PHYSICAL REVIEW B 74, 052502 (2006)

Size-dependent enhancement of superconductivity in Al and Sn nanowires:
Shape-resonance effect
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A shape-dependent superconducting resonance can be expected when an energy level associated with the
transverse motion in a wire passes through the Fermi surface. We show that the recently observed width-
dependent increase of 7, in Al and Sn nanowires is a consequence of this shape-resonance effect.
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Increasing the critical temperature (7,) of a supercon-
ductor (SC) has been a major challenge. On the one hand one
can look for different materials that exhibit a higher 7. Such
a search has been very successful over the last 20 years. On
the other hand microstructuring of a superconductor is a dif-
ferent and new road that is able to modify T, (i.e., increase
and/or decrease it) and may also give us further insight in the
basic mechanism of superconductivity.

In earlier works on microstructuring of SCs in the meso-
scopic regime, enhancement of the critical current (j,) was
demonstrated to occur due to trapping of vortices. Also a
large increase of the critical magnetic field (H,) was realized
through such mesoscopic structuring, which is mostly a con-
sequence of surface superconductivity. But in both cases the
zero-magnetic-field critical temperature was unaltered. The
enhancement of j. and H, could be accurately described by
phenomenological theories such as the London approach and
the (time-dependent) Ginzburg-Landau theory.

In the present Brief Report we are interested in modifying
a SC on the nanoscale. We deal with systems where the
electron motion is limited to quasi-one-dimension (1D). Dur-
ing the last decade nanowires have attracted much attention
in the context of phase fluctuations of the order parameter
(i.e., quantum phase slips).! But quantization of the electron
motion in the transverse direction was not investigated in
much detail. However, very recently numerical investigation
of the Bogoliubov—de Gennes equations has shown? that this
quantization results in significant shape-dependent supercon-
ducting resonances with a profound effect on the nanowire
T.. Such systems have been the subject of recent experimen-
tal studies,> and we demonstrate here that the width-
dependent increase of T. found in these experiments is a
manifestation of these shape resonances.

More than 40 years ago, Blatt and Thompson® calculated
a remarkable sequence of peaks in the thickness dependence
of the energy-gap parameter of single-crystalline supercon-
ducting nanofilms in the clean limit. They called these spikes
shape resonances. At that time it was not possible to produce
high-quality SCs with nanoscale dimensions (only very re-
cently were the thickness-dependent oscillations of T, ob-
served experimentally in ultrathin Pb films’). For decades
atomic nuclei were the only systems where the interplay be-
tween quantum confinement and pairing of fermions could
be studied experimentally and where the expectations of
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Blatt and Thompson were confirmed as a series of size reso-
nances in the pairing energy gap of nuclei.® Very recently
high-quality nanowires have become available, where this
resonance effect is expected? to be significantly enhanced
over the two-dimensional (2D) case.

The physics of the shape-resonance effect in nanowires
can be understood as follows. The superconducting order
parameter is not simply the wave function of an ordinary
bound state of two fermions but the wave function of a
bound fermion pair in a medium. For example, in the homo-
geneous situation the Fourier components of the Cooper-pair
wave function are suppressed for wave numbers less than the
Fermi wave number due to the presence of the surrounding
Fermi sea.® Therefore, the Fourier transform of the Cooper-
pair wave function is essentially nonzero only in the vicinity
of the Fermi wave number. In general, for both homogeneous
and inhomogeneous situations, the superconducting order pa-
rameter is strongly dependent on Np, the number of the
single-electron states (for one spin projection) situated in the
Debye “window” around the Fermi level [u—7%iowp,u
+ i wp], where w is the chemical potential (the Fermi energy)
and wy, is the Debye frequency.!®!! More precisely, the mean
energy density of these states per volume unit Np/ (2% wpV)
is of importance. When a SC is small enough, then this den-
sity varies together with its characteristic size. In particular,
in the presence of quantum confinement the band of single-
electron states in a clean single-crystalline wire is divided up
in a series of parabolic one-dimensional subbands. While the
width (the cross section o) of a wire increases or decreases,
these subbands move down or up in energy. Each time the
bottom of a subband enters the Debye window, the density
Np/ (2% wpV) increases. This results in a sequence of peaks
in the density of states versus o, i.e., the shape resonances.
The resonances are significant for nanowires but are
smoothed out with increasing nanowire width. In the large-o
limit the density Np/ (2% wpV) is nearly constant and slowly
approaching the well-known bulk value N(0)=mkg/ (2742
(see, for example, Ref. 11), where kj is the 3D Fermi wave
number. It is of importance that the shape resonances in the
density of states are accompanied by significant peaks in the
o dependence of the averaged (over spatial coordinates) or-
der parameter.” This average is close to the energy gap in the
quasiparticle spectrum, whereas the latter (taken at zero tem-
perature) is proportional to 7. Hence, the critical SC tem-
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perature in a nanowire is an oscillating function of ¢ in the
presence of shape resonances (these oscillations will be
smoothed by fluctuations in the cross section).

To explore shape resonances, one needs to deal with a
single-crystalline SC (or with a polycrystalline SC made of
strongly coupled grains) where the electron mean free path is
comparable with the SC characteristic size. In the considered
nanowires this path is at least of the order of the wire
width.*3 Such a nanowire is in the clean limit in the trans-
verse direction: impurities influence only the electron motion
in the longitudinal direction. Use of this approximation to-
gether with arguments similar to the Anderson theorem!®
makes it possible to conclude that nonmagnetic impurities do
not produce a significant effect on the order parameter in this
regime. The Bogoliubov—de Gennes (BdG) equations'® are
the microscopic equations describing a clean SC when the
order parameter A(r) changes with position. In the absence
of a magnetic field, A(r) can be chosen as a real quantity
(phase effects are beyond the scope of the present work), and
the BAG equations become

2

h
Eu(r) = (— EV2 - ,LL) u,(r) + A(r)v,(r), (1)

2

Ep,(r) = A(r)u,(r) - (— f—sz - M)vi(r), 2)

where E; is the quasiparticle spectrum, p stands for the
chemical potential, and m denotes the electron band mass.
Equations (1) and (2) are supplemented by the self-
consistency relation A= gE,-uiv;k(l —2f;) with g the coupling
constant and f;=f(E;) the Fermi function. The summation is
over all eigenstates with the kinetic energy within the Debye
window [u—fiwp, u+hop]. This kinetic energy is very
close to the single-electron energy in a gas of unpaired elec-
trons. The chemical potential is determined by n
=2/V)Z, [ & |u|*f;+|v/*(1=Ff,)] with n the mean electron
density. Due to the quantum confinement in the transverse
directions we have to set u,(r)|,cs=v,(r)|,cs=0 on the wire
surface while in the longitudinal direction periodic boundary
conditions are used.

Figure 1 shows the numerical results of Egs. (1) and (2)
for a cylindrical wire with length L=1 um for Al parameters
gN(0)=0.18 and #iwp/kp=375 K.'%! The bulk chemical po-
tential is chosen as uy=0.9 eV (it corresponds to n=3.88
X 102! cm™3; see the remark about influence of the electron-
density choice below) and the electron band mass m is taken
to be the free-electron mass. In Fig. 1(a) the zero-
temperature energy gap A, normalized by its bulk value
Ay is plotted, whereas in Fig. 1(b) the mean density of the
single-electron states in the Debye window Np/(2f wpV) is
shown versus the effective nanowire diameter o'/? in units of
N(0). Notice that shape resonances in Np/[27 w,VN(0)] are
accompanied by large oscillations in A /Ay . Amplitudes of
these oscillations are an order of magnitude larger as com-
pared to similar peaks in the gap function of thin films with
the same width.®!2 We can point out at least three reasons for
such enhancement. First, quantum confinement is much
stronger in nanowires. Second, in contrast to a film, most
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FIG. 1. (Color online) The width-dependent relative gap
A,/Apux (a) and the relative mean density of the single-electron
states in the Debye window Np/[2% wpVN(0)] (b) versus o2 for
cylindrical Al nanowires with cross section o at zero temperature.

single-electron subbands of a nanowire are degenerate. For
example, in the situation of a cylindrical nanowire there are
three quantum numbers for u; and v;: i={j,m,,k} with j the
radial quantum number, mg the azimuthal quantum number,
and k the wave number of the free longitudinal motion. Any
energy subband with m,#0 is degenerate since Ej;,,
=FE;_,, i Third, even if the subbands are not degenerate,
they can be situated very close to one another in energy (in
particular, this is typical for subbands with large quantum
numbers). In this case a resonance has not decayed when the
next one appears, and they join in one profound peak. Note
that in thin films the superconducting shape resonances are
well separated from each other and equidistant®!> which is
clearly not the case here. Another important point about Fig.
1 is that there is an important difference between dependen-
cies presented in panels (a) and (b) of Fig. 1. The energy gap
is strongly enhanced at the resonant points (with respect to
the bulk value) while there are much less important drops
between the resonances. This is different from the density of
states where the oscillations are almost centered around the
bulk value. The reason is that the resonant increase of
Np/(2h wpV) occurs due to states making practically the
same contribution to the order parameter, and this collective
mechanism plays the role of an “amplifier” (this is why the
word “resonance” is appropriate here). Indeed, we have u;
xe* and v;*e**, where z is the longitudinal coordinate.
Hence, the product u,-v;-k appearing in the self-consistency re-
lation for the order parameter does not depend on k and
remains the same for a given subband. But this product
strongly oscillates when the quantum numbers describing the
transverse states are changed which destroys the collective
behavior beyond a resonant point.

The resonant peaks in the energy-gap function are much
higher than the bulk value, whereas drops of A, between
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FIG. 2. (Color online) Critical temperature T, /7T Versus
the square root of the cross section of a cylindrical Al nanowire.
Symbols are the experimental results from Refs. 4, 5, and 13, the
solid curve is a guide to the eye and indicates the general trend of
the experimental results. Inset: the same dependence but in the
small-o region.

resonances are not so significant. The same is true for the
critical temperature. This is the reason why the experimen-
tally measured averaged critical temperature increases mono-
tonically with decreasing wire width in the presence of in-
evitable cross section variations in real samples.

Figure 2 shows the effect of the shape resonances on the
transition temperature 7, ,/ T, for cylindrical Al nano-
wires. We calculated T for discrete values of ¢'/? with steps
of 0.01 nm. The nanowire length and the mean electron den-
sity are the same as in Fig. 1. The theoretical results are
compared with recent experimental data for Al polycrystal-
line nanowires with strongly coupled grains. The three sets
of experimental results correspond to three different initial
samples having the transverse dimensions progressively re-
duced by the ion-beam sputtering method.* The squares® and
circles!? represent the observations made for two samples
fabricated on the same chip, whereas the data given with the
stars* are from another experiment. The horizontal bars are
due to a distribution in the wire cross section. The vertical
error bars are a consequence of uncertainties in the choice of
the bulk superconducting temperature due to the presence of
impurities: the upper limit corresponds to the transition tem-
perature in clean aluminum 7 y,;,=1.19 K, the lower limit
T, »ux=1.26 K is used for the squares and circles (this is the
transition temperature in the nanowire with ¢'>=71 nm, the
widest in these two sets) and T, =1.27 K for the stars
(T, for the nanowire with o'?=65 nm, the widest in the set
of Ref. 4). The experimental transition temperatures shown
in Fig. 2 were extracted from the temperature-dependent re-
sistance as the point at which the resistance dropped to one-
half of its normal-state value. From Fig. 2 it follows that the
general trend of the experimental results is in good agree-
ment with the calculated resonance amplitudes and is close
to the average trend of resonances.

The same conclusion holds for nearly single-crystalline
Sn nanowires fabricated with the method of electrodeposi-
tion into porous membranes.> Though there is no detailed
information available about 7 , in this case, we have at our
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FIG. 3. (Color online) The shape resonances in the relative tran-
sition temperature for Al and Sn cylindrical nanowires.

disposal a clear signature of its increase up to 1.17, ) in a
cylindrical tin nanowire with a width of about 20 nm (o'
~17.7 nm).? Using the experimental trend from Fig. 2 one
obtains T, ,/ T, px=1.25 for an aluminum nanowire with
the same width. Hence, the size-dependent effect on the criti-
cal temperature is a factor of 2 smaller when passing from Al
to Sn for a nanowire with an effective diameter of about
0'2~17.7 nm. In Fig. 3 the transition temperature calcu-
lated with the BAG equations for a cylindrical nanowire is
shown for Al and Sn [gN(0)=0.25 and fwp/kg=195 K
(Refs. 10 and 11)] near o'>=17.7 nm. One can see that the
amplitudes for Sn are indeed smaller, and the reduction fac-
tor changes between 1.4 and 2.5 (depending on the specific
resonance).

These findings show that the shape-resonance effect plays
an essential role in the size-dependent increase of the critical
SC temperature recently observed in experiments with Al
and Sn nanowires. Note that the resonant amplitudes are
weakly dependent on the total electron density in the metallic
domain n=10?'-10?* cm™. For example, when the density
rises from 3.88 X 10! to 2 X 10?2 cm™3, the amplitudes of the
most profound shape resonances are reduced by 10-15 %
while the change in the “ordinary” resonant deviations from
the bulk value is practically negligible.”> The mean distance
between two neighboring resonances is determined by the
inverse 3D Fermi wave number and is therefore very sensi-
tive to the electron density n. For instance, instead of 1-2
resonances per 0.2 nm for n=3.88 X 10*' cm™3, we get 3—4
resonances for n=2 X 10> cm™ (See Ref. 2). Thus, the con-
crete value for n in the metallic domain is not very important
for the main result of the present work.

Concluding, we have shown that the size-dependent in-
crease of the superconducting temperature recently found in
Al and Sn nanowires is well explained by the shape-
resonance effect. The surface-phonon mechanism.'* which is
usually considered to be responsible for the 7. enhancement
in granular films and wires (note that this enhancement is
insensitive to the cross section),'’ can also contribute but in
our systems it is of secondary importance. For example, for
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Al and Sn films with thickness of about 5 nm this contribu-
tion can be estimated to be =~0.1 K,!* while the amplitudes
of the shape resonances are about 1 K for this film thickness
(see Refs. 6 and 12).
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