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We calculate the van der Waals energy of a C60 molecule when it is encapsulated in a single-walled carbon
nanotube with discrete atomistic structure. Orientational degrees of freedom and longitudinal displacements of
the molecule are taken into account, and several achiral and chiral carbon nanotubes are considered. A com-
parison with earlier work where the tube was approximated by a continuous cylindrical distribution of carbon
atoms is made. We find that such an approximation is valid for high and intermediate tube radii; for low tube
radii, minor chirality effects come into play. Three molecular orientational regimes are found when varying the
nanotube radius.
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I. INTRODUCTION

The discovery of carbon nanotubes �CNTs� by Iijima1 and
their subsequent large-scale production2 was followed by the
synthesis of CNTs filled with atoms and/or molecules. These
novel hybrid materials often exhibit one-dimensional charac-
teristics and are presently the subject of fundamental studies
as well as research aiming at their application in nanotech-
nology. For a review on CNTs and their filling we refer to
Refs. 3–6, respectively. Self-assembled chains of C60
fullerene molecules inside single-walled carbon nanotubes
�SWCNTs�, the so-called peapods,7 provide a unique ex-
ample of such nanoscopic compound materials, and feature
unusual electronic8 and structural properties. High-resolution
transmission electron microscopy observations on CNTs
filled sparsely with C60 molecules9 demonstrate the motion
of the fullerene molecules along the tube axis and imply that
the interaction between C60 molecules and the surrounding
nanotube wall is due to weak van der Waals forces and not to
chemical bonds.

Recently, the way the C60 molecules of a
�C60�N@SWCNT peapod7,10—N C60 molecules inside in a
SWCNT—are packed in the encapsulating tube has been in-
vestigated both experimentally and theoretically.11–16 Obvi-
ously, the structure of a peapod is governed by the interac-
tions between the C60 molecules, and by the way a C60
molecule interacts with the surrounding tube wall. Already
when considering the stacking of cylindrically confined hard
spheres, a possible rudimentary description of a
�C60�N@SWCNT peapod, various chiral structures of the
spheres stacking for varying tube radius are obtained.11 In
Ref. 12, Hodak and Girifalco calculated lowest-energy
�C60�N@SWCNT peapod configurations by means of a con-
tinuum approach for the C60-tube interaction: both a
SWCNT and a C60 molecule are approximated as a homoge-
neous surface—cylindrical and spherical, respectively. Al-
though in doing so any effect of tube chirality and/or mo-
lecular orientation cannot be accounted for, such a model
provides useful information about the spatial arrangement of
the spherical molecules in the tube. Ten different stacking
arrangements were obtained for the tube radius RT ranging
from 6.27 Å to 13.57 Å. The simplest configuration �C60
“spheres” aligned linearly along the tube axis� occurs for the

smallest tubes �6.27 Å�RT�7.25 Å�. Other phases consist
of zigzag patterns or C60 balls forming helices. Some of the
predicted phases have been observed experimentally.13 Inter-
estingly, experimental observations of similar structures
formed by C60 molecules inside BN nanotubes have been
reported as well.17 An atomistic molecular dynamics study
on the arranging of C60 molecules inside SWCNTs was car-
ried out by Troche et al.;14 the C60-tube interaction was mod-
eled by adding carbon-carbon Lennard-Jones 6-12 potentials.
Troche et al.14 concluded that the chirality of the encapsulat-
ing SWCNT has only a minor effect on the lowest-energy
configuration of the C60 molecules and their obtained ar-
rangements, thus depending on the tube radius only, are in
full agreement with those of Hodak and Girifalco.12 Conclu-
sions on the individual orientations of C60 molecules inside a
SWCNT were not given by Troche et al.14—their goal was to
study the packing of several molecules. Molecular orienta-
tion effects are expected to come into play at sufficiently low
temperatures when orientational motion is frozen, and indeed
do so as was shown in Refs. 15 and 16, where the potential
energy of a single C60 molecule confined to the tube axis
of a SWCNT, called “nanotube field,” was calculated by
treating the tube as a homogeneous cylindrical carbonic
surface density but retaining the icosahedral features of a C60
molecule. A specific dependence on the tube radius was
found; three distinct molecular orientations were observed
within the range 6.5�RT�8.5 Å. It is our opinion that,
for calculating tube-C60 interactions, taking the detailed
molecular structure of a C60 molecule into account has
priority over the chiral structure of a nanotube. Replacing a
SWCNT by a continuous cylindrical distribution of carbon
atoms is intuitively justifiable, but treating a C60 molecule
as a sphere �as in Ref. 12� with no further structure is a
more questionable approximation. Indeed, whereas the
carbon-carbon bonds in a CNT are of one type, a C60
molecule features longer �“single”� and shorter �“double”�
bonds, arranged in pentagons—electron-poor regions—and
hexagons—electron-rich regions. The importance of taking
the detailed molecular structure properly into account fol-
lows from Refs. 15 and 16; but the neglect of the discrete
atomistic structure of the tube when considering C60-tube
interactions, although intuitively plausible, requires solid
grounds. The goal of this paper is to answer the question of
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how good a smooth-tube approximation really is, and to con-
firm the relevance of the precise structure of a C60 molecule,
i.e., the importance of allowing for molecular orientational
degrees of freedom.

The content of the paper is as follows. In Sec. II, we
discuss formulas for the calculation of the nanotube field of
an encapsulated C60 molecule for both a “continuous” and a
“discrete” tube. Then �Sec. III�, we plot nanotube fields for a
selection of representative nanotubes and make preliminary
visual comparisons between the two approaches. In Sec. IV,
we present an all-variable treatment and apply it for tubes
with intermediate and small tube radii. Finally, general con-
clusions are given �Sec. V�.

II. NANOTUBE FIELD

We consider a C60 molecule in a SWCNT, the molecule
assuming a centered position in the tube, and set up a Carte-
sian system of axes �x ,y ,z� so that the z axis coincides with
the tube’s long axis and contains the molecule’s center of
mass �Fig. 1�. The potential energy V of the C60 molecule
then depends on the orientation of the molecule, which can
be characterized by three Euler angles �� ,� ,��, on the posi-
tion of the molecule along the tube, i.e., the z coordinate of
the molecular center of mass for which we write �, and on
the tube indices3 �n ,m�:

V � V��,�,�;�;n,m� . �2.1�

For the Euler angles we use the convention of Ref. 18:
a coordinate function f(r�= �x ,y ,z�) is transformed
as R�� ,� ,��f�r��= f(R−1�� ,� ,��r�), where R�� ,� ,��
=Rz���Ry���Rz��� stands for the succession of a rotation

over 0���2	 about the z axis, a rotation over 0���	
about the y axis, and a rotation over 0���2	 about the z
axis again. The x-, y- and z-axes are kept fixed. Note that the
coordinate transform associated with the Euler angles reads
r��=R−1�� ,� ,��r�=Rz�−��Ry�−��Rz�−��r� and that the rota-
tion of the C60 molecule over −� about the z axis is per-
formed last. As the starting orientation ���=0,�=0,�=0��
we take the so-called standard orientation �Fig. 2�a��: two-
fold molecular symmetry axes then coincide with the Carte-
sian axes and every Cartesian axis intersects two opposing
double bonds. �We recall that the carbon-carbon bonds of a

FIG. 1. A single C60 molecule �radius RC60
� in a SWCNT �radius

RT�. Shown is a projection onto the �x ,z�-plane. The center of mass
of the C60 molecule is chosen as the coordinate system’s origin. The
tube’s long axis coincides with the z axis; the C60 molecule is put in
the standard orientation.

FIG. 2. Special orientations of the C60 molecule: �a� standard
orientation ��=�=�=0, double bonds perpendicular to the z axis�,
�b� pentagonal orientation �pentagons perpendicular to the z axis�,
�c� hexagonal orientations �hexagons perpendicular to the z axis�.
Double bonds are drawn bolder than single bonds; dashed lines are
located “beneath” the �x ,y� plane �z�0�. The surrounding tube is
represented as a circular projection onto the �x ,y� plane. Note that a
rotation about the z axis over −� does not change double bonds,
pentagons or hexagons—for parts �a�, �b�, and �c�, respectively—
being perpendicular to the z axis.
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C60 molecule can be divided into two categories: 60 single
bonds, fusing pentagons and hexagons, and 30 double bonds,
fusing hexagons. The latter are somewhat longer than the
former.19� Bearing in mind the results of Refs. 15 and 16 and
anticipating the results obtained in the present work, we
point out two more molecular orientations of importance.
The first is the “pentagonal” orientation class, obtained by
the Euler transformation �� arbitrary, �=cos−1 2

�10+2�5
�58°,

�=0�, resulting in two opposing pentagons of the C60 mol-
ecule being perpendicular to the z axis �Fig. 2�b��. The sec-
ond is the category of “hexagonal” orientations, a result of
the Euler transformation �� arbitrary, �=cos−1 1+�5

2�3
�21°,

�=0�, making two opposing hexagons lie perpendicular to
the z axis �Fig. 2�c��. The angle �0=cos−1 1+�5

2�3
is related to

the dihedral angle 
 �the inner angle between adjacent faces�
of a regular icosahedron: 
=	−2�0. Other �� ,�� pairs yield
pentagonal, hexagonal, and “double-bond” orientations as
well: 12 pairs correspond to a pentagonal, 20 pairs to a hex-
agonal, and 30 pairs to a double-bond orientation since a C60
molecule has 12 pentagons, 20 hexagons, and 30 double
bonds.

For the description of the interaction between the C60
molecule and the nanotube we follow earlier work20 and treat
the C60 molecule as a rigid cluster of interaction centers
�ICs�. Not only C atoms �“a”� act as ICs, but also double
bonds �“db”� and single bonds �“sb”�. We label the 60 atoms
by the index �a=1 , . . . ,60. In the center of every one of
the 60 single bonds an IC is put, labeled by the index
�sb=1 , . . . ,60. On each of the 30 double bonds, 3 ICs divid-
ing the bond in four equal parts are put, totaling to 90 db ICs,
labeled �db=1 , . . . ,90. Such a construction was originally in-
troduced for modeling intermolecular interactions in solid
C60 �C60 fullerite�; having three ICs per double bond reflects
the electronic density being smeared out along a double
bond.20

Every IC of the C60 molecule interacts with every atom
of the nanotube via a pair interaction potential vt��r��−r��t

��,
depending on the type of IC �t=a, db, sb�. The total
potential energy is then obtained by summing over all pair
interactions:

V = 	
�

	
t=a,db,sb

	
�t

vt��r�� − r��t
�� , �2.2a�

where � indexes the atoms of the tube and r�� stands for their
respective coordinates. As in Refs. 15 and 16, we use Born-
Mayer-van der Waals pair interaction potentials:

vt�r� = C1
t e−C2

t r −
Bt

r6 . �2.2b�

Again, the use of such pair potentials was originally intro-
duced for studying C60–C60 interactions in C60 fullerite;20 it
led to a crystal field potential and a structural phase transi-
tion temperature21,22 in good agreement with the experi-
ments. The potential constants C1

t , C2
t , and Bt used are those

of Ref. 16. In Eq. �2.2a�, the sum over tube atoms, labeled by
the index � and having coordinates r��= �x� ,y� ,z��, can be
restricted to atoms in a certain vicinity of the C60 molecule,
realized by imposing the criterion

zmin � z� � zmax, �2.2c�

with zmin and zmax cutoff values ensuring convergence.
In Refs. 15 and 16, a smooth-tube approximation to Eq.

�2.2a� was presented. The actual network of carbon atoms
making up the SWCNT is replaced by a homogeneous, cy-
lindrical “carbonic” surface density with value  �units Å−2�.
The C60 molecule-nanotube interaction energy is then rewrit-
ten as follows:

Vsmooth = RT

0

2	

d�

−�

+�

dZ 	
t=a,db,sb

	
�t

vt���� − r��t
�� ,

�2.3�

where �� = �RT ,� ,Z� is the cylindrical coordinate of a point
on the tube �x=RT cos �, y=RT sin �, z=Z� and RT is the
tube radius. The motivation for introducing approximation
�2.3� is twofold. One reason is the dependence of Vsmooth on
the tube radius RT rather than on the tube indices �n ,m�.
Indeed, RT remains the only relevant tube-characteristic pa-
rameter and as such simplifies a systematic investigation of
carbon nanotubes. A further consequence of the tube’s cylin-
drical symmetry is the irrelevance of the Euler angle � �a
final rotation of the C60 molecule over −� about the tube axis
does not matter� and of the z coordinate � �for infinite or
long-enough tubes�. A second advantage of the smooth-tube
ansatz is the possibility of performing an expansion of
Vsmooth into symmetry-adapted rotator functions, a point we
will return to in Sec. V. We stress the limited dependence of
Vsmooth by writing

Vsmooth � Vsmooth��,�;RT� . �2.4�

To distinguish the smooth-tube approximation from the dis-
crete case, we add the subscript discrete:

V � Vdiscrete��,�,�;�;n,m� , �2.5�

where the actual expression is given by Eqs. �2.2a�, �2.2b�,
and �2.2c�.

In this paper we test the validity of smooth-tube
approximation �2.3� by comparing Vdiscrete and Vsmooth for a
selection of tubes. Bearing in mind the three qualitatively
different radii ranges �RT�7 Å, 7 Å�RT�7.9 Å, and
7.9 Å�RT� obtained in Ref. 16, we have selected zig-zag,
armchair, and chiral tubes with radii around RT=6.5 Å,
RT=7.5 Å, and RT=8.5 Å. We have generated �n ,m� tubes
starting from a graphene sheet with basis vectors a�1=ae�X and
a�2=a 1

2e�X+a 3
2e�Y, where e�X and e�Y are planar Cartesian basis

vectors, and performing the roll-up along the vector

C� �n ,m�=na�1+ma�2.3,23 The tube is then positioned so that the
C atom originally �before rolling up� at 0e�X+0e�Y lies in the
�x ,y� plane with x coordinate 0 and y coordinate RT and that
the cylinder containing the C atoms has its long axis coin-
ciding with the z axis. The C60 molecule is initially posi-
tioned so that its center of mass lies at the origin ��=0�; a
translation along the z axis away from the initial position is
measured via the center of mass’ z coordinate �. The radius
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of the tube with indices �n ,m� reads RT= a
2	

�n2+nm+m2,
with a=2.49 Å;3,23 the corresponding surface density has the
value

 =
4

�3a2
= 0.372 Å−2. �2.6�

A further tube parameter is its translational periodicity �z,
relevant when considering the �-dependence of Vdiscrete.
While �z is small for nonchiral—i.e., zigzag, �z=�3a, and
armchair, �z=a−tubes, the translational period can get very
large for chiral tubes.3 A tube may also have an s-fold sym-
metry axis �coinciding with the z axis� and therefore a rota-
tional period ��=2	 /s. When considering a tube with s-fold
rotational symmetry it suffices to examine the interval
0�����. The periodicities and other tube characteristics
of our selected tubes are listed in Table I.

III. MERCATOR MAPS

To get a preliminary idea of how Vsmooth and Vdiscrete com-
pare, we have simply plotted Vsmooth�� ,� ,RT� and Vdiscrete

��=0,� ,�; �=0; n ,m� for each of the selected �n ,m� tubes
in the form of Mercator maps.24 We stress that ��=0, �=0� is
but a particular case and that final conclusions should be
made not only on the variation of � and � but on the varying
of � and � as well, as we will do later on. We do point out,
however, that we expect the � and � dependencies to be of a
lesser magnitude than the � and � dependencies since the
former correspond to a �final� rotation of the molecule about
the z axis �tube axis� over −� and a translation of the mol-
ecule along the z axis, respectively, and hence relate to the
tube structure rather than to the molecule structure. �As ar-
gued in the Introduction, a carbon nanotube can be regarded
as being more continuous than a C60 molecule.�

As for the cutoff values, we have found—for �=0—that
zmin=−50 Å and zmax=50 Å yield sufficient convergence.
Note that the choice of zmin and zmax fixes the numbers NT of
atoms to be taken into account in sum �2.2a�. In principle,
the tube fragment of length L=zmax−zmin has a surface den-
sity ̃=NT/ �2	RTL�, differing from . We observe that
differences between  and ̃ are small, however. Although

possibly �slightly� enhancing the agreement between Vdiscrete
and Vsmooth, we have chosen not to calculate Vsmooth with ̃
since it somehow relates to the tube structure—NT depends
on �n ,m�—hence surpassing the smooth-tube approach’s
underlying basic idea �RT dependence rather than �n ,m�
dependence�.

The Mercator maps Vsmooth�� ,���Vsmooth�� ,� ;RT� and
Vdiscrete�� ,���Vdiscrete��=0,� ,� ;�=0;n ,m�, respectively
calculated via Eqs. �2.2a�, �2.2b�, �2.2c� and �2.3� and both
based on pair potential �2.2b�, are shown as Figs. 3–5 for the
tubes listed in Table I. Figures 3–5 are for tubes with radii
around 6.5 Å, 7.5 Å, and 8.5 Å, respectively. Within each
figure, subfigs. �a�, �b�, and �c� refer to zigzag, chiral, and
armchair tubes; the left plot is Vdiscrete, the right Vsmooth. Only
the variation is plotted; for each plot the lowest occurring
energy value, for which we write V0, has been subtracted to
make the minima lie at zero. The V0 values for Vdiscrete
and Vsmooth and the upper bounds of the left and right plots in
Figs. 3–5 exhibit discrepancies. They originate from the
intrinsic impossibility of the smooth-tube approximation
to correctly account for the actual distribution of the
carbon atoms on the cylinder. The wider the tube, the
more atoms �the higher NT�, and the smaller the discrepancy:
the �9,9� tube �Vsmooth

0 =70 111.5 K, Vdiscrete
0 =−79 117.2 K�

exhibits the largest difference Vdiscrete
0 −Vsmooth

0 while for the
�21,1� tube the values Vdiscrete

0 and Vsmooth
0 get very close

�Vsmooth
0 =−31 028.6 K, Vdiscrete

0 =−31 033.9 K�. We point out
that any continuum approach suffers from such a discrep-
ancy, and that it cannot be resolved by replacing  in Eq.
�2.3� by the adjusted density ̃=NT/ �2	RT2zmax�, a notion
we illustrate in Appendix A. Nevertheless, it is not senseless
at all to perform a smooth-tube approach, because conclu-
sions are to be drawn based on the potential energy varia-
tion: of interest are the locations of energy minima, corre-
sponding to molecular orientations which are most stable.

The Vsmooth plots in Figs. 3�a�–3�c� are, apart from differ-
ent energy ranges, similar. They exhibit 12 minima �white�
and 20 maxima �darkest�. �The � coordinate, ranging from
0 to 2	, is cyclic, i.e., the molecular orientations at the
�=0 edge are repeated at the �=2	 edge. The � coordinate
is not cyclic: points along the �=0 and �=	 edges with
equal � refer to distinct configurations.� The 12 angle pairs

TABLE I. Characteristics of selected �n ,m� tubes. Tubes of all types �zigzag, chiral, and armchair� with radii RT as close to 6.5 Å, 7.5 Å,
and 8.5 Å as possible were chosen. The angle �� is the rotational period of the tube when performing a rotation about the z axis. An
expression for the calculation of the translational periodicity �z is given in Ref. 3.

�n ,m� Chirality RT �Å� �� �z �Å�

�16,0� zig-zag 6.3407 2	 /16 �3a=4.3128

�14,4� chiral 6.4876 2	 /2 35.3018

�9,9� armchair 6.1176 2	 /9 a=2.49

�19,0� zig-zag 7.5296 2	 /19 �3a

�16,5� chiral 7.5296 2	 81.9433

�11,11� armchair 7.5504 2	 /11 a

�21,0� zig-zag 8.3222 2	 /21 �3a

�21,1� chiral 8.5273 2	 92.8005

�12,12� armchair 8.2369 2	 /12 a
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��i ,�i� corresponding to minimal-energy configurations are
tabulated in Table II and indicated schematically in Fig. 6.
Each of the 120 minima corresponds to a molecular orienta-
tion where two opposing pentagons of the C60 molecule are
perpendicular to the tube axis �Fig. 2�b��; the Euler transfor-
mations ��=0,�i ,�i�, i=1, . . . ,12, yield four truly different
types of orientations �Fig. 7 and Table II�. The 20 maxima
correspond to situations where two facing hexagons of the

C60 molecule are perpendicular to the z axis �Fig. 2�c��.
Comparing Vdiscrete and Vsmooth of Fig. 3�a�—�16,0�

tube—we see that the locations of minima and maxima
hardly �or even do not� differ. For the �9,9� armchair tube,
Fig. 3�c�, the energy ranges coincide, and the minima loca-
tions of Vdiscrete and Vsmooth are, if not coinciding, almost
equal. Deviations are observed in Fig. 3�b� for the chiral
�14,4� tube: the minima locations of Vdiscrete clearly deviate

FIG. 3. �Color online� Mercator maps Vdiscrete�� ,�� �left� and Vsmooth�� ,�� �right�, units K: �a� �n ,m�= �16,0�, �b� �n ,m�= �14,4�, �c�
�n ,m�= �9,9�. The absolute minima values have been subtracted.
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somewhat from those of Vsmooth; some even “split into two.”
The deviations are small, however: one may write the true
Vdiscrete minima locations as ��i�=�i+��i ,�i�=�i+��i�.
We estimate maximal deviation values at ���i��10° and
���i��12°.

For RT�7.5 Å �Fig. 4�, the Vdiscrete plots become ex-
tremely similar to the respective Vsmooth plots. For all three
investigated tubes—�19,0�, �16,5�, and �11,11�—the loca-
tions of minima �and maxima� can be concluded to coincide.
The 30 minima correspond with two opposing double bonds
being perpendicular to the tube axis �Fig. 2�a��. Maximal
energy occurs when two opposing pentagons are perpendicu-
lar to the tube axis �the 12 minimal-energy configurations for
RT�6.5 Å, Fig. 3�.

In Fig. 5, RT�8.5 Å, Vdiscrete and Vsmooth match com-
pletely. With respect to Fig. 3, minima and maxima have
been flipped: lowest-energy configurations now feature hexa-

gons perpendicular to the tube axis, pentagons perpendicular
to the tube axis yield the highest energy.

Up to now, � and � have been kept fixed. To get an
idea of the energy variation when � and � are
allowed to vary, we have calculated Vdiscrete�� ,�=0,�=0;�
=0;n ,m� and Vdiscrete��=0,�=0,�=0;� ;n ,m�,
for 0����� and 0�����, respectively. The
tube-dependent rotational and translational periods ��
and �� are given in Table I. In Table III, we summarize these
calculations by listing the differences ��Vdiscrete
=max(Vdiscrete�� ,�=0,�=0;�=0;n ,m�)−min(Vdiscrete�� ,�
=0,�=0;�=0;n ,m�) and ��Vdiscrete=max(Vdiscrete��=0,�
=0,�=0;� ;n ,m�)−min(Vdiscrete��=0,�=0,�=0;� ;n ,m�)
conveying the energy variation. Clearly, the tubes with
RT�6.5 Å display fairly large energy fluctuations upon
varying � and/or �, as one might intuitively guess from the
jagged contours in Fig. 3 �left�. For intermediate �RT�7.5�

FIG. 4. �Color online� Mercator maps Vdiscrete�� ,�� �left� and Vsmooth�� ,�� �right�, units K, for the �n ,m�= �16,5� tube. The minimal
values have been subtracted. The maps for the cases �n ,m�= �19,0� and �11,11� look very similar to the �16,5� maps.

FIG. 5. �Color online� Mercator maps Vdiscrete�� ,�� �left� and Vsmooth�� ,�� �right�, units K, for the �n ,m�= �21,1� tube. The minimal
values have been subtracted. The maps for the cases �n ,m�= �21,0� and �12,12� are very similar to the �21,1� maps.
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and large tube radii �RT�8.5� the energy variations are
small.

We conclude that the smooth-tube approach works well
for tube radii RT�7.5 Å and higher, as seen from the Mer-
cator maps in Figs. 4 and 5 and the energy variations of
Table III. For small-radius tubes �RT�7 Å�, a systematic
investigation addressing the variation of Vdiscrete as a function
of �, �, �, and � is required. In the following section we
perform such a study for the �16,0�, �14,4�,�9,9� and three
more low-radius tubes.

IV. LOW-RADIUS TUBES: FULL ENERGY VARIATION

Before proceeding to the full energy variation calculation
required for peapods with RT�6.5 Å, we would like to
reflect on actual small values of peapod radii. To our
knowledge, both today’s experimental and theoretical situa-
tion do not show unanimity. Theoretically, different lower

limits for a peapod’s radius have been suggested, based on
the outcome of the reaction energy �E in the reaction
�n ,m�+C60→C60@�n ,m�−�E: exo-��E�0� or endother-
mic ��E�0�. Okada et al.25,26 concluded from density-
functional theory calculations that for C60@�n ,n� with 10
�n�13 the reaction is exothermic, and, by extrapolating the
results of n=8, 9, and 10, obtained a minimal tube radius of
RT

min�6.4 Å.26 Rochefort,27 performing molecular mechan-
ics calculations, set the lower limit at RT

min�5.9 Å. From the
experimental side, while it is still impossible to manufacture
nanotubes—let alone peapods—with a given pair of indices
�n ,m�, peapod samples with a narrow radial dispersion

around a mean value R̄T and good filling rates �typically,
75%� can be produced at present. We mention a few �recent�
experiments on peapods. Cambedouzou et al.28 used a

sample with R̄T�6.8 Å. Maniwa et al.29 fitted x-ray
diffraction data on C60@SWCNT peapods to simulations,

resulting in a mean radius R̄T�6.76 Å. Kataura et al.30 re-
ported measurements on a sample having a diameter range of

6.25 Å�RT�7.35 Å, from which we calculate R̄T�6.8 Å.
The electron diffraction studies of Hirahara et al.31 were per-

formed on peapod samples with R̄T�7.15 Å �SWCNTs from
a same batch were used to synthesize not only C60, but also
C70 and C80 peapods�. Kataura et al.32 reported high-yield
fullerene encapsulation, controlling the tubes to be “larger
than the �10, 10� tube,” i.e., RT

min�6.86 Å. Pfeiffer et al.33

inferred from Raman spectroscopy their three samples to

have R̄T�7 Å, R̄T�6.52 Å, and R̄T�6.505 Å. From all
these values one may conclude that peapods with a radius
around 6.5 Å, our representative value for the “pentagonal
case” �Figs. 3 and 7�, although possible, are less abundant
than peapods with a radius around, say, 6.75 Å. We have
therefore considered a few additional tubes—�17,0�, �14,5�,
and �10,10�—with radii around 6.75 Å; their characteristics
are shown in Table IV. These tubes can be expected to be
more realistic representatives of the pentagonal regime in-
stead of the RT=6.5 Å tubes of Refs. 15 and 16—we recall
that the transition from the pentagonal to the double-bond
lowest-energy orientation occurs around 7 Å.16 We note that

TABLE II. Rotation angles �i and �i, i=1, . . . ,12, the corre-
sponding Euler transformations R−1��=0,�i ,�i� of which make
two facing pentagons of the C60 molecule lie perpendicular to the z
axis. For small tubes �see Fig. 3�, the minima of Vsmooth�� ,�� occur
at these 12 molecular orientations. Four distinct molecular orienta-
tions, labeled I, II, III, and IV, are obtained, distinguishable by the
orientation of the top �z�0� pentagon �Fig. 7�.

i �i �i Molecular Orientation

1
�0=cos−1 2

�10+2�5
�58°

0 I

2 	−�0 0 II

3 	

2
�0 III

4 	

2
−�0

	

2
II

5 	

2
+�0

	

2
I

6 	

2
	−�0 IV

7 �0 	 I

8 	−�0 	 II

9 	

2
	+�0 III

10 	

2
−�0

3	

2
II

11 	

2
+�0

3	� 2 I

12 	� 2 2	−�0 IV

FIG. 6. Indication of the locations ��i ,�i�, i=1, . . . ,12, tabu-
lated in Table II. For tubes with RT�6.5 Å �Fig. 3�, these angle
pairs correspond to the lowest-energy molecular orientations �Fig.
7�. The contours are reproductions of the Vsmooth=200 K contours
of Fig. 3�a�.
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the �10, 10� tube is of special interest since tubes with a
radius close to RT�10,10�=6.86 Å are favorable for C60 en-
capsulation, as seen in both experiments—according to Ka-
taura et al.,30 peapod samples tend to have a radial dispersion

centered around RT�10,10�—and theory—of the C60@�n ,n�
series �n=8, . . . ,13�, the n=10 peapod stands out as the most
“exothermic” �see above�.25,26

The Mercator maps Vdiscrete�� ,�� of the extra tubes are
shown in Fig. 8; and the energy variations ��Vdiscrete and
��Vdiscrete are listed in Table IV. Again, minimal energies
occur around ��i ,�i�, and maxima correspond to hexagons
being perpendicular to the tube axis. The �17,0� tube’s
Vdiscrete 50 K contour deviates from its smooth-tube 50 K
contour �Fig. 8�a��, but there is some overall agreement. The
�10,10� tube’s Vdiscrete plot �Fig. 8�c�, left� features “split”
minima as seen for the �14,4� tube �Fig. 3�b��. The �14,5�
tube’s Vdiscrete plot does not coincide nicely with its Vsmooth
plot, but interestingly, the two locations ��i ,�i�, i=3 and
i=9, type III pentagonal orientations, correspond very well
to their smooth-approximation counterparts. Since all other
ten minima locations are related to the i=3 or the i=9 loca-
tion by a molecular rotation over �= 	

4 or �= 	
2 about the z

axis �see Fig. 7�, any of the ��i ,�i� points can be made a
minimal configuration by changing �. The main conclusion
is that the minimal-energy orientation will always feature
facing pentagons perpendicular to the z axis. The same can
be said of any of the tubes of Figs. 3 and 8—tubes with
RT�7 Å—excepting the �14,4� tube.

We now turn to the � and � dependencies of Vdiscrete. It is
sufficient to consider the intervals 0�������max and 0
�������max. We divide the interval �0,�max���0,�max�
into a 10�10 grid ��i=1,. . .,10 ,� j=1,. . .,10�, �i= �i−1�

�max

10 , � j

= �j−1�
�max

10 , and construct a double Fourier series �for nota-
tional simplicity we drop the indices �n ,m��,

Vdiscrete��,�,�;�� = 	
p=0

�

	
q=0

� �Apq��,��cos�p
�

�max
2	

�cos�q
�

�max
2	

+ Bpq��,��sin�p
�

�max
2	

�cos�q
�

�max
2	 + Cpq��,��

TABLE III. Energy variations ��Vdiscrete and ��Vdiscrete �units
K� when varying � or � and keeping other variables fixed.

�n ,m� ��Vdiscrete �K� ��Vdiscrete �K�

�16,0� 51.3 1079.3

�14,4� 643.2 639.6

�9,9� 665.9 8.3

�19,0� �0.1 3.7

�16,5� 0.4 0.6

�11,11� �0.1 �0.1

�21,0� �0.1 0.1

�21,1� �0.1 0.3

�12,12� �0.1 �0.1

FIG. 7. When applying the 12 Euler transformations
R−1��=0,�i ,�i�, with ��i ,�i�, i=1, . . . ,12, from Table II, only four
different molecular orientations, the projections onto the �x ,y� plane
of which are shown here, are obtained. Dashed �fragments of� lines
have z�0. The labeling I, II, III, and IV correlates with Table II.
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�cos�p
�

�max
2	sin�q

�

�max
2	

+ Dpq��,��sin�p
�

�max
2	

�sin�q
�

�max
2	� , �4.1�

by numerically calculating the Fourier coefficients

Apq��,�� = Npq

0

�max

d�

0

�max

d�Vdiscrete��,�,�;��

�cos�p
�

�max
2	cos�q

�

�max
2	 , �4.2�

via the trapezium-rule approximations

Apq��,�� � Npq	
i=1

10

	
j=1

10
�max

10

�max

10
Vdiscrete��i,�,�;� j�

�cos�p
�i

�max
2	cos�q

� j

�max
2	 , �4.3�

The coefficients Bpq, Cpq, and Dpq are obtained by replacing
cos� �cos� � by sin� �cos� �, cos� �sin� �, and sin� �sin� �,
respectively. The prefactors read

N00 =
1

�max�max
, N0s = Nr0 =

2

�max�max
, Nrs =

4

�max�max
,

�4.4�

where r and s�0. In series �4.1�, some terms may vanish
because of symmetry reasons.

The Fourier coefficients Apq�� ,��, Bpq�� ,��, Cpq�� ,��,
Dpq�� ,�� can be interpreted as Mercator maps.
The magnitude of the coefficients decreases for
increasing indices p and q; we approximate
Vdiscrete�� ,� ,� ;�� by

Ṽdiscrete��,�,�;�� = 	
p=0

4

	
q=0

4 �Apq��,��cos�p
�

�max
2	

�cos�q
�

�max
2	 + ¯ � . �4.5�

For given � and �, we scan the � and � intervals and
define

Ṽdiscrete
min ��,�� � min�Ṽdiscrete��,�,�;��; �4.6�

�0 � � � �max,0 � � � �max� .

The quantity Ṽdiscrete
min �� ,��, gives the lowest attainable

energy Ṽdiscrete when varying � and �. In Fig. 9, it has
been plotted for each of the six tubes investigated. The plots
again exhibit icosahedral symmetry as in the previous
Mercator maps. The main observation here is that for all
tubes, except the �9,9� tube �Fig. 9�c�, left�, the absolute
minima do not lie precisely at the 12 ��i ,�i� locations

but somewhat away from them—the same effect observed
for the ��=0, �=0� Vdiscrete plots in Figs. 3 and 8. As
before, we can write the actual minimum locations as
��i�=�i+��i, �i�=�i+��i�. For the RT�6.5 Å tubes �Fig. 9,
left�, excepting the �9,9� tube, the ��i ,�i� locations
�orientations� have energies �300 K higher than the minimal
energies. The �9,9� tube’s minima are really close to—if
not, coinciding with—the ��i ,�i� orientations. For the
RT�6.75 Å tubes �Fig. 9, right�, excepting the �10,10�
tube, the ��i ,�i� orientations have energies �20 K higher
than the minimal energies. The �10,10� tube’s absolute
minima lie also off the ��i ,�i� pentagon orientations �not
visible on the plot�, and have energies �12 K higher than the
lowest energies. We must therefore conclude that chirality-
dependent effects manifest themselves here. However, for
RT�6.75 Å tubes, probably the smallest peapod tubes as
discussed above, the effects can be said to be minor. As an
approximation, one may consider the smooth-tube approach.
We recall that for higher tube radii, the smooth-tube approxi-
mation is excellent �when the C60 molecules lie on the tube
axis�.

To conclude this section, we come back to the four
types of pentagonal orientations depicted in Fig. 7. We
recall that they arise from the Euler transformations
R−1��=0,�i ,�i� with the angle pairs ��i ,�i�, i=1, . . . ,12,
of Table II. Clearly, all 12 Vsmooth��i ,�i� values are
identical because of the cylindrical symmetry. A priori,
Vdiscrete��i ,�i� can be different for each of the four types I, II,
III, and IV. Interestingly, depending on the tube’s symmetry,
some orientations sometimes are equivalent. This is
illustrated in Table V, and can be understood by being
aware of certain symmetry elements. Orientations I and II
are related via a rotation over 	 about the z axis, and
likewise for orientations III and IV. Orientations III and I are
related by a rotation over 	 /2 about the z axis. The presence
of a twofold symmetry axis for the �n ,m� tube therefore
implies equivalence of orientations I and II and of orienta-
tions III and IV, while a fourfold axis implies the equivalence
of all orientations. The �16,0� tube is an example of the latter,
a �14,4� tube provides an example of the former. The �16,5�
tube has no pure rotational symmetry axis and exhibits there-
fore distinguishable Vdiscrete values. We note that any occur-
ring energy differences as a result of the discussed inequiva-
lences are small, however, and not seen on any of the
Mercator maps since the contour values lie not sufficiently
close to each other. Also note that these observations are
generally true for the values Vdiscrete��i ,�i�—they do not
need to be to minima, e.g., the �14,4� tube �Fig. 3�b��. The
equivalence relationships between the twelve ��i ,�i� orien-
tations is nicely seen in the �14,5� tube’s Vdiscrete plot �Fig.
8�b��: all four types I ��1, 5, 7, 11��, II ��2, 4, 8, 10��, III ��3,
9��, and IV ��6, 12�� “behave” differently. When making
the observations concerning the equality/inequality of
Vsmooth��i ,�i� values summarized schematically in Table V,
we have made sure that sufficient numerical accuracy has
been achieved. One needs accurate enough atomic coordi-
nates of the C60 molecule, so that upon explicitly applying
coordinate transforms R−1�� ,� ,�� corresponding to symme-
try elements of the C60 molecule �i.e., of the icosahedral
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TABLE IV. Characteristics of additional tubes �RT�6.75 Å�. See captions to Tables I and III.

�n ,m� Chirality RT �Å� �� �� �Å� ��Vdiscrete �K� ��Vdiscrete �K�

�17,0� zig-zag 6.7370 2	 /17 �3a=4.3128 �0.1 176.4

�14,5� chiral 6.7603 2	 24.5237 36.3 36.5

�10,10� armchair 6.8640 2	 /10 a=2.49 23.1 11.6

FIG. 8. �Color online� Mercator maps Vdiscrete�� ,�� �left� and Vsmooth�� ,�� �right�, units K: �a� �n ,m�= �17,0�, �b� �n ,m�= �14,5�, �c�
�n ,m�= �10,10�. The minimal values have been subtracted.
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FIG. 9. �Color online� Mercator maps Ṽdiscrete�� ,��, units K, for �16,0�, �14,4�, �9,9�, �17,0�, �14,5�, and �10,10� peapods. The minimal
values have been subtracted.
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group Ih�, the same set of coordinates is obtained up to the
desired accuracy. We use coordinates with twelve significant
digits.

V. DISCUSSION AND CONCLUSIONS

We have presented a systematic comparison of the poten-
tial energy of a C60 molecule—treated as an icosahedral clus-
ter of ICs—encapsulated centrally in a SWCNT, when ap-
proximating the tube as a uniform cylinder and when taking
the true carbon atomic network into account. The former
approach results in only two variables �the Euler angles �
and ��, while the latter requires in addition a third Euler
angle � and the molecule’s z coordinate � denoting its posi-
tion along the tube axis. The �� ,�� dependence can be con-
veniently plotted as a Mercator map. Fixing �� ,�� at �0,0�
then allows a first visual comparison of the “smooth” and
“discrete” Mercator maps Vsmooth�� ,�� and Vdiscrete�� ,��.
From these preliminary comparisons one can see that
the larger the tube, the better the smooth-tube approximation.
Indeed, the Vsmooth and Vdiscrete Mercator maps for tubes
with radii RT�7.5 Å �Figs. 4 and 5� are as good as identical.
For smaller tubes, the effect of the tube structure comes
into play and deviations between the smooth and discrete
Mercator maps are visible �Figs. 3 and 8�. While the �� ,��
dependence of Vdiscrete can be argued to be negligible for the
larger tubes �RT�7 Å� because of the similarity of
Vsmooth�� ,�� and Vdiscrete�� ,��, a full investigation of the
variables � and � is in order for smaller tubes. We have
presented a detailed study for selected zigzag, chiral and
armchair tubes with radii around RT�6.5 Å and 6.75 Å, in-
cluding the �10,10� tube, nowadays considered the ideal pea-
pod tube.25,26,30

A double Fourier series captures the �� ,�� dependence in
a manageable way. Scanning Vdiscrete�� ,� ,� ;� ;n ,m� for its
lowest attainable values when varying � and � yields Mer-
cator maps similar to Vsmooth�� ,� ;n ,m�. We see that the ac-
tual energy minima do not correspond to the 12 pentagonal
��i ,�i� orientations but that they lie slightly away from them
�except for the �9,9� tube, where the minimal-energy molecu-
lar configurations are really close to the pentagonal orienta-
tions�. Such �� ,�� orientations correspond to “tilted” mol-
ecules, where an axis connecting the midpoints of two
opposing pentagons does not coincide with the tube’s
long axis �z axis� but makes a cone with a small opening
angle if one would perform the � Euler rotation. Hence,

we conclude that for these smaller tubes �again excepting
the �9,9� tube�, the chirality of the tube does play a
role. However, as seen from the small deviations occurring
in the Mercator plots, the effect is not strong, especially
for the RT�6.75 Å tubes �Fig. 9, right�. Therefore, one
may consider the smooth-tube approach if one wants to
capture radius-dependent properties. In this respect, one
should be aware of the present-day experimental situation:
precise knowledge of the components �i.e., occurring
chiralities� in a peapod sample is absent—only a determina-
tion of the tube radius distribution seems feasible up to now.
The main conclusion of Refs. 15 and 16 stands: three
regimes can be distinguished �RT�7 Å, pentagonal orienta-
tion, 7 Å �RT�7.9 Å, double-bond orientation, and RT
�7.9 Å, hexagonal orientation�. The pentagonal orientations
have to be restated as tilted pentagonal orientations, though.
Generally, our findings are in accordance with those of
Troche et al.14 who concluded that the chirality of the
SWCNT encapsulating the C60 molecule has only a minor
effect.

Note that transversal motion of the C60 molecule �off-axis
displacements� is not discussed here since our sole purpose
was a direct comparison of the smooth-tube and the discrete-
tube approaches for a centrally located C60 molecule. As ex-
pected intuitively and demonstrated in Refs. 15 and 16, from
a certain radius �RT�7 Å� on, an off-center position is en-
ergetically more favorable. This, however, involves energy
differences much larger than those seen upon varying �, �,
�, and �.

The smooth-tube approximation’s requiring only
the two Euler angles � and � allows for the use of symmetry-
adapted rotator functions. For details we refer to Refs. 15 and
16. The advantage lies in the possibility of writing
Vsmooth�� ,� ;RT� as an expansion into functions Ul�� ,�� tak-
ing the icosahedral molecular symmetry of the C60 molecule
and the cylindrical symmetry of its site into account,

Vsmooth��,�;RT� = 	
l=0

�

wl�RT�Ul��,�� , �5.1�

where the coefficients wl relate to the icosahedral symmetry
and carry the details of the pair interaction potential. The
molecular symmetry implies the first nonvanishing terms to
be those with l=0, l=6, l=10, and l=12, and a restriction to
only these four leading terms already approximates
Vsmooth�� ,� ;RT� extremely well. Apart from providing
mathematical/physical clarity, expansion �5.1� greatly re-

TABLE V. Schematical presentation of Vdiscrete��i ,�i� values for selected tubes, indicating equalities and inequalities due to the presence/
absence of certain symmetries. The angles �i and �i are tabulated in Table VII, the corresponding molecular orientations depicted in Fig. 2.

i �Type� �n ,m�= �16,0�
Vdiscrete��i ,�i�
�n ,m�= �14,4� �n ,m�= �16,5�

1, 5, 7, 11 �I� V1
�16,0� V1

�14,4� V1
�16,5�

2, 4, 8, 10 �II� V1
�16,0� V1

�14,4� V2
�16,5�

3, 9 �III� V1
�16,0� V3

�14,4� V3
�16,5�

6, 12 �IV� V1
�16,0� V3

�14,4� V6
�16,5�
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duces the calculation time. While, for a 100�100 �� ,��
grid, an implementation of Eq. �2.3� takes hours, the calcu-
lation of Vsmooth�� ,� ;RT� via Eq. �5.1� is a matter of minutes
on the same machine.

It is interesting to note that double-walled carbon
nanotubes �DWCNTs� allow the encapsulation of C60
molecules in inner spaces smaller than observed for
SWCNTs: Khlobystov et al.13 reported the insertion of C60
molecules in DWCNTs with internal radii as small as 5.5 Å.
Having different minimal internal radii of SWCNTs and
DWCNTs for filling with C60 molecules is attributed to
the difference in how a C60 molecule interacts with a
SWCNT and a DWCNT.13 We have carried out calculations
for C60@DWCNT by treating the field on the C60 molecule
as a superposition of the two fields from the tubes with
different radii. Although we find that the presence of a
second �outer� tube decreases the energy for encapsulation
when taking a tube radius difference equaling the interlayer
distance of graphite �3.35 Å�, the effect is rather small and
not sufficient to explain the large reduction in inner tube
radius.

We believe that the general conclusion—the smooth-tube
approximation being justified for intermediate and large tube
radii �RT�7 Å� and possibly acceptable for smaller tube-
radii—reached here is relevant for other peapod systems. For
example, �C70�N@SWCNT peapods feature different orienta-
tions of the encapsulated C70 molecules for different tube
radii,29,31 the so-called “lying” �for smaller tube radii� and
“standing” �larger tube radii� orientations. A smooth-tube ap-
proach would make a good start for investigating these
specific orientations.
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APPENDIX A: DISCREPANCY TEST

We consider a single carbon atom in a short �16, 0� tube
fragment defined by �z���a /�3�1.42 Å, leaving only three
“rings” of 16 carbon atoms each. The tube atoms have coor-
dinates r��= �x� ,y� ,z��, �=1, . . . ,48. The single atom, put at
the center of the fragment which we define to be the origin of
the employed Cartesian coordinates system, has a discrete
energy

Vdiscrete = 	
�=1

48

va�r�� , �A1�

approximated by the smooth energy

Vsmooth = RT

0

2	

d�

Zmin

Zmax

dZva���� . �A2�

In both equations, the pair potential va�r� of Sec. II is under-
stood. In Eq. �A2�, � and Z are defined via x=RT cos �, y
=RT sin �, and z=Z. The integration boundaries Zmin and
Zmax are not well defined. Indeed, there is a range of both
lower and upper boundaries corresponding to a smooth tube
fragment containing only the three rings with z�=−a /�3, z�

=0, and z�=a / �2�3�: −�3a /2�Zmin�−a /�3 and a / �2�3�
�Zmax��3a /2. In Table VI we present Vsmooth values cal-
culated for a few of these �Zmin,Zmax� intervals. For each
case, both the tube surface density =4/ ��3a2� and the ad-
justed tube density ̃=48/ �2	RT�Zmax−Zmin�� has been con-
sidered. The discrete value, obtained via Eq. �A1�, reads
Vdiscrete=−318.1 K, and is best reproduced by the smooth
value if the interval �Zmin,Zmax�=�− 5a

4�3
, a

�3
� is chosen. The

tube fragment edges then lie precisely in the middle of two
neighboring rings of atoms; the surface densities  and ̃
then happen to coincide. The values of Table VI suggest that
some choice�s� of intervals may yield the Vdiscrete value, but
the point we want to make here is that making use of the
adjusted surface density ̃ does not “convert” the Vsmooth to
the Vdiscrete value. We remark that doing the Vsmooth calcula-
tions described in the paper with ̃ instead of  turned out to
yield only very small differences.

TABLE VI. Vsmooth values, units K, for various tube fragments
and surface densities  and ̃.

�Zmin,Zmax�  or ̃ Vsmooth �K�

�−�3a

2
,
�3a

2 �  −405.0

�−�3a

2
,
�3a

2 � ̃ −303.7

�− 5a

4�3
,

a
�3 �  −317.0

�− 5a

4�3
,

a
�3 � ̃ −317.0

�− a
�3

,
a

2�3 �  −217.1

�− a
�3

,
a

2�3 � ̃ −325.7
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