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We present a formalism for the rate of transfer of energy from a current of charged particles to multiwall and
a linear array of nanotubes. The method is based on a self-consistent field theory involving Laplace’s equation
for the total screened potential and the density fluctuations on the nanotubes. It is demonstrated that one can
identify the plasmon excitations from the spectrum of energy transfer. For a group of the excited plasmons,
there is an instability associated with their decay. This occurrence is determined by the relationship between the
phase velocity of the plasmon and the drift velocity of the current. A “dip” in the energy transfer spectrum
corresponds to a plasmon mode instability. This is confirmed by solving the plasma dispersion equation in the
complex frequency plane.
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I. INTRODUCTION

Electron energy loss spectroscopy �EELS� has been used
as a spectroscopic tool to probe condensed matter for many
years now.1–9 The pioneering work of Ritchie1 on the energy
loss of charged particles to a solid-state plasma slab has
served as a beacon for the development of formal treatments
of EELS applied to specific structures. From a theoretical
point of view, the crucial quantity of interest is the nonlocal
dynamic dielectric response function for the system under
investigation since this quantity determines the screening
properties. Experiments have been instrumental in helping us
understand many phenomena. These include channeling ef-
fects observed in energy-loss spectra of nitrogen ions scat-
tered off a Pt surface as well as charge exchange and energy
dissipation of particles interacting with metal surfaces. En-
ergy loss of helium ions in zinc has also been explored and
the effective charge and the mean charge of swift ions in
solids have been reported.

Recently, some attention has been given to electron
energy-loss spectroscopy measurements on single-wall and
multishell carbon nanotubes and their bundles.10–16 Some of
these experiments were performed using a scanning
transmission-electron microscope to obtain spectra over a
range of impact parameters, from the centers of the samples
to several nanometers outside the material. This experimental
technique provides a method for identifying the contributions
from the different excitation modes. We demonstrated the
contributions from single-particle and plasmon excitations
for single-wall nanotubes in a recent paper.17 Several papers
have also investigated charged particle energy loss to nano-
tubes using various techniques and examining different as-
pects of the physics involved.18–30 Here, we specifically con-
sider the energy transfer for multishell and an array of
nanotubes by developing a dielectric function formalism.
Our approach allows us to identify unambiguously the con-
tributions from the single-particle and plasmon excitations,
as we did in Ref. 17, and it also shows that one of the two
most energetic plasmon branches can become unstable when
its phase velocity matches the drift velocity of the current

used to excite them.27 Since this plasmon instability does not
arise for a single-wall nanotube, we must formulate the
theory in a more general way.

The interaction of charged particles with an electron liq-
uid confined to each tubule is described on the basis of an
inverse dielectric function formalism. The simple continuum
model we use can be extended to more realistic descriptions
of the band structure and its related dielectric properties of
experimental interest. However, the features we demonstrate
are not model dependent. We use this model primarily to
simplify the algebra which is still a challenge here. The re-
sponse of the medium is first described in terms of the total
screened potential which is self-consistently determined
from the induced density from Poisson’s equation. The
screening is simply expressed in terms of the frequency and
wave-vector-dependent longitudinal response functions for
each tubule, representing the polarization cloud which fol-
lows in the wake potential of the moving charges. The elec-
tron gas is described in the random-phase approximation
�RPA� of Bohm and Pines in which each momentum transfer
between electrons is treated independently. This enables us
to calculate the principal effects on the moving particles,
including the force they experience and the resulting stop-
ping power of the nanotubes. We describe in detail the dis-
persion relation of the single-particle excitations and the
plasmon modes as well as the way in which they arise in the
energy-transfer formula.

The formulation of the problem is first established for
multishell tubules in Sec. II. Here, the axial symmetry makes
it possible to employ Fourier transform techniques. In Sec.
III, we extend our results to deal with a pair of nanotubes but
this can be generalized to include more than two nanotubes
with a more mathematically complex description. Numerical
calculations are presented in Sec. IV. Here, we present the
main results of our paper in which we show that for a pair of
nanotubes, either coaxial or parallel, the energy transfer
spectrum has a “dip” for a group of modes. We verify that
these plasmon modes are unstable by solving the dispersion
equation in the complex frequency plane. We add some con-
cluding remarks in Sec. V.
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II. ENERGY LOSS FOR MULTIWALL NANOTUBES

We formulate a theory for the energy-transfer for a
charged particle moving parallel to the axis of a multiwall
nanotube consisting of N coaxial tubules. The tubules are of
radius R1 ,R2 , . . . ,RN and their common axis lies along the z
axis. The velocity of a moving charged particle is v=vẑ and
its position vector is r0= ��0 ,�0 ,z0=vt�.

The total electrostatic potential and the induced charge
density at any space-time point 1= �r1 , t1� are given, respec-
tively, by �in this paper, we use Gaussian units�

V�1� =� d42�−1�1,2�U�2� , �1�

���1� = −
�b

4�e
�1

2�V�1� −
1

�b
U�1�� , �2�

where �−1�1,2� is the inverse dielectric function and �b is the
background dielectric constant of the medium where the
nanotube is embedded. In this notation, we have U�r , t�
=Ze / �r−r0�t�� as the potential produced by the moving
charged particle which is given in cylindrical coordinates by

Ze

�r − r0�t��
=

Ze

�
�

L=−�

�

eiL��−�0��
−�

�

dqz

�eiqz�z−vt�IL�qz���KL�qz�	� , �3�

where ����	� is the smaller�larger� of � and �0.31 Also, IL�x�
and KL�x� are modified Bessel functions. According to Eq.
�3�, we can write the potential U�2� as �for the shake of
convenience, we chose �0=0�

U�2� =
Z

e
�

−�

� dqz

2�
eiqz�z2−vt2� 1

2�
�

L=−�

�

eiL�2uL��0,�2,qz� , �4�

where uL��1 ,�2 ,qz�, defined by

uL��1,�2,qz� = 4�e2IL�qz���KL�qz�	� , �5�

is the Fourier transform of e2 /r for the Coulomb interaction
energy in cylindrical coordinates.31

We use a Fourier transformation of Eq. �1� with respect to
the z, �, and t variables to obtain

V�1� = �
0

�

d�2�2�
−�

� dqz

2�
�

−�

� d


2�
ei�qzz1−
t1�

�
1

2�
�
L

eiL�1�L
−1��1,�2,qz,
�UL��2,qz,
� . �6�

From Eq. �4� we obtain

UL��2,qz,
� =
2�Z

e
uL��0,�2,qz���
 − vqz� �7�

and Eq. �6� becomes

V�1� =
Z

e
�

0

�

d�2�2�
−�

� dqz

2�
eiqz�z1−vt1� 1

2�
�
L

eiL�1

� uL��0,�2,qz��L
−1��1,�2,qz,
 = vqz� . �8�

Here, the inverse dielectric function �L
−1��1 ,�2 ,qz ,
� is given

in the RPA by

�L
−1��1,�2,qz,
� =

1

�b

���1 − �2�
�1

−
1

�2��2�b
2 �

j,j�=1

N ���2 − Rj��

�2

� � j,L�qz,
�uL��1,Rj,qz��AL�qz,
�−1	 j j�.

�9�

The dispersion equation for plasma excitations can be deter-
mined by solving for the poles of �L

−1��1 ,�2 ,qz ,
�. These
poles are solutions of Det AL�qz ,
�=0 where the matrix el-
ements of AL are

�AL�qz,
�	 j j� = � j j� +
1

�2��2�b
uL�Rj,Rj�,qz�� j�,L�qz,
� .

�10�

Also, the polarization function of the electron gas on the jth
tubule is

� j,L�qz,
� = 2 �
l=−�

� �
−�

�

dkz

f0�� j,kz,l
� − f0�� j,kz−qz,l−L�


 − �� j,kz,l
− � j,kz−qz,l−L� + i0+ ,

�11�

where f0��� is the Fermi-Dirac distribution function and

� j,kz,l
=

2kz
2

2m* + 2l2

2m*Rj
2 is an energy eigenvalue on the jth

tubule for an electron with effective mass m* and
kz , l=0, ±1, ±2, . . ., are the linear and angular momentum
quantum numbers of an eigenstate.

Substituting Eqs. �4� and �8� into Eq. �2�, we obtain an
expression for the induced charge density ���1� at any space-
time point which is given by

���1� = −
Z�b

4�e2�
−�

� dqz

2�
eiqz�z1−vt1� 1

2�
�

L=−�

�

eiL�1

� 
�
0

�

d�2�2uL��0,�2,qz��− qz
2 −

L2

�1
2

+
1

�1

�

��1
��1

�

��1
���L

−1��1,�2,qz,
 = qzv�

+
4�e2

�b

���1 − �0�
�1

 . �12�

However, the force on the charged particle and its rate of loss
of energy are given by

F = e� d31���1��1V�1� and
dW

dt
= F · v = Fzv , �13�

where the z component of the force is

ANTONIOS BALASSIS AND GODFREY GUMBS PHYSICAL REVIEW B 74, 045420 �2006�

045420-2



Fz = i
Z2�b

16�3e2�
0

�

d�1�1�
0

�

dqzqz �
L=−�

� 
 4�e2

�b

���1 − �0�
�1

− �
0

�

d�2�2uL��0,�2,qz��q2 +
L2

�1
2

−
1

�1

�

��1
��1

�

��1
���L

−1��1,�2,qz,
 = vqz�
� �

0

�

d�3�3uL��0,�3,qz��L
−1��1,�3,− qz,
 = − vqz� .

�14�

The qz integral for the second term in curly brackets on the
right-hand side of Eq. �14� is identically zero because the
integrand is an odd function of qz. This can be proven if we
use the following symmetry properties for the inverse dielec-
tric function, i.e.,

�L
−1��1,�2,qz,
� = �L

−1��1,�2,− qz,
� , �15�

Re��L
−1��1,�2,qz,
�	 = Re��L

−1��1,�2,qz,− 
�	 , �16�

− Im��L
−1��1,�2,qz,
�	 = Im��L

−1��1,�2,qz,− 
�	 . �17�

Therefore, Eq. �14� simplifies and gives the following result:

Fz =
Z2

4�2�
−�

�

dqziqz �
L=−�

� �
0

�

d�3�3uL��0,�3,qz�

��L
−1��0,�3,qz,
 = − vqz� . �18�

Furthermore, if we express �L
−1��0 ,�2 ,qz ,
� in terms of its

real and imaginary parts and use Eqs. �9� and �15�, we finally
obtain

Fz = −
Z2

8�4�b
2 �

L=−�

� �
0

�

dqzqz �
j,j�=1

N

uL��0,Rj,qz�uL��0,Rj�,qz�

� Im�� j,L�qz,
 = vqz��AL
−1�qz,
 = vqz�	 j j�� �19�

which in turn gives the rate of loss of energy as

dW

dt
= −

Z2v

8�4�b
2 �

L=−�

� �
0

�

dqzqz �
j,j�=1

N

uL��0,Rj,qz�uL��0,Rj�,qz�

� Im�� j,L�qz,
 = vqz��AL�qz,
 = vqz�−1	 j j�� , �20�

with matrix elements �AL�qz ,
�	 j j� given by Eq. �10�.
We will obtain a closed form analytic expression for the

rate of loss of energy explicitly in terms of the dielectric
response functions for the nanotube. To do this, we express
the matrix elements of the inverse matrix as

�AL�qz,
�−1	 j j� =
CL,j j��qz,
�

Det AL�qz,
�
, �21�

Det AL�qz,
� = D1,L�qz,
� + iD2,L�qz,
� , �22�

where CL,j j� are the matrix elements of an N�N matrix and
D1,L�qz ,
� and D2,L�qz ,
� denote the real and imaginary

parts of Det AL�qz ,
�. Equation �20� can be written as

dW

dt
= −

2Z2v

�2��4�b
2 �

j,j�=1

N

�
L=−�

� �
0

�

dqzuL��0,Rj,qz�uL��0,Rj�,qz�

� �
Re� 1

Det AL�qz,
��Im�� j,L�qz,
�CL,j j��qz,
�	

+ Im� 1

Det AL�qz,
��Re�� j,L�qz,
�CL,j j��qz,
�	�

=vqz

.

�23�

We now turn to analyzing the contributions to
dW /dt in Eq. �23� for charged particle energy transfer.
This means that we must examine when the factor
Im�� j,L�qz ,
=vqz��AL�qz ,
=vqz�−1	 j j�� in the integrand is
nonzero. When there is just one tubule �N=1�, the matrix
AL�qz ,
� becomes a scalar dielectric function �L�qz ,
�, say,
and the factor in Eq. �23� is �−1/�L�qz ,
�=�I / ��R

2 +�I
2�,

where �R and �I are the real and imaginary parts of �L. There-
fore, the only contributions to dW /dt arise when either �I is
finite, i.e., from the single-particle excitations on the nano-
tube, or when both �R and �I vanish simultaneously. This
latter contribution comes from the plasmon excitations which
are not Landau damped by the particle-hole modes. These
excitations contributing to the energy transfer must have a
phase velocity which coincides with the charged particle
speed since 
=vqz must be satisfied in the dielectric re-
sponse function. The case for a multiwall nanotube may be
analyzed in a similar way. The two terms in curly brackets in
the integrand of Eq. �23� contribute separately unlike the
case of a single-wall nanotube. The plasmon dispersion rela-
tion corresponds to Det AL�qz ,
�=0, i.e., when both its real
�D1,L�qz ,
�	 and imaginary �D2,L�qz ,
�	 parts are zero.
Therefore, the plasmon contribution to the charged particle
energy loss comes from only the second term in Eq. �23�.
The single-particle excitations contribute to both the first and
second terms when D2,L�qz ,
� is finite in conjunction with
either D1,L�qz ,
� zero �second term only� or finite �both first
and second terms�. In this regard, there is no contribution
when D1,L�qz ,
� is finite but D2,L�qz ,
�=0 because the fac-
tor multiplying the D1,L�qz ,
� in the numerator vanishes
since the imaginary parts of the susceptibility are all zero in
this case.

For clarity, we explicitly write the contribution from plas-
mon excitations to Eq. �23� as

�dW

dt
�

plasmons
=

Z2v

8�3�b
2 �

j,j�=1

N

�
L=−�

� �
0

�

dqzqzuL��0,Rj,qz�

�uL��0,Rj�,qz�
��
 − 
L�qz��

�dD1,L�qz,
�/d
�
=vqz

�Re��� j,L�qz,
�CL,j j��qz,
�	�
=vqz
, �24�

where 
L�qz� is the plasmon excitation frequency for fixed
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angular momentum transfer L, i.e., this is the solution of the
equation Det AL�qz ,
�=0. The contributions to Eq. �23�
from single-particle excitations and polarization of the me-

dium are straightforward to obtain. For the double-wall
nanotube, i.e., N=2, which we do numerical calculations for,
the matrix CL�qz ,
� is

CL�qz,
� =� �2,L�qz,
�
− �2,L�qz,
�uL�R1,R2,qz�

�2��2�b

− �1,L�qz,
�uL�R1,R2,qz�
�2��2�b

�1,L�qz,
� � , �25�

where � j,L�qz ,
�=1+ 1
�2��2�b

uL�Rj ,Rj ,qz�� j,L�qz ,
� is the di-

electric response function for momentum transfer with quan-
tum number L on the jth tubule. Since setting � j,L�qz ,
�=0
yields the plasmon excitations on each tubule, it means that
the j= j� terms in the sums in Eqs. �23� and �24� yield the
contributions to the energy-loss from each individual tubule
as if there is no intertubule Coulomb interaction. The j� j�
terms give the energy loss as a result of the interaction of the
charged particle with the two coupled tubules. This is so
because the off-diagonal elements of the matrix CL�qz ,
� are
proportional to uL�R1 ,R2 ,qz� which arises from the Coulomb
interaction between the two nanotubes. However, this sepa-
ration cannot be made when N	2 since the diagonal ele-
ments of CL�qz ,
� contain intratubule and intertubule Cou-
lomb effects. We note that the Coulomb interaction
uL�Rj ,Rj� ,qz� between tubules could be weak compared with
the coupling between electrons on the same tubule. Conse-
quently, CL�qz ,
� is diagonal and only � j=j� survives in Eq.
�23�. In this case, the particle energy-loss is a sum of terms
due to individual tubules.

III. ENERGY TRANSFER TO A LINEAR ARRAY OF
NANOTUBES

The formalism presented above for the charged particle
energy transfer employed the axial symmetry for coaxial tu-
bules. For a linear array of nanotubes, whose axes are along
the z direction but each axis is on and perpendicular to the x
axis, this symmetry is broken. Consequently, for this geom-
etry, the method of calculation must be modified. For sim-
plicity, we consider in this section, two single-wall nanotubes
with radii R1 and R2 with their axes at x=0 and x=a, where
a	R1+R2. An electron confined to the surface of the jth
nanotube �j=1,2� is described by the single particle eigen-
states and energy eigenvalues

�r�j�� =
eikzz

�Lz

� jl��� − �j − 1�ax̂	, � jl��� =
1

�2�
eil� 1

��
� j��� ,

�26�

� j� =
2kz

2

2m* +
2l2

2m*Rj
2 , �27�

where �= �kz , l� labels the eigenstates of an electron,
� j

2���=���−Rj�. We find that the inverse dielectric function
�−1 is given by the expression

�−1���1,��2,qz,
� =
1

�b
����1 − ��2� −

e2

��b
�
j=1

2

�
m,m�=−�

�

� j,m�qz,
�

� Kj,m���2,qz,
�wjmm��qz,Rj,�1,a�e−im��1,

�28�

where

wjmm��qz,�1,�2,a�

� �
0

�

dq�

q�

q�
2 + qz

2Jm�q��1�Jm��q��2�Jm�−m��j − 1�q�a	 ,

Kj,m���2,qz,
� � � d�3� jl
* ���3�� jl����3�

��−1���3 + �j − 1�ax̂,�2,qz,
	 . �29�

The unknown quantities Kj,m���2 ,qz ,
� can be obtained as
solution of the set of simultaneous linear equations

�
j�=1

2

�
m�=−�

� �� j j��mm� +
e2

��b
� j�,m��qz,
�wmm��qz,Rj,Rj�,a��

�Kj�,m����2,qz,
�

=
1

�b
� jl

* ���2 − �j − 1�ax̂�� jl����2 − �j − 1�ax̂	 . �30�

The dispersion equation for plasmon excitations can be
found solving for the poles of �−1���1 ,��2 ,qz ,
� which are
given by the condition Det A�qz ,
�=0 where A is the matrix
with elements
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Ajmj�m��qz,
� = � j j��mm� +
e2

��b
� j�,m��qz,
�Umm��qz,Rj,Rj�,a� .

�31�

In this notation

Umm��qz,Rj,Rj�,a�

= �
0

�

dq�

q�

q�
2 + qz

2Jm�q�Rj�Jm��q�Rj��Jm�−m��j − j��q�a	 .

�32�

The same dispersion equation for the plasma modes had been
obtained in Refs. 27 and 32. A particle of charge Ze moving
parallel to the pair of nanotubes with a position vector
r0= ���0 ,z0=vt�, where v is the speed of the particle, creates
an electrostatic potential U�r , t� at any space-time point �r , t�
which is given by Eq. �4�.The total potential and the induced
charge density at any space-time point 1 are given, respec-
tively, by Eqs. �1� and �2�. Also, because of the induced
charge density, the force exerted on the moving charged par-
ticle is F=e�d33���1��1V�1�. After some algebra, we obtain
the z component of this force which is responsible for the
frictional energy loss of the particle. Our calculation then
gives for the rate of loss of energy as

dW

dt
= Fzv = i

Z2

�2��4�b
v�

−�

�

dqzqz

��
j=1

2

�
m,n,m�

� j,m�qz,
�Fj,n,m���0,qz,
�
Gm,m����0,qz,a�

−
e2

�
�
j�=1

2

�
s,p

�− 1�s� j�,s�qz,− 
�

�Fj�,s,p���0,qz,− 
�Ljj�,mm�,s�qz,a� , �33�

where

Fj,n,m���0,qz,
� = e−in�0� d��2ein�2un��0,�2,qz�

�Kj,m���2,qz,
�, 
 = qzv ,

Gm,m����0,qz,a� = e−im��0�
0

�

dq�q�Jm�q�Rj�

�Jm�−m��j − 1�q�a	

� �
0

�

d�1�1Jm��q��1�um���1,�0,qz� ,

Ljj�,mm�,s�qz,a� = �
0

�

dq�

q�

q�
2 + qz

2Jm�q�Rj�Jm�−m��j − 1�q�a	

� Js�q�Rj��Jm�+s��j� − 1�q�a	 . �34�

When we take the limit a→�, Eq. �33� reduces to the result

given for one nanotube.17 We investigate the simplest case
where R1=R2=R and the angular momentum transfer
m= l− l� of the plasmon excitations is zero. In this case, the
energy loss formula given by Eq. �33� takes the form

dW

dt
= −

Z2e2

4�4�b
2v�

0

�

dqzqz�
0

�

dq�

q�

q�
2 + qz

2J0�q�R�J0�q��0�

� �
0

2�

d� �
n=−�

�

�
j,j�=1

2

J0��j − 1�q�a�

�ein�f j����−�0	unj���0,� j����,qz	

�Im��0�qz,
 = vqz�Ajj�
−1�qz,
 = vqz�	 . �35�

Here, the Coulomb potential energy unj���0 ,� j���� ,qz� has
the same form as Eq. �5�. The dependence � j���� arises since
the distance from the axis of the first nanotube to the surface
of the second one is a function of the polar angle. The matrix
Ajj��qz ,
� is given by Eq. �31� when we use m=m�=0 and
the functions � j���� and f j���� are given, respectively, by the
expressions

� j���� = �R2 + �j� − 1�2a2 + 2aR�j� − 1�cos �	1/2,

f j���� = sin−1�R sin �

� j���� � . �36�

The separation of the last factor in Eq. �33� into the real and
imaginary parts of the determinant of the matrix A again
identifies the contributions to the energy loss.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we present numerical results for the energy
transfer and plasmon excitation spectra for a double-wall
nanotube and for a pair of single-wall nanotubes whose axes
are parallel. The calculations are based on the formulas we
derived above in Secs. II and III. Our results are presented in
Figs. 1–6. In Figs. 1�a�–1�c�, we plot the plasmon contribu-
tions to dW /dt for various impact parameters for chosen R1
and R2 of a double-wall nanotube. Figure 2 shows the single-
particle excitation contribution for the same pair of tubules in
Fig. 1. There are six plasmon branches, with the highest
branch at resonance with the impinging charged particle ve-
locity when its phase velocity is v=1.63vF, the second high-
est branch when v=1.25vF and subsequent branches as indi-
cated on the plasmon dispersion relation in Fig. 3. In this
figure, only the plasmon branches which are not Landau
damped by the single-particle excitations are given in this
plot. The abrupt termination of the plasmon modes in Fig. 3
arises when the plasmon branches enter the single-particle
excitation regions. There are three plasmon branches for
each uncoupled tubule, i.e., when the Coulomb interaction
between the tubules is neglected. This is the reason why
there are six plasmon branches in Fig. 3. All of the branches
in Fig. 3 either have a corresponding peak or dip in Figs.
1�a�–1�c� �but some are too weak to be observed on this
scale�. Only the second highest branch has a “dip” in the
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energy transfer spectrum. We were able to identify the peaks
and dips in the energy transfer spectrum by drawing the
straight lines 
=vqz which determine the energy loss contri-
butions. When the slope of the straight line is increased and
this line first touches a plasmon branch, the slope of this
straight line corresponds to the resonance velocity in dW /dt.
Furthermore, as the gradient of this straight line increases
further, there is a range of values of particle velocity when
the line sweeps through a plasmon branch. The height of the
peak or depth of the dip depends on the impact parameter but

its location on the velocity axis is independent of r0. In con-
trast to the results in Fig. 1, Fig. 2 shows that irrespective of
the impact parameter, the energy loss spectrum for single-
particle excitations is always positive. The single-particle
continuum corresponds to the peak positions which are also
unchanged as the impact parameter is varied. However, the
heights of the peaks depend on �0.

We further investigate the resonance structure of Fig. 1.
Except for the two most energetic plasmons, the branches of
plasmon excitations lie within the gaps between single-
particle excitations. In the long wavelength limit, the fre-
quency of the second highest mode depends linearly on the
wave number qz. On the other hand, instead of having a
constant phase velocity, the highest mode has a phase veloc-
ity which exhibits a logarithmic dependence on wave
number.33 Although some of the lower frequency modes
have an almost constant phase velocity for small qz, the sec-
ond most energetic mode has the widest range over which
the charged particle velocity could exactly coincide with its
phase velocity. The dip occurs when the charged particle
velocity lies in the range 1.00vF to 1.50vF which is shown in
Fig. 3. Consequently, we must be investigate the plasmon

FIG. 1. The rate of energy transfer when L=0 due to plasmons
as a function of the charged particle velocity parallel to the axis of
the double-wall nanotube. The energy transfer is expressed in units
of vFe2kF

2 and the velocity in units of vF. In this notation,
kF=�2m*EF / and vF=kF /m*. The radii of the nanotubes are
R1=11.0 Å, R2=15.0 Å. The Fermi energy for each nanotube is
EF=0.6 eV. The impact parameters for r0 are �a� 0, �b� 10.0 Å, �c�
17.0 Å. We chose �b=2.4, the electron effective mass m*=0.25me,
where me is the bare electron mass.

FIG. 2. The rate of loss of energy from single-particle excita-
tions within the L=0 subband for a pair of coaxial tubules of radius
R1=11.0 Å and R2=15.0 Å. All other material parameters for the
background dielectric and electron effective mass are the same as
Fig. 1. The values for the impact parameter �0 are indicated on the
plots.

FIG. 3. The L=0 plasmon dispersion for the pair of coaxial
nanotubes in Fig. 1. The straight lines 
=vqz show when the plas-
mon branch contributes to dW /dt.
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excitations whose frequencies lie in the region bounded by
straight lines having slopes equal to these two velocities. The
first step we have taken in this direction was to redo the
calculation for dW /dt by excluding the plasmon branches in
this region. The resulting plot showed that there was no dip.
This indicates that these branches are responsible for the ob-
served feature. The peaks in Figs. 1�a�–1�c� are similar to
those we obtained for a single-wall nanotube.17 Therefore,
the physical meaning of the dip is that the plasmon branches
with phase velocity in this region decay after being excited,
not because they are Landau damped. Thus, the second step
in our investigation was to solve the dispersion equation for
complex plasmon frequencies. We obtained solutions for the
frequencies whose real part lies in the bounded region
1.00vFqz to 1.50vFqz. However, there were no such solutions
outside this region. This means that the dip corresponds to a
region of instability for excitations within the system and
which does not include the particle-hole continuum. In Fig.
4, we plot the real and imaginary parts of the plasmon branch
with the higher frequency in the instability region in Fig. 3.

These results were obtained when we solved the dispersion
equation in the complex frquency plane. The real part of the
plasmon frequency in Fig. 4 differs slightly from the second
highest branch in Fig. 3. Also, the imaginary part of this
frequency is smaller than its real part. The imaginary part
increases monotonically with wave vector before rapidly de-
creasing around qz�0.075 kF. There is an increase in the
imaginary part near qz�0.25 kF. The inverse of the imagi-
nary part of this complex frequency yields the lifetime of the
collective excitation. Thus, it is only for some ranges of
wave vector where the lifetime of the plasmon excitation is
“finite.”

In Fig. 5, we plot the L=0 plasmon contribution to the
rate of transfer of energy for a pair of parallel single-wall
nanotubes each of radius 11.0 Å and separation a=25.0 Å.
We chose the impact parameter as �0=0. There are two dips
in Fig. 5. These again correspond to plasmon excitations
which become unstable after being excited by the charged
particle. In Fig. 6, we present the plasmon excitation spec-
trum for the pair of parallel nanotubes used in Fig. 5. The
tangent lines to the plasmon branches in Fig. 6 indicate the
velocities, where the energy loss spectrum has a dip or a
peak. The path of the charged particle was chosen along the
axis of one of the nanotubes and the separation a=25.0 Å.

V. CONCLUDING REMARKS

We conclude with a discussion of plasma instabilities
similar to the regions appearing in Figs. 1�a�–1�c� as well as
Fig. 5. There has been considerable interest in the instabili-
ties which arise in solid-state plasmas by the transfer of en-
ergy from a constant current to plasmon excitations gener-
ated spontaneously. This followed the pioneering work on
gaseous plasmas.34–39 Some of the solid-state plasmas in-
clude semiconductor heterostructures such as the two-
dimensional electron gas �2DEG� as well as multilayered su-
perlattices and parallel quantum wire systems. It is now
known that the plasma instabilities may be driven by a direct
current which flows in either the same or a neighboring layer
as the plasma excitations.36–38 As a result of the energy trans-
fer from the current to the plasma excitations, an amplifica-
tion of the collective modes may take place. This energy

FIG. 4. The real �solid line� and imaginary �dotted line� parts of
the plasmon branch with the higher frequency in the instability
region in Fig. 3. The results were obtained by solving the dispersion
equation in the complex frequency plane.

FIG. 5. The plasmon contributions to the rate of energy transfer
�in units of vFe2kF

2� for subband transitions with L=0 for two
parallel nanotubes each of radius R=11.0 Å with separation
a=25.0 Å between them. The impact parameter of the impinging
particle is �0=0. The background dielectric constant, electron
effective mass and Fermi energy for each nanotube are the same as
Fig. 1.

FIG. 6. The L=0 plasmon dispersion for the pair of parallel
nanotubes in Fig. 5. The straight lines 
=vqz show when the plas-
mon branch contributes to dW /dt.
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could in turn be converted to electromagnetic radiation.
As in previous work, our instabilities arise when the drift

velocity of the charged particles lies within a range which is
determined by the phase velocity for the plasmon modes.34,35

To show this analytically for a pair of coaxial tubules, we
may use the damping theory technique, as we did for a pair
of parallel nanotubes.27 For this, one transfers to the moving
frame of reference of the charged particle by replacing the
momentum of an electron on the using kz→kz−m*v in the
response functions. In addition, we also assume that the sys-
tem may still be described by the equilibrium Fermi-Dirac
distribution even when a collective mode becomes unstable.

A more accurate description of the instability should em-
ploy a nonequilibrium distribution function rather than the
equilibrium Fermi-Dirac function. However, this approxima-
tion is reasonable since the instability occurs in the weak
nonequilibrium regime at low charged particle velocity, i.e.,
v�2vF. As a matter of fact, according to Echenique et al.9

the low-velocity limit is defined as v�v0, where v0=e2 /

=2.19�106 m/s. For the parameters chosen in our calcula-
tions for Fig. 1, we have v0=2.38vF. In this case, the external
perturbation may be treated in linear response theory and the
initial state of the electron gas on the nanotube can be treated
as nearly free of scattering determined by the external probe.
This approximation has been justified by Kempa et al.39 in
the quasiballistic limit as well as by Hu and Wilkins.40
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