO2
layers separated by the so called charge reservoirs. These
reservoirs are nearly insulating even in superconducting
phase.2

One of the most fascinating features of high temperature
superconductivity is a strong dependence of basic supercon-
ducting properties �including the most important quantity, the
transition temperature Tc� on the c-axis structure of cuprates.
In particular, there is a systematic dependence of the critical
temperature on the number n of the closely packed CuO2
layers per a structural c-axis unit. In typical homologous se-
ries of superconducting cuprates the separation between the
n multilayers lies in the range d�6−15 Å which is large
compared to the spacing cint�3.5 Å separating individual
layers inside the multilayer. Since cint is numerically close to
the in-plane Cu-O bond length a�Cu-O��3.8 Å, it seems
reasonable to treat the multilayer as a single thick layer.

Reflectance data indicate that the dielectric functions of
the cuprates may qualitatively be described by the so-called
two-fluid model2,3
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which is a generalization of a simplest metallic dielectric
function ����=1−�p

2 / ����+ i�p��. The carriers are divided
into normal and superfluid components which have different
impacts on optical and conducting properties of the cuprates.
In Eq. �1� �ps and �pn are the plasma frequencies of the
superconducting and normal components, respectively, and
�� is the high-frequency limit of �. The relaxation processes
of the normal-state electrons are described by �in general,
frequency-dependent� scattering rate �pn���. In ordinary
metals the relaxation rate is small compared to the plasma
frequency �i.e., �p

Al/�p
Al�5�10−3 for aluminium�. Contrary

to the metals, both the finite conductivity and the relaxation
processes are essential for optical properties of the cuprates2

because in a typical cuprate �pn��pn� /�pn�1.

Both in-plane and out-plane reflectance data show a sharp
drop at the frequencies higher than the plasma edge 4

�ps /���, which determines a boundary of a transparency
window. Despite existence of other descriptions of the opti-
cal conductivities2,5 we take Eq. �1� as our starting formula
for the sake of concreteness.

The form of the dielectric function �1� suggests the pres-
ence of plasmon-mediated phenomena at the energy scales
governed by the characteristic plasma frequencies. These
phenomena are usually studied with respect to the c-axis
conductivity �“transverse plasmon”�.2,6 The importance of
the ab plasmons for a proper description of the supercon-
ducting state in layered materials such as high-Tc cuprates
was clearly stressed in Ref. 7. In our complimentary study
we show that despite the ab-plane plasmon is heavily
damped6 it induces the spontaneous appearance of the super-
conductivity in the layers. Philosophically, our approach re-
sembles mechanisms based on the interlayer Josephson
tunneling8 and interplane Coulomb interaction,9 as well as
other approaches10 including phenomenological models of
the Ginzburg-Landau type.11

The free energy per one d period per unit layer area S in
the absence of external fields is given by a sum of the con-
tributions from the normal �Fn� and the superconducting �Fs�
states of the layer, and the plasmon-mediated interaction be-
tween the multilayers �Fpl�:

F = Fn��pn,�pn� + Fs��ps� + Fpl��ps,�pn,�pn� . �2�

In each term we explicitly indicate the leading-order depen-
dence on the optical parameters �ps, �pn, and �pn. Long-
range modulations of the c-axis structure are neglected. We
imply that the effect of the intralayer media is solely
insulating2 thus neglecting a small finite out-plane conduc-
tivity in the normal state.

The free energy of the normal state Fn in Eq. �2� should
depend on the optical parameters �pn and �pn related to a
specific �in fact, model dependent� behavior of electrons in
individual CuO2 layers. Since we would like to keep our
approach as general as possible we exclude Fn from our
analysis concentrating on the difference in the free energies
of the normal and superconducting states
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�F = Fs��ps� + Fpl��ps,�pn,�pn� − Fpl�0,�pn,�pn� . �3�

The free energy density of the superconducting state in
Eq. �2� is written in the Ginzburg-Landau �GL� form12
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where the integration is going over the volume Vl of the
superconducting layer, 2m* is the effective mass of the su-
perconducting carrier, and A, B are the GL phenomenologi-
cal parameters describing the behavior of the order parameter
	 which is related to the density of the condensed electrons
ns= 	2. The GL approach has known limitations, while be-
ing usually correct near the point of the superconducting
transition. Universality arguments suggest that the GL pa-
rameters must depend on the intrinsic layer properties while
being generally less dependent on the intralayer structure.

Under assumption of a spatial homogeneity of the order
parameter 	 and negligence of fluctuations of the electro-

magnetic field A� , the supercurrent in Eq. �4� vanishes and we
arrive to the simple expression

Fs��ps� = wn�A
�ps
2 +

B
2

2
�ps

4 �, 
 =
m*

16�3e2 , �5�

where wn is the multilayer width. We used the relations

	2 � ns =
m*c2

4�e2�L
2 � 
�ps

2 , �L�ps = 2�c , �6�

where �L is the London penetration depth.
Naively, if the layers were structureless very thick solid

plates made of alike atoms interacting with the van der Waals
potential U�r�=− r−6, then the interaction energy of the lay-
ers would be described by the well-known Hamaker form12

Upl�d�=−H / �12�d2�, where H=�2�2 is the Hamaker con-
stant and � is the number density of atoms in the planes.

None of the above assumptions is satisfied by the cuprate
layers because of significance of retardation, relaxation, di-
electric absorbtion and geometrical suppression effects.
These effects are known 12 to diminish the interaction which
still follows the Hamaker law Upl�d−2. Up to an inessential
numerical coefficient

Upl = − � �
G�wn/d�

16�2�intd
2 , � = �

0
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��i�� + 1
�2

d� , �7�

where �int is the intralayer dielectric function. The geometri-
cal factor G takes into account the “multilayer-insulator” pe-
riodic structure24
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1 + r
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� −

�2

3
� , �8�

where 	�1� is the first derivative of the digamma function.
The geometric factor G �shown in Fig. 1 by the solid line� is
a monotonically increasing function of r�wn /d.

The interaction energy �7� is of an electromagnetic origin.
In an idealized limit of perfectly conducting layers the inter-
action energy may be imagined as the Casimir energy13 of
the electromagnetic field stored between the layers.12 In the

case of real materials we follow Ref. 14 and interpret Eq. �7�
as the interaction energy between the layers caused by the
inlayer plasmons. The plasmons give a dominant contribu-
tion to the interlayer energy at short interlayer separations14

�pnd�1. This condition is satisfied by typical cuprates �e.g.,
�pnd�10−3 for the La2−xSrxCuO4 compound discussed be-
low�. The characteristic frequency12 � in Eq. �7� gives ac-
count of the absorbtion spectra of the layers which, in turn,
characterize the strength of the interaction between the ab
plasmons.

The frequency � can be expressed via the dielectric func-
tion ���� evaluated at the imaginary axis �= i�. The disper-
sion relation12 expresses ��i�� via the conductivity Re �
=� Im � / �4�� at the real axis:

��i�� = 1 +
2

�
�

0

� � Im ����
�2 + �2 d� � 1 + 8�

0

� Re ����
�2 + �2 d� . �9�

Thus, the interlayer interaction �7� is fixed by the dissipative
part of the in-plane conductivity Re �, the interlayer dielec-
tric parameter �int, and the c-axis geometry.

Despite the scattering rate �pn in cuprates is a complicated
frequency-dependent function2 one can approximately evalu-
ate the order of the characteristic frequency � in the normal
state ��ps=0� assuming that �pn is � independent: �
=�pnD��pn /�pn�. The dissipative suppression factor �derived
from Eqs. �1�, �7�, �9��,

D�r� =
r�r2 − 2 − 4 arcsinh��r/�2 − 1�/2

2�r2 − 2�3/2 , �10�

is a monotonically decreasing function of r��pn /�pn. We
plot D�r� in Fig. 1 by the dashed line.

To estimate the energy scales related to the plasmon-
mediated interactions, we consider La2−xSrxCuO4 �La214�
compound. In La214 the CuO2 layers are perfectly flat and
are separated by two LaO layers at the distance d=c0 /2
�6.6 Å. The basic cell has the tetragonal structure a0�b0
�c0 with the base parameters a0�b0�3.8 Å. The conden-
sation energy of the optimally doped �x=0.16,Tc=38 K�
La214 compound is known to be Econd

�Cu� �13 �eV per one
atom of copper.15 The normal state of the slightly under-
doped La214 is characterized16 by the plasma frequency
�pn�6000 cm−1 while the typical scattering rate is of the
order �pn�2000 cm−1 for frequencies higher than the
ab-plane “pseudogap” �ab�700 cm−1.17,18Fixing the scatter-

FIG. 1. The suppression factors geometrical G, Eq. �8�, and
dissipative D, Eq. �10�, and their asymptotics at r→0,�.
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ing rate to be constant and taking into account the dissipative
suppression factor D�1/3��0.4, we get �La214�2500 cm−1.
The characteristic frequency is of the order of a typical su-
perconducting gap ��10–50 meV in the cuprates,25

��La214�50 meV.
In order to avoid suspicious fine-tuning of parameters in

Eq. �7� we roughly set �int�1, c0�d �then a0�d and the
geometrical suppression is G�1��0.6�. Then the plasmon-
mediated interaction energy per copper atom is

Upl
�Cu��La214� = −

G � �La214

16�2�int
�a0

d
�2

� − 200 �eV. �11�

This value is by an order of magnitude higher than the con-
densation energy Upl

�Cu��10Econd
�Cu�. In other words, the conden-

sation energy may well be explained by a 10% deviation in
the interplane interaction, which in turn, should be related to
a change of similar magnitude in the optical parameters of a
cuprate as it cools down from critical to lower temperatures.
In fact, the optical characteristics of cuprate compounds vary
essentially in this range2 exhibiting, e.g., a sharp drop of the
scattering rate �ps and dominance of the superconducting
component �ps at T�Tc. This argument stresses importance
of the ab-plasmon mediated interlayer interactions. Below
we ignore all interlayer interactions except for Eq. �7�.

The crucial property of the interlayer interaction term Upl
is that it favors appearance of the scatterless superconducting
component with �ps�0. To illustrate this property we ex-
pand the characteristic frequency �, Eq. �7�, at T=Tc in
powers of �ps /�pn�1,

���ps� = �pn�u0 + u2��ps

�pn
�2

+ O	��ps

�pn
�4�� . �12�

The dimensionless coefficients um are certain functionals of
the scattering rate �̄pn�y�=�pn�y ·�pn� /�pn, e.g.,

u2��̄pn� = �
0

� 4�y + �̄pn�y��2dy

�2y�y + �̄pn�y�� + 1�3 . �13�

As one can see from Eq. �13� the second coefficient of the
expansion �12� is always positive, u2�0, regardless of par-
ticularities of the scattering rate �pn���. The behavior of � at
�pn=const is illustrated in Fig. 2.

Since the characteristic frequency � enters Eq. �7� with
the minus sign, the interaction energy �7� may provoke a
tachyonic instability against emergence of the superconduct-
ing condensate �6�, 	2��ps

2 . In other words, the interlayer
interaction �7� supports the appearance of a superconducting
�	�0� state provided the layers are intrinsically able—via
any microscopic mechanism—to generate this superconduct-
ing state.

At high temperatures the energy density associated with
the superconducting condensate �4�, �5� is higher compared
to the gain in free energy �3� which would be achieved by the
plasmon interaction �7�. This makes the superconductivity
energetically unfavorable. As the temperature decreases the
coefficient A�T� in the GL free energy �5� gets gradually
smaller and at the certain temperature the quadratic �ps

2 term
of the GL free energy �5� cancels the same term in the

plasmon-mediated interaction �7�, �12�. This cancelation
marks the critical temperature Tc. At lower temperatures, T
�Tc, the overall coefficient in front of the quadratic term
turns negative and the system becomes unstable against
spontaneous development of the superconductivity �ps
�	  �0.

The relation between the critical temperature �Tc�, optical
��pn, �pn� and geometrical �wn, d� parameters of the cuprates
can be derived from Eqs. �3�, �7�, �12�:

A�Tc�
�pnm*�int

� � e2u2��pn/�pn�
=

1

wnd2G�wn/d� , �14�

where the left hand side �LHS� contains optical and micro-
scopic parameters at T=Tc while the right hand side �RHS� is
of the purely geometrical origin. Below we list a few univer-
sal features of the cuprate superconductors which are de-
scribed by Eq. �14�.

Transition temperature Tc vs n. The GL coefficient A�T�
is a monotonically increasing function of temperature. Thus,
the higher �lower� value of the RHS in Eq. �14�, the higher
�lower� value of Tc is.26 The RHS of Eq. �14� is a linearly
rising function of wn at wn�d. At wn=0.4448 d the RHS has
a maximum and then it decreases as 1/wn at wn�d �we used
Eq. �8� as well as the asymptotics of G given in Fig. 1�. In
n-layered cuprates the width of the multilayer is a monotoni-
cally rising function of n, which can approximately be esti-
mated as wn= �n−1��cint+�g�+�c, where �g is the geometri-
cal width of a single layer, ranging from �g�La−214�=0 Å
and �g�Bi−2212�=0.013 Å to �g�YBCO�=0.274 Å,19 cint

�3.5 Å is the interlayer spacing inside the multilayer, and �c
is a “coherence width” of external layers which should be of
the order of the c-axis coherence length �c �a few Å�. For
typical crystallographic parameters the RHS of Eq. �14�, and,
consequently, the transition temperature Tc, are peaked
around nmax=3. This behavior is in fact a universal feature of
the homologous series.1

Transition temperature Tc vs d. The RHS of Eq. �14� is a
monotonically decreasing function of the separation d be-
tween the multilayers provided the other geometrical param-
eters of the c-axis structure are fixed. Thus, the larger d the
lower temperature must be. This is another universal behav-
ior observed in the cuprates.20

Transition temperature Tc vs x. One may expect that the
highest Tc is achieved at the doping x at which the density ns

FIG. 2. The characteristic frequency �7� � vs the superconduct-
ing frequency �ps for various scattering rates �pn.

BRIEF REPORTS PHYSICAL REVIEW B 74, 052503 �2006�

052503-3



of the superconducting carriers is highest. However, this ex-
pectation is not confirmed experimentally:21 the optimal dop-
ing for the transition temperature is noticeably lower com-
pared to the one for the carriers �i.e., in La-214, Y-123, Bi-
2212 cuprates one has xopt

Tc �0.16�xopt
nc �0.19�. The

plasmon-mediated interaction may explain this behavior. If
the RHS of Eq. �14� were independent of x then the maxi-
mum temperature would be achieved at a certain value of
T=Tc�xopt

ns � corresponding to the highest carrier density.
However, the interlayer distance d increases with the doping
x,22 lowering the plasmon interaction energy �proportional to
the RHS of Eq. �14��. Thus, the equality �14� is achieved at a
lower value of the GL parameter, A�Tc�xopt

ns ���A�Tc�xopt
Tc ��,

implying Tc�xopt
ns ��Tc�xopt

Tc �.
Scaling between Tc, �ps, and dc conductivity. At suffi-

ciently low temperatures the normal component is almost
invisible in the dielectric function.2,17 In this case �
=��ps / �4�2� �we used Eq. �10� as well as the �pn→0
asymptotic, Fig. 1�, and Eq. �7� becomes linear in �ps:

Upl��ps,T = 0� = −
G�wn/d�

64�2��intd
2

� �ps�0� . �15�

Neglecting the quartic term in Eq. �5� we get the supercon-
ducting frequency at T=0 as a minimum of Eq. �3�:

�ps�0�A�0� =
�A�Tc�

8�2
u2

−1��pn�Tc,��
�pn�Tc�

��pn�Tc� , �16�

where we used Eq. �14� and disregarded the variation of the
crystallographic parameters in the range of temperatures be-
tween Tc and T=0. The relation �16� links the ratio of the GL

layer’s parameter A at T=Tc and T=0 with both supercon-
ducting and normal optical properties of the ab planes. Note
that �i� the LHS �RHS� of Eq. �16� depends solely on T=0
�T=Tc� quantities; �ii� the relation �16� is universal: it is does
not depend on the c-axis structure and should hold for all
cuprate materials with the same in-plane parameters.

Since the relation �16� is dependent on �pn�Tc ,�� further
analytical calculations are difficult. We notice, however, that
the integral �13� is saturated at low frequencies relevant to
the normal-state dc conductivity:

�dc � lim
�→0

Re ���� =
�pn

2 �Tc�
4�

lim
�→0

�pn
−1�Tc,�� . �17�

Therefore we take �pn to be equal to its low-frequency ex-
trapolation, and work in the “dirty” limit �pn��pn, arriving
to u2=�pn /�pn. The requirement of the dirty limit is rather
mild since even at �pn=�pn the above relation holds within
10%. Next, we take the standard GL-like prescription A�T�
=��T+ T̃c�, with 0� T̃c�Tc, where � and T̃c are the GL
parameters describing the free energy associated with the
condensation. We consider the most energetically unfavor-

able case: the positive T̃c indicates that the layers alone are
not able to support the superconductivity. Curiously, if the

intrinsic layer properties are related, T̃c=��ps�0� with �
�10 K cm, then from Eqs. �16� and �17� we get the scaling
relation �ps

2 �0��120�dcTc observed experimentally.23
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