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The approach proposed by Choi and Ihm �Phys. Rev. B 59, 2267 �1999�� for calculating the ballistic
conductance of open quantum systems within the Landauer-Büttiker approach is generalized to fully relativistic
ultrasoft pseudopotentials, enabling it to deal with ballistic transport in the presence of spin-orbit coupling. As
a test case, we present the complex k-vector electronic structure of a perfect monoatomic nonmagnetic Pt wire,
and the ballistic conductance of a toy nanocontact model consisting of the same Pt nanowire with one stretched
bond. By comparing the fully relativistic and the scalar relativistic results, it is seen that the relative importance
of spin-orbit effects can be quite large.
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I. INTRODUCTION

Nanocontacts as thin as a monoatomic can be fabricated
by means of scanning tunneling microscopes or mechani-
cally controllable break junctions.1 The size of these contacts
is generally much smaller than the electron mean free path so
that they behave as ballistic conductors. By measuring the
conductance while pulling the contact, one observes constant
plateaus alternated to sudden jumps, the latter generally con-
nected with atomic rearrangements. In some elements, such
as Ir, Pt, and Au, the last plateau before breaking of the
nanocontact is particularly long and suggests the existence of
monoatomic wires that are several atoms long.2,3 Mono-
atomic Au wires,4,5 as well as three-atom long monoatomic
wires of Co, Pd, and Pt �Ref. 6� have indeed been imaged by
transmission electron microscopy.

At the theoretical level, the transport properties of atomic
scale conductors can be calculated by the Landauer-Büttiker
approach,7 by considering the transmission and reflection of
the electronic wave functions at the nanocontact.8–13 In real-
istic approaches, the electronic structure is calculated within
density functional theory �DFT�, in the local density or in the
local spin density approximation �LSDA� to account for spin
magnetism.10,14,15 Many-body effects have also been ac-
counted for in the theory,16 while ballistic conductance in the
presence of spin-orbit �SO� coupling has been addressed
only very recently.17 It is well known that in heavy elements,
SO changes significantly the electron band structures with
respect to scalar relativistic �SR� theories. Therefore its in-
clusion is expected to be important for ballistic conductance.
In principle, the SO-induced electronic structure modifica-
tions could even change the number of channels available for
transmission at the Fermi level. Besides, they could also af-
fect the predicted magnetic properties.18 For instance, a Pt
monoatomic wire was found theoretically to be ferromag-
netic at interatomic distances larger than 2.2 Å including SO,
while without SO it is nonmagnetic until much larger
distances.18 Moreover, theoretical speculations have pointed
out that, in monoatomic wires, interesting phenomena due to
SO coupling such as anisotropic ballistic magneto-

resistance19 or giant magnetocrystalline anisotropy20 could
be observable. Deferring discussion of the magnetic case to a
later work, we intend to focus here on the nonmagnetic sys-
tem, concentrating on the issue of transport in the presence
of SO.

SO coupling is naturally dealt with when the electronic
structure is calculated by solving a Dirac-like equation for
four-component spinors such as the one obtained in the
framework of relativistic DFT.17,21,22 However, it is well
known that SO effects can be studied also within a simplified
framework provided by a DFT formulation based on the
spin-density matrix with orbitals described by two-
component spinor wave functions.23–26 Actually, in a previ-
ous paper, one of us introduced fully relativistic �FR� ultra-
soft pseudopotentials27 �USPPs� acting on two-component
spinors and showed that they provide SO split-band struc-
tures of bulk fcc-Au and fcc-Pt in good agreement with those
found by solving the Dirac equation for four-component
spinor wave functions.28

Choi and Ihm9 originally introduced a complex k-vector
method for calculating the transmission coefficient of an
open quantum system where nuclei and core electrons are
described by fully nonlocal norm conserving PPs of the
Kleinman-Bylander type.29 The transmission coefficient at
fixed energy E is obtained from the scattering states of the
open system. Key quantities of the method are the Bloch
functions at complex wave vectors necessary to expand the
scattering states in the leads. In earlier work �Ref. 10�, we
generalized this method to magnetic materials �within the
LSDA� and to USPPs. Here we further extend this approach
to deal with systems described by two-component spinor
wave functions and FR USPPs, which include SO. Moreover,
the method is demonstrated by an explicit calculation on a
simple test case. In particular, we present the complex
k-vector bands for an infinite Pt monoatomic wire, followed
by the ballistic conductance of an idealized toy nanocontact
consisting of the same Pt nanowire with one stretched bond.

II. METHOD

In spin DFT, the basic variable is the spin density of the
interacting electron gas.23 As in the spin-restricted theory,30
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one can introduce auxiliary one-electron Kohn and Sham
orbitals which are two-component spinors ���r�, where � is
a spin index. As shown in Ref. 28, a FR nonlocal USPP
acting on spinor wave functions can be rewritten as a 2�2
matrix where each element has the form of a SR USPP with
spin-dependent coefficients. The total energy contains local
and nonlocal PP terms and the scattering equation is given by
�in atomic units�28

E���r� = −
1

2
�2���r� + �

��

VLOC
�,���r�����r�

+ �
I��

�
��

D̄��
I,�,�����

I �������
I �r − RI� . �1�

The local potential is a 2�2 matrix: VLOC
�,���r�=Veff�r���,��

−�BBxc ·��,��, defined in terms of the effective potential
Veff�r� and of the exchange and correlation magnetic field
Bxc �see Ref. 28 and Ref. 31�. � are the Pauli matrices,
��

I �r−RI� are projector functions centered on the atom RI,
and the indexes � and � are a shorthand notation for com-
posite indexes �indicated with � , l , j ,m in Ref. 28�. Here,

D̄��
I,�,��are defined in terms of the screened coefficients of the

nonlocal PP and the spin-dependent coefficients of the over-

lap matrix: D̄��
I,�,��= D̃��

I,�,��−Eq��
I,�,�� �see Ref. 28 for the defi-

nition of D̃��
I,�,�� and of q��

I,�,���.
We study the electron transmission in an open quantum

system consisting of a scattering region 0	z	L and left
�z	0� and right �z
L� leads. In the �x ,y� directions, a su-
percell geometry with periodic boundary conditions is
adopted. The periodicity in the �x ,y� plane allows us to use
Bloch’s theorem introducing k� points in the two-
dimensional Brillouin zone and solving Eq. �1� separately at
each k� �see also Ref. 32�. Equation �1� is solved by gener-
alizing the techniques of Refs. 9 and 10, using a well known
method applicable to this kind of integrodifferential
equations.9 It is useful to introduce the functions

Ps��r� = �
R�

eik�·R���
I �r − RI� , �2�

and the integrals

Cs�
� = �

�,��

D̄��
s,�,�����

s ����� , �3�

where RI=R�+�s and s runs on the atoms of one unit cell,
and to solve the homogeneous equations

E�n
��r� = −

1

2
�2�n

��r� + �
��

VLOC
�,���r��n

���r� , �4�

where n runs over the independent solutions of this system.
Their number is twice as large as in Refs. 9 and 10, since the
equations for the two spin components are now coupled.
Next we solve the inhomogeneous equations obtained by
adding to Eq. �4� one inhomogeneous term, either in the
equation for the first or in the equation for the second com-
ponent of the spinor,

E�s��
� �r� = −

1

2
�2�s��

� �r� + �
��

VLOC
�,���r��s��

�� �r� + ��,�Ps��r� ,

�5�

where � is a spin index which indicates the equation where
the inhomogeneous term has been added, and ��,� is the Kro-
neker symbol. The solution of Eq. �1� can be written as a
linear combination of the solutions of Eqs. �4� and �5�,

���r� = �
n

an�n
��r� + �

s��

Cs�
� �s��

� �r� . �6�

The coefficients an for the left and right leads are calculated
from the Bloch conditions, while the coefficients an for the
scattering region are calculated from the wave function
matching boundary conditions at z=0 and z=L. The coeffi-
cients Cs�

� are determined together with the an as in Refs. 9
and 10.

In the leads, electron wave functions are Bloch functions
also along the z direction and are characterized by a wave
number kz. The presence of the scattering region breaks the
periodicity of the leads and generally states with complex kz
are required in order to expand accurately the scattering
states in the lead region. Bloch states with both real and
complex kz values allowed at each fixed energy E are found
by solving a generalized eigenvalue problem

AX = eikzdBX , �7�

as in Refs. 9 and 10. The components of the eigenvectors
X= �an,kz

,Cs�,kz

� � are the undetermined coefficients of the
Bloch function.

Each Bloch state � j
��r� characterized by a real wave vec-

tor kz and propagating rightward in the left lead gives rise to
a scattering state with the following asymptotic form in the
left and right leads:

���r� = 	� j
��r� + �

i�L

rij�i
��r� , z 	 0

�
i�R

tij�i
��r� , z 
 L ,

�8�

where i�L �i�R� means that the sum over i is over all
values of kz �real or complex�, which correspond either to
Bloch states propagating leftward �rightward� or decaying in
the left �right� lead. In the scattering region �0	z	L� the
scattering state is expanded as in Eq. �6�. The unknown co-
efficients �rij , tij ,an ,Cs�

� � of the scattering state are deter-
mined by solving a linear system as in Refs. 9 and 10. By
using the tij calculated for Bloch states i and j propagating
rightward in the right and left tips, we can calculate the total
transmission. In the linear response regime �valid at small
applied voltages�, the ballistic conductance is obtained from
the multichannel generalization of the Landauer-Büttiker
formula7

G =
e2

h
�
ij

Ii

Ij
�tij�2, �9�

where Ii and Ij are the probability currents of states i and j.
Within the LSDA approximation, tij is zero if the spins of the
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electrons in states i and j have opposite directions, hence no
spin flip is allowed. In the present scheme instead, an elec-
tron in a Bloch state � j

� contributes to the magnetization

density a term m j�r�=�B��,��� j
��r���,��� j

���r� and the di-
rection of m j�r� depends on the position r. A state j can be
partially transmitted into a state i �tij�0� with a magnetiza-
tion density mi�r� different from m j�r�. In order to calculate
the ballistic conductance, we need the current carried along
z, Ikz

by each Bloch state propagating in the left or right tips.
The current Ij of a nondegenerate Bloch state j depends on
its normalization. For a Bloch state normalized to one inside
a unit cell, the current is proportional to the derivative of the
eigenvalue Ekz

with respect to kz,

Ikz
=

1

d

�Ekz

�kz
, �10�

where d is the size of the unit cell in the z direction. How-
ever, the solutions of Eq. �1� found by diagonalizing the
generalized eigenvalue problem �Eq. �7�� are not normalized.
Hence it is necessary to calculate their current independently
of Eq. �10�. Our scattering equation is formally similar to the
scattering equation solved in Ref. 10, hence we can write the
current in the same form. A sum over the two spinor compo-
nents will give the total current through a plane S perpen-
dicular to the z axis and located at z0,

Ikz
= Im�

�

�

S

d2r��kz

�* �

�z
�kz

� + 2�
I�

Cs�,kz

*�

� �
−�

z0

dz��
S

d2r�� e−ik�R��s��r� − RI�*�kz

� �r��� ,

�11�

where S is the area of the periodic supercell in the �x ,y�
plane. Finally, as in Ref. 10, when degenerate Bloch states
have nonzero off-diagonal currents, we will choose linear
combinations of Bloch states which diagonalize the current.

III. A SIMPLE TEST APPLICATION

As a simple illustrative application of the theory just out-
lined, we study an infinite Pt monoatomic wire, first perfect
and then with a single stretched bond. The LSDA exchange-
correlation energy functional33 is used in all calculations.
The nuclei are described either by SR or by FR USPPs with
parameters given in Ref. 28. A kinetic energy cutoff of 29 Ry
is used for the plane-wave expansion of the pseudo-wave-
functions �270 Ry for the charge density�. For the perfect
wire the integration over the Brillouin zone is done with a
1�1�200 uniform mesh of k points and a smearing34 pa-
rameter of 5 mRy. The wire with one stretched bond is simu-
lated with a supercell containing ten atoms. In this case, 1
�1�21 points are used. For the infinite Pt wire, we find an
equilibrium interatomic distance of a=2.35 Å with either SR
or with FR PPs. Within LSDA, at this short interatomic dis-
tance, the Pt nanowire is nonmagnetic within SR, and weakly
magnetic within FR, with a small moment of order 0.1�B per
atom. Although we generally expect magnetism to play a
role for the conductance of Pt contacts and wires,18 in this
test check we shall restrict to a nonmagnetic wire. In Figs.
1�a� and 1�b� we compare the SR and FR complex band
structures of the perfect wire. Each figure is divided into
three panels which, from left to right, contain the bands at
imaginary kz, at real kz, and at kz= 

a + i�. Typical differences
between the real k-vector bands calculated with a three-
dimensional �3D� plane wave code35 or by solving the gen-
eralized eigenvalue problem in Eq. �7� are of the order of a
meV, or less. The real bands agree very well with the results
presented in Ref. 18, the small differences being due to the
different exchange and correlation functionals used in the
two calculations. The SR wave functions are eigenfunctions
of the z component �along the wire axis� of the orbital angu-
lar momentum Lz and can be labeled by the integer eigenval-
ues m of this operator. Equivalently, at arbitrary kz, they form
a basis for the irreducible representations of the C�v group:
�+, �, �, etc.36 The wave functions with m=0 transform as
the �+ representation, those with �m � =1 and �m � =2 trans-
form as � and �, respectively. The occupied real bands

FIG. 1. Complex band structures of a non-
magnetic monoatomic Pt wire at the equilibrium
Pt-Pt distance 2.35 Å. �a� SR and �b� FR bands
are compared. Continuous lines, short-dashed,
and dashed lines indicate FR �SR� bands with
�mj � =1/2, �mj � =3/2, and �mj � =5/2 �m=0, �m �
=1, and �m � =2�, respectively.
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merge, at kz=0 and at kz= /a, with paraboliclike bands
while a loop, at imaginary kz, joins the �m � =1 bands at 0.8
and 3.5 eV. In addition to the degeneracy due to the spatial
symmetry, all SR bands are also spin degenerate, for zero
magnetization. Things change in the FR calculation. The SO
split wave functions �Fig. 1�b�� are eigenfunctions of the z
component of the total angular momentum Jz and can be
labeled with its semi-integer eigenvalues mj. Equivalently,
they form a basis for the two-dimensional irreducible repre-
sentations of the C�v double group: �1/2, �3/2, �5/2, etc.,
where states �mj � =1/2 transform as �1/2, states �mj � =3/2
transform as �3/2, and so on.37 In the presence of SO, former
m=0 states give rise to �mj � =1/2, former �m � =1 states split
into �mj � =1/2 and �mj � =3/2 states, �m � =2 states split into
�mj � =3/2 and �mj � =5/2 states. The Pt nanowire has three
distinct bands derived from �mj � =1/2 states. They anticross
near kz=0.15 and 0.25 �in units of 2 /a�. States with �mj �
=3/2 form two bands which anticross at the center of the
zone. Finally, states with �mj � =5/2 form an isolated, very
narrow band, very similar to the original SR �m � =2 band.
The FR valence bands merge at kz=0 and at kz= 

a with para-
boliclike bands as in the SR case. In addition, new bands that
connect the gap formed by the two �mj � =3/2 bands and the
two gaps formed by the three �mj � =1/2 bands appear in the
complex k plane. These are indicated with thick lines in Fig.
1�b� where the real �imaginary� part of kz is projected in the
central �left� panel. The perfect wire, where electrons are free
of scattering, has a trivial conductance equal to the number
of bands crossing the Fermi level: G=10G0 �G=8G0� �G0

= e2

h
� according to the FR �SR� calculation. The difference

between FR and SR results is due to the �mj � =5/2 band
which touches the Fermi level at the zone border, whereas

the SR �m � =2 band did not. In this tipless geometry, the
values of the conductance are much larger than the values
measured in present experiments in Pt nanocontacts, whose
physics we do not directly address at this stage, and which
show preferentially ballistic conductance values around
4G0.1 A reduction of conductance below the ideal channel
number is expected to arise as soon as any source of electron
scattering is introduced. In Fig. 2�b� �Fig. 2�a��, we show the
FR �SR� transmission function as a function of energy cal-
culated for the same monoatomic Pt nanowire where all
bonds are at the equilibrium distance, except one which is
stretched to 2.55 Å. Due to this perturbation, the Bloch states
of the perfect wire are now partly reflected and partly trans-
mitted. The conductances at EF are 7.7G0 and 9.6G0 in the
SR and in the FR case, respectively. At energies away from
EF, the FR and SR transmissions often differ much more
significantly. This reflects the different number of channels
available at each energy due to the splitting and anticrossing
of the bands allowed by the double group symmetry. We can
operate an instructive decomposition of transmission along
symmetry channels. In the stretched bond model, the scatter-
ing region retains full rotational symmetry about the wire
axis so that the transmission coefficient tij between states
which belong to different representations of the symmetry
group is zero and the transmission eigenchannels have well-
defined symmetry. For illustration, in Fig. 2, we decompose
the total transmission into contributions of different trans-
mission eigenchannels adding those with the same orbital
�SR� or total �FR� angular momentum along z. The main
contribution to conductance at EF is the �mj � =1/2 channel,
followed by �mj � =3/2 and by �mj � =5/2. The latter arises
only thanks to SO, since in its absence the �m � =2 derived
band would not cross the Fermi level at all.

IV. CONCLUSION

We have extended the complex k-vector band structure
method for calculating the ballistic conductance of nanocon-
tacts to include FR USPPs, which account for SO coupling.
Our approach is based on the noncollinear version of the spin
DFT and allows us to treat the scattering of spinor wave
functions. A test toy application is carried out on a mono-
atomic Pt nanowire with one stretched bond. Inclusion of SO
proves to be qualitatively and quantitatively very important.
At the qualitative level, electronic states inclusive of SO dis-
play differences of dispersion that have very noticeable con-
sequences near the Fermi level, where the number of con-
ducting channels is generally influenced. As a result, the
values of ballistic conductance are quantitatively affected.
We are presently applying this method for realistic ballistic
conductance calculations of heavy transition metal nanocon-
tacts.
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FIG. 2. Transmission as a function of energy of a Pt wire at the
equilibrium Pt-Pt distance �2.35 Å� with one bond stretched to
2.55 Å. �a� SR and �b� FR transmissions are compared. The zero
of the energy is at the Fermi level. Continuous lines give the
total number of channels and the total transmission. Dashed, short-
dashed, and dotted lines denote the FR �SR� �mj � =1/2, �mj � =3/2,
and �mj � =5/2 �m=0, �m � =1, and �m � =2� contributions,
respectively.
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