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We present a study of XYZ Heisenberg spin-1
2 chain, along with its variant �XY Heisenberg spin-1

2 Hamil-
tonian�, under a transverse magnetic field. It reveals from our study that two competitive massive phases are
separated by a gapless line �critical line�. We find in our analysis that the critical points �trivial and nontrivial�
are non-Gaussian in nature. There is no phase crossover owing to the change of the critical point from the
trivial to the nontrivial one. There is no evidence of magnetization plateau, however the system is in the Ising
criticality. The positive and negative values of umklapp-like scattering favor a short range antiferromagnetic
order because of the XY anisotropy and the transverse field, respectively. Higher value of Luttinger liquid
parameter �K� also favors the short range antiferromagnetic order due to the in-plane exchange anisotropy.
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I. INTRODUCTION

Low dimensional quantum spin systems have been stud-
ied extensively for last few decades, in view of many un-
usual and interesting findings from both experimental and
theoretical studies1–3. It was observed experimentally that the
physical properties of low dimensional anisotropic antiferro-
magnets have strong dependence on the magnetic field
orientation4. One can also find that spin nonconserving pro-
cesses introduce anisotropy in the XY plane3,5. The first ap-
proach to solve the anisotropic XXZ, Heisenberg chain under
a uniform magnetic field along the z direction was by Yang
and Yang6. Here we present a study of the XYZ Heisenberg
chain with its variant �XY Heisenberg spin-1

2 Hamiltonian�
under a transverse magnetic field. We think that this problem
is more interesting than the XXZ Heisenberg spin-1

2 chain
under a uniform magnetic field along z direction. A longitu-
dinal field commutes with XXZ Hamiltonian. This is not the
case when the symmetry breaking transverse magnetic field
is applied and the exact integrability is lost. Much less atten-
tion has been paid to this problem because of analytical com-
plexities. Here we solve this problem through Abelian
bosonization and renormalization group techniques.

In the present study we observe the failure of naive ex-
pectation when the perturbation of two relevant fields are
present. In this situation, naive expectation is that low energy
behavior of the theory would be governed by the most rel-
evant operators and at any rate the theory would remain fully
massive. But we see in our study that the two massive phases
are separated by a gapless �critical� line.

Sections of this paper are the following: In Sec. II, we
present the theoretical formulations of our problem with the
phase diagram. A discussion about the fix points and stability
analysis around the fix points are also given there. Section III
is devoted to discussions and conclusions.

II. MODEL HAMILTONIANS, THEORETICAL
FORMULATIONS, AND PHYSICAL ANALYSIS

We consider the anisotropic Heisenberg spin-1
2 Hamil-

tonian on a one dimensional lattice. The XYZ Heisenberg
Hamiltonian is defined as

HXYZ = �
n

��1 + a�Sn
xSn+1

x + �1 − a�Sn
ySn+1

y + �Sn
zSn+1

z − hSn
x� ,

�1�

where Sn
� are the spin-1

2 operators. We assume that the XY
anisotropy a and the zz coupling � satisfy −1�a ,��1, and
magnetic field strength h�0. The Hamiltonian HXYZ is in-
variant under the transformation Sn

x →Sn
x, Sn

y →−Sn
y,

Sn
z →−Sn

z , actually it is a Z2 symmetry. For finite h, Z2 sym-
metry is absent when Sn

x →−Sn
x.

Spin operators can be recasted in terms of spinless fermi-
ons through Jordan-Wigner transformation and then finally
one can express the spinless fermions in terms of bosonic
fields3. � �bare� and � �dual� fields are related with left and
right moving fields by this relation, �=�L+�R, �=�L−�R.
The analytical form of the spin operators in terms of the
bosonic fields are

Sn
x = �c2 cos�2��K�� + �− 1�nc3�cos���

K
�� ,

Sn
y = − �c2 cos�2��K�� + �− 1�nc3�sin���

K
�� ,

Sn
z =��

K
�x� + �− 1�nc1 cos�2��K�� , �2�

where ci’s are constants as given in Ref. 7. Hamiltonian H0 is
the noninteracting part of HXYZ,

H0 =
v
2
	 dx���x��2 + ��x��2� , �3�

where v is the velocity of the low-energy excitations. It is
one of the Luttinger liquid parameters and the other is K,
which is related to � by2,8
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K =
�

� + 2 sin−1���
. �4�

K takes the values 1 and 1/2 for �=0 �free field�, and �=1
�isotropic antiferromagnet�, respectively. The relation be-
tween K and � is not preserved under the renormalization, so
this relation is only correct for the initial Hamiltonian. The
Hamiltonian HXYZ in terms of bosonic fields is the following:

HXYZ = H0 + a	 cos�2��

K
��x��dx

+ �	 cos�4��K��x��dx

− h	 cos�2��K��x��cos���

K
��x��dx . �5�

One can get the HXY Hamiltonian by simply setting �=0 in
the above Hamiltonian. In this derivation, different powers of
coefficients ci have been absorbed in the definition of a ,h
and �. The integration of the oscillatory terms in the Hamil-
tonian yield negligible small contributions, the origin of the
oscillatory terms are the spin operators. So it is a resonably
good approximation to keep only the nonoscillatory terms in
the Hamiltonian3,8. We will now study how the parameters a,
h, �, and K flow under RG. The operators in Eq. �1� are
related to each other through the operator product expansion;
the RG equations for their coefficients will therefore be
coupled to each other. Here we derive the RG equations by
using the perturbative renormalization group approach
scheme. We use operator product expansion to derive these
RG equations which is independent of boundary condition9.
RG equations themselves have been established in a pertur-
bative expansion in coupling constant �g�l��, they cease to be
valid beyond the certain length scale, where g�l�
13. The
RG equations for the coefficients of Hamiltonian HXYZ are

dh

dl
= �2 − K −

1

4K
�h −

1

K
ah − 4KOh ,

da

dl
= �2 −

1

K
�a − �2K −

1

2K
�h2,

dO

dl
= �2 − 4K�O + �2K −

1

2K
�h2,

dK

dl
=

a2

4
− K2O2, �6�

We consider K�1/2 �see the analysis of Eq. �7�� in study of
RG flow diagram, where the umklapp ��� term is irrelevant.
So we drop the � term during the RG calculations. The RG
equation for the O term is originating dynamically due to
round up the operator product expansion of a and h term.
O=cos�4��K��x��, which is similar to the � term. In prin-
ciple v can renormalize but it will not effect the behavior of
critical points10. In our problem there is no velocity aniso-
tropy, i.e., the velocity is the same for all fields. The effect of

velocity anisotropy is discussed briefly in Ref. 17. One can
get the RG equations for the Hamiltonian HXY by simply
setting O=0 in Eqs. �6�, for this case we get only three RG
equations. We have obtained the same set of RG equations as
in Ref. 10 for the Hamiltonian HXYZ. Here we report some
extensive and improved studies compared to that in Ref. 10.
We solve the RG equations numerically, with the help of a
sophisticated numerical package, MATLAB11.The same RG
equations appeared earlier in different contexts. However,
the last two terms in the expression for dh /dl were not
present in Ref. 12; these two terms have some importance to
keep the duality invariant. Note that Eqs. �6� are invariant
under the duality transformation K↔1/4K and a↔O, but
there is no duality invariant for the RG equations of HXY
Hamiltonian.

Now we analyze the fixed points �FP�. RG equations �6�
have two fixed points, one is trivial and the other is non-
trivial. For nontrivial FP, any value of K* lying in the range
1/2	K*	1+�3/2 is physical for our study. The nontrivial
FP is given by

h* =
�2K*�2 − K* − 1/4K*�

2K* + 1
,

a* = �K* +
1

2
�h*2, and O* =

a*

2K* . �7�

Upperbound of K*→1+�3/2�1.866, yields the XXZ aniso-
tropic coupling � �from Eq. �4�� �−0.666, which is consis-
tent with our assumption, i.e., �� � 	1. There is only one FP
�trivial� for the RG equations of the HXY Hamiltonian.

Now we present the phase diagram from the study of
Abelian bosonization. We do this analysis from the consid-
eration that the low-energy properties of the system will be
governed by the most relevant perturbation. This analysis is
only valid very near to the trivial FP. Scaling dimensions for
the perturbations a, �, and h are 1

K , 4K, and K+ 1
4K , respec-

tively. The system shows the short range antiferromagnetic
order due to the transverse field for the values of K lying in
the range, 1 /2	K	1+

�3
2 . One can also find from the com-

parison of scaling dimension that a short range antiferromag-
netic order due to the in-plane exchange anisotropy will pre-
vail for the values of K lying in the range,

�3
2 	K	1+

�3
2 .

Here the phase diagram of Hamiltonian HXYZ is the same as
in HXY because the lower bound of K is 1 /2. If ��1
�K	1/2� then the umklapp term of Hamiltonian HXYZ will
become relevant. This phase analysis through the Abelian
bosonization study near to the trivial fixed point has not been
covered in Ref. 10.

In Fig. 1, we present the RG flow diagram in the a–h
plane for Eqs. �6�. Solid lines are the RG flow lines and the
arrows indicate the directions. Two massive phases are
marked by the regions A and B. We observe in our study that
there is a unique line in the a–h plane for very small values
of a and h for each value of K. Now we present some ana-
lytical results in a special limit: we observe that if h�a1/2,
then h�l�
h�0�exp�2−K−1/4K�l while a�l�
exp�2−1/K�l.
Hence h must initially scale with a as
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h 
 a�2−K−1/4K�/�2−1/K�, �8�

as we have numerically verified for K=1. However, Eq. �8�
is only true, if K	 �1+�2� /2=1.207 �i.e., ��−0.266�, the
initial scaling form is given by h
a1/2. In region A, the
points flow to a=
; this corresponds to a gapped phase in
which the xx coupling is larger than the yy coupling. In re-
gion B, a flows to −
 and h flow to 
; this is a gapped phase
in which the yy coupling is larger than the xx coupling. The
staggered magnetization in the y direction, defined in terms
of a ground state expectation value as

my = � lim
n→


�− 1�nS0
ySn

y��1/2, �9�

mark the difference between the two phases. This is zero in
phase A. In phase B, my is nonzero, and the Z2 symmetry is
broken. The scaling of my with �E can be found as follows13.
At a=h=0, the leading term in the long-distance equal-time
correlation function of Sy is given by

S0
ySn

y� 

�− 1�n

�n�1/2K . �10�

Hence the scaling dimension of Sn
y is 1 /4K. In a gapped

phase in which the correlation length is much larger than the
lattice spacing, my will therefore scale with the gap as my

��E�1/4K.

Apart from the trivial FP, we predict one more FP, which
is nontrivial. Both of them are non-Gaussian in nature and
Ising type. We now examine the stability of small perturba-
tions away from the nontrivial FP. The nontrivial FP has
two stable directions, one unstable direction and one
marginal direction. The presence of two stable directions im-
plies that there is a two-dimensional surface of points
which flows to this FP; the system is gapless on that
surface. A perturbation in the unstable direction produces
a gap in the spectrum. At the nontrivial FP with

�K* ,a* ,�* ,h*�= �1.522,0.248,0.081,0.35�, the four RG ei-
genvalues are given by 1.521 �unstable�, 0�marginal�, and
−2.3216+0.9031i �stable� −2.3216−0.9031i �stable�. A small
perturbation of size �a in that direction will produce a gap in
the spectrum which scales as �E
��a�1/1.522= ��a�0.657; the
correlation length is then given by �
v /�E
��a�−0.657.

In Fig. 2, we present the role of the O term �umklapp-like�
in the RG flow diagram for the Eqs. �6�. We find some im-
portance of the O term in the RG flow diagram. The positive
values of the O term favor the existence of short range anti-
ferromagnetic order due to in-plane exchange anisotropy. As
a result the critical line as well as the nontrivial FP shift in
the upward direction. The negative values of the O term
favor the short range antiferromagnetic order owing to the
transverse field. This causes shift in both the critical line and
nontrivial FP in the downward direction. This study has not
covered in Ref. 10.

In Fig. 3, we present the critical lines for the RG flow
diagrams of Eq. �6� and the XY limit of these RG equations
for different values of the Luttinger liquid parameter �K�,
which are consistent with our theory. We observe that the
higher values of K favor the short range antiferromagnetic
order due to the in-plane exchange anisotropy. This study has
not been covered in Ref. 10.

III. DISCUSSIONS AND CONCLUSIONS

We have presented the RG flow phase diagram of XYZ
Heisenberg spin-1

2 chain under transverse magnetic field. The
basic nature of the phase diagram, viz., two massive phases
separated by a gapless line, is the same for both model
Hamiltonians. This gapless line is nothing but the spin-flip
transition line, short range antiferromagnetic order is chang-
ing the direction of the alignment across this line. We have
predicted two kinds of fixed points, one is trivial and the
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FIG. 1. RG flow diagram on the a–h plane for Eqs. �6�. The
solid lines and arrows are indicating the flows and directions of this
phase diagram. A and B are the gapped phases �see text�. Initial
values of the parameters are K=1 and O=0.
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FIG. 2. Critical lines are on the a–h plane for Eqs. �6�, solid line
for O=0, dashed lines are for O=0.3,0.2,0.05 from upper to lower
one, respectively. Dotted lines are for O=−0.3,−0.2,−0.05 from
lower to upper one, respectively. Fix points are marked by asterisk.
Initial value of K is 1.
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other is the nontrivial. Both are non-Gaussian. An Ising criti-
cality occurs in phase B, around both fixed points. It is com-
mon in the literature, that the trivial fixed point corresponds
to the Gaussian fixed points �free field� while the nontrivial
fixed point corresponds to the interacting phase of the
system14, there is phase crossover due to the change of fixed
point from Gaussian to non-Gaussian14,15. But in our study,
we have not seen any phase crossover. This phase diagram
has already been studied in Ref. 10. However, there are some
differences between the Ref. 10 findings and our findings.

The locus of the critical line, especially after the nontrivial
FP and also the coordinate of nontrivial FP, as we have ob-
tained, are different from Ref. 10. We have done the Abelian
bosonization study to extract the phase regions near the
trivial fixed point. This study has not been covered in Ref.
10. It is revealed in our study that the positive values of
umklapp-like scattering terms are favoring the short range
antiferromagnetic order due to in-plane exchange anisotropy,
whereas the negative values of umklapp scattering are favor-
ing the short range antiferromagnetic order due to transverse
magnetic field. This study has not been covered in Ref. 10.
We observe that higher values of K favor the short range
antiferromagnetic due to in-plane exchange anisotropy. This
study has not been covered in Ref. 10. The anisotropic
Heisenberg �XXZ� spin chain in a transverse magnetic field
has already been studied in Ref. 13. They found the Néel
order along the Y and Z axis for �	1 and ��1, respec-
tively. The anisotropic Heisenberg model under a longitudi-
nal field have already been studied in Ref. 16. They have
found evidence of magnetization plateaus for K	1/2 and
short range antiferromagnetic order due to in-plane exchange
anisotropy for K�1/2. In our study, there is no possibility
for finding the magnetization plateau phase for two reasons.
One is for the lacking of in-plane rotational symmetry and
the other is that �	1 �K	1/2�.
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