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Extending the technique of the perfectly matched layer �PML� to discrete lattice systems, a multiscale
method was proposed by To and Li �Phys. Rev. B 72, 035414 �2005��, which was termed the perfectly
matched multiscale simulation �PMMS�. In this paper, we shall revise the proposed PMMS formulation, and
extend it to multiple dimensions. It is shown in numerical simulations that the perfectly matched layer between
the fine scale region and the coarse scale region can provide an efficient remedy to reduce spurious phonon
reflections. We have found �i� the bridging projection operator stems from minimization of the temperature of
an equilibrium system; �ii� for discrete lattice systems, the perfectly matched layer �PML� can be constructed
by stretching the lattice constant, or the equilibrium atomic spacing, in the Fourier domain; �iii� the dispersive
relation in the PML zone is significantly different from the one in the original lattice system, and the PML
usually behaves like a low-frequency pass filter. This may be one of the mechanisms to eliminate the reflective
waves at the multiscale interface. Moreover, we apply the multidimensional PMMS algorithm to simulate a
screw dislocation passing through different scales.
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I. INTRODUCTION

To construct the suitable match condition at the discrete-
continuum interface has been a challenge in concurrent mul-
tiscale simulations. The notable contributions to this subject
include E and his co-workers’ optimal boundary match
approach,1–3 Liu and his co-workers’ bridging scale
method,4–6 and Rudd and Broughton’s coarse-grained mo-
lecular dynamics �CGMD�.7,8 However, most of these ap-
proaches are either too complicated to implement or too lim-
ited to apply to general concurrent multiscale simulations.

To effectively reduce phonon reflections at multiscale in-
terfaces, we9 proposed a different multiscale method called
the perfectly matched multiscale simulation �PMMS�, which
extended the perfectly matched layer �PML� technique for
continuum systems to discrete systems.

The perfectly matched layer �PML� method is a numerical
technique to simulate wave �electromagnetic or acoustic�
propagations in an infinite domain. It has been extensively
used in many fields to eliminate spurious waves due to the
mismatch of impedances at the interface of different media
�e.g., Refs. 10 and 11�. The features that distinguish PML
from other absorbing boundary techniques are �i� PML is a
reflectionless medium that has no clear interface between the
domain of interests and the additional matched layer; �ii� the
PML technique produces a spatial decay term �in addition to
time decay� with exponential rate, and hence �iii� the PML
technique provides a perfectly matched layer to link the re-
gions with different impedances.

The original PMMS formulation is a simple extension of
the PML technique for continuum to discrete lattices. Even
though the proposed algorithm is correct and it worked well
in computations, there were mistakes in our original con-
struction procedures, which become apparent when extend-
ing it to multiple dimensions.

We have found that the extension of PML of the continu-
ous media to discrete lattices is not a straightforward analog,

because there are fundamental differences between wave
propagations in continuous media and discrete lattices. It had
been shown by Deymier and Vasseur12 that the mismatch in
coupled discrete-continuous models is inherently linked to
the difference in dispersion relations of different media or
models.

In this paper, we revise our previous formulation, and
extend it to cases of multiple dimensions. A systematic
analysis of dispersive relations in the PML zone is carried
out to study the efficiency of the absorbing boundary layer or
impedance matched layer for discrete systems. To validate
the proposed formulation, we test the proposed algorithm in
simulations of multiple dimensional problems. In particular,
we apply the proposed algorithm to simulate the problem of
defect passing from one scale to another scale.

The paper is organized in the following way. In Sec. II we
re-visit the basic formulas of PMMS, and in Sec. III, we
re-derive the equations of motion in the PML region through
a different approach. In Sec. IV, we shall analyze the prop-
erties of the discrete perfectly matched layer, and finally, in
Sec. V, several simulation examples are presented.

II. FORMULATIONS

Consider a continuous displacement field up to subatomic
scale. We assume that the total displacement field can be
decomposed into a coarse scale component and a fine scale
component as proposed in the bridging scale method by
Wagner and Liu,4

u�x� = ū�x� + u��x� , �1�

where u is the total displacement field, ū is the coarse scale
displacement field, and u� is the fine scale displacement
field.

We can use finite element �FE� interpolation to construct
the coarse scale displacement field,
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ū�x� = N�x�d , �2�

where N�x� is the finite element interpolation function, and d
is the FE nodal displacement vector.

To link the coarse scale displacement field to the atomic
displacements q, we assume that there exists a linear opera-
tor P�x� that maps the displacements of every atom q to the
the coarse scale displacement field,

ū�x� = P�x�q . �3�

Note that the FE nodal points can be either a subset of
atomic sites or a completely different set of particles. Hence
one should consider Eq. �2� as the definition of the coarse
scale displacement field, and Eq. �3� as an approximated pro-
jection. Similarly, the fine scale displacement field is deter-
mined by another mapping,

u��x� = Q�x�q . �4�

At the atom site, i.e., at atoms’ positions, we have the
following expression for displacements:

q = Pq + Qq = Nd + Qq . �5�

From the first equality, one can identify Q=I−P at the atom
site, and one may extend it to assume that it is valid for the
entire field, i.e., Q�x�=I−P�x�.

There are different ways to obtain the expressions of pro-
jection matrices, P�x� and Q�x�. In Ref. 4, for example, they
are obtained by minimizing the difference between q and ū
at the atom site via a L2 projection. In the original PMMS
paper, we proposed to obtain P�x� and Q�x� by minimizing
the difference between total scale and coarse scale
Lagrangians:

min
d,ḋ

�L�d,ḋ;q,q̇� − L̄�d,ḋ�� , �6�

where L�d , ḋ ;q , q̇�=K�ḋ , q̇�−U�d ,q� and L̄�d , ḋ�= K̄�ḋ�
−U�d�, in which K and K̄ are kinetic energies of the fine
scale and coarse scale, respectively; U�d ,q� and U�d� are the

fine scale and coarse scale potential energies. Note that ḋ and
q̇ are velocity vectors for all particles �atoms or FE nodes� in
both fine scale and coarse scale fields.This proposal turns out
to be incorrect, because the objective function or the differ-
ence between the Lagrangians may not have a minimum.
Hence instead of a minimization process, P�x� and Q�x� ob-
tained in this way are actually at the saddle point of the
objective function. To correct this error, we are now seeking
the projection operators by minimizing the difference be-
tween total and coarse scale kinetic energies, i.e.,

min
ḋ

�K�ḋ,q̇� − K̄�ḋ�� . �7�

The expressions for kinetic energies are

K�q̇,ḋ� =
1

2
�Nḋ + Qq̇�TMA�Nḋ + Qq̇� , �8�

K̄�ḋ� =
1

2
ḋTMḋ , �9�

where MA is the constant diagonal molecular-dynamics mass
matrix and M�x�=NT�x�MAN�x� is the finite element mass
matrix.

According to Wagner and Liu,4 the average kinetic energy
may be written as

�K�ḋ,q̇�� = ��
�

� 	1

2
ḋTMḋ +

1

2
q̇MTq̇


�exp�−
1

2
�q̇MTq̇�dq̇


���
�

�

exp�−
1

2
�q̇MTq̇�dq̇
−1

=
1

2
ḋTMḋ

+
3

2
kBT�na − nc� , �10�

where na is the total number of atoms �degrees of freedom of
q� and nc is the total number of FE nodes �degrees of free-
dom of d�; Mª =QTMQ, and �= �kBT�−1, kB being the
Boltzmann’s constant and T the temperature of the system.

Therefore, intuitively, we may link the difference in ki-
netic energies with the temperature of a system under equi-
librium state,

K�ḋ,q̇� − K̄�ḋ� � T . �11�

Hence a physical interpretation of minimizing the difference
in kinetic energies, i.e., Eg. �7�, may be stated as “for an
equilibrium system with fixed kinetic energy, the coarse
scale projection operator is obtained from the least tempera-
ture condition for all possible coarse scale velocity fields
with the fixed degree of freedom nc.”

Consequently, a standard minimization procedure yields
the following normal equation:

NTMAq̇ − Mḋ = 0. �12�

Multiplying the above equation by NM−1 leads to

Nḋ = NM−1NTMAq̇ . �13�

At the atom site, the decomposition �5� gives us

Nḋ = �I − Q�q̇ . �14�

Comparing Eqs. �13� and �14�, we first obtain the expression
for Q at atom sites and then extend to the entire field,

Q�x� = I − N�x�M−1�x�NT�x�MA. �15�

It follows that

P�x� = N�x�M−1�x�NT�x�MA. �16�

Again, the result is the same as the ones proposed in the
bridging scale method6,13 as well as in the original PMMS
paper.9
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III. EQUATIONS IN THE PML REGION

In the PMMS model, the PML is designed to absorb high-
frequency waves coming from the fine scale region. Since
the lattice structure of the fine scale region is discrete, i.e., a
collection of atoms, the construction of a perfectly matched
layer should be based on the template of discrete systems
rather than a discretization of a continuum system. In the
original PMMS paper, the equations of motion in the PML
region were derived in a fashion similar to that of continuous
media. We now realize that those procedures are not appro-
priate for the discrete case. In this paper we re-derive the
equations of motion for the discrete PML zone. The ap-
proach is still similar to the complex coordinate transforma-
tion, which was first adopted by Ref. 14. But instead of
stretching continuous Cartesian coordinates, we will stretch
the equilibrium distance �bond length� between two atoms.

We start with a general three-dimensional �3D� lattice of
N atoms. A general 3D lattice has a periodic structure. The
collection of atoms that appear periodically is called the unit
cell. Let us assume a unit cell to contain m atoms. A lattice is
defined by three basis vectors a1, a2 and a3. The origin of
each unit cell has the following coordinate:

X��� = �1a1 + �2a2 + �3a3, �17�

where �i are integers. So the coordinate of the jth atom in the
�th cell is

X��, j� = X��� + X�j� . �18�

We can write the basis vectors a� ,�=1, 2, 3 as

a� = h�â�, �19�

where h� is the equilibrium distance in the � direction and â�

is the unit vector in that direction.
We assume for now the potential energy U of the lattice to

be quadratic. In terms of the displacements, it can be written
as

U =
1

2 �
�,j,�,��,j�,�

U����, j,��, j��u���, j�u����, j�� , �20�

where � and � denote Cartesian components and

U����, j,��, j�� =
�2U

�u���, j��u����, j��
. �21�

For quadratic potentials, we can write U as

U =
1

2 �
�,j,�,��,j�,�

C����, j,��, j��
u���, j�

h�

u����, j��
h�

. �22�

The new force constant C���� , j ,�� , j� � now has the unit of
work. The equations of motion for each atom then read

miü���, j� = − �
��,j�,�

C����, j,��, j��
h�h�

u����, j�� , �23�

where mi is the mass of the atom i.
We view the PML region as an outside layer of the origi-

nal lattice. So it is of the same type of lattice as the original
one. The interface between the original lattice and the PML

region will be simply called “the interface” from now on.
Now we want to derive the EOM in the PML region. Let us
first consider the EOM in the frequency domain, which reads

− mi�
2û���, j� = − �

��,j�,�

C����, j,��, j��
h�h�

û����, j�� , �24�

where ûª =F�u� is the Fourier transform of u and � is the
angular frequency.

Now we stretch the equilibrium distances h� into a com-
plex number

h� → h�	1 +
d�

i�

, � = �,� , �25�

where d� is a damping function depending on particle posi-
tions �the cell ��. And to maintain the same lattice symmetry,
we only consider isotropic damping, i.e., d� is the same in all
lattice directions. We shall talk more about d� later. Using the
stretched h� in the PML region, the equation of motion in the
frequency domain now reads

	1 −
d�

2

�2 − i
2d�

�

mi�

2û���, j�

= − �
��,j�,�

C����, j,��, j��
h�h�

û����, j�� . �26�

Taking the inverse Fourier transform, we obtain the equation
of motion in the PML region:

miü���, j� − 2mid�u̇���, j� − mid�
2u���, j�

= − �
��,j�,�

C����, j,��, j��
h�h�

u����, j�� . �27�

By inspection, the above equation now has a damping term
−2mid�u� and a change in stiffness −mid�

2u�. It is obvious
that if d�=0 in the original lattice, we recover the equations
of motion for original molecular-dynamics �MD� simulation.

Remark 1. �i� In the existing literature, the so-called lat-
tice PML is just discretization of continuum PML via a sten-
cil, which is simply a numerical object that has no clear
physical meaning. The discrete PML proposed in this work is
built on a true discrete template from the outset, and it origi-
nates from the stretching the lattice constant. To understand
the physical meaning of such an operation, we define the
complex stiffness

Ĉ�� =
C��

	1 +
d�

i�

2 . �28�

Thus Eq. �26� may read

mi�
2û���, j� = − �

��,j�,�

Ĉ�,���, j,��, j��
h�h�

û����, j�� �29�

which means that the physical meaning of stretching the
equilibrium bond distance may be interpreted as or accom-
plished by insertion of the complex stiffness coefficients for
atomic bonds. In other words, the PML for MD may be
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characterized as an absorbing boundary layer with complex
material constants within the PML layer. This indicates that
the PML layer for MD is a lossy medium.

�ii� For a general nonlinear potential U, we may first use
its harmonic approximation in the PML region, i.e.,

U � Uharmonic = U�h1,h2,h3�

+
1

2 �
�,j,�,��,j�,�

U����, j,��, j��u���, j�u����, j�� .

�30�

However, the above equilibrium atom spacing stretching
technique may be applied to anharmonic potentials as well.
We shall discuss two examples. To make the expressions
simpler, we assume that the lattice constants are the same in
all three directions, i.e.,

h1 = h2 = h3 = h �31�

�iii� In the first example, we consider the homogeneous
anharmonic potential function of Nth order �N�2�,

U�r� = �
n,m

�	 rmn

h

, where ���r� = �n��r� ,

where ��r� is the atomistic potential, and m denotes all at-
oms interacting with atom n. The equation of motion then
reads

mnün = fn = −
�U�r�
�un

= − �
m

���rmn�
un − um

hNrmn
. �32�

In the Fourier domain, we have the following equation:

mn�2ûn = �
m

1

hNF����rmn�
un − um

rmn

 . �33�

Choosing the following atomic distance stretching scheme:

h → h	1 +
d�Xn�

i�

1/N

, �34�

where d�Xn� is a damping function of the initial position of
atom n, we then obtain

mn�2	1 +
d�Xn�

i�

ûn = �

m

1

hNF����rmn�
un − um

rmn

 �35�

and the inverse Fourier transform gives the following equa-
tion of motion for the PML zone:

mnün + mnd�Xn�u̇ = − �
m

1

hN���rmn�
un − um

rmn
. �36�

Or we can choose another atomic distance stretching scheme,

h → h	1 +
d�Xn�

i�

2/N

, �37�

which leads to the following equations:

mn�2	1 +
d�Xn�

i�

2

ûn = �
m

1

hNF����rmn�
un − um

rmn



�38�

in the Fourier domain. Subsequently, the inverse Fourier
transform gives the following equations of motion for PML
zone:

mnün − 2mnd�Xn�u̇ − mnd2�Xn�u = − �
m

1

hN���rmn�
un − um

rmn

�39�

In the second example, we consider the Lennard-Jones po-
tential,

��rmn� = 4	�	 


rmn

12

− 	 


rmn

6�, with h = 21/6
 �40�

and

��

�un
= 24	�− 2	 


rmn

12

+ 	 


rmn

6�un − um

rmn
2 = ���rmn�

un − um

rmn
.

�41�

Choose the following stretching scheme:

h → h	1 +
d�Xn�

i�

−1/6

. �42�

The transformed equation of motion in the PML zone is

mn�2	1 +
d�Xn�

i�

2

ûn = �
m

F����rmn�
un + um

rmn



− 24		d�Xn�
i�


F�	 


rmn

6un − um

rmn
2 
 ,

�43�

where F is the operator of Fourier transform. The equation
of motion in the PML zone for the Lennard-Jones potential is
obtained by taking the inverse Fourier transform:

muün − 2mnd�Xnp�u̇n − mnd2�Xn�un

= − �
m
����rmn�

un − um

rmn
− 24	d�Xn�

· �
0

t 	 


rmn�t − ��

6un�t − �� − um�t − ��

rmn
2 �t − ��

d�
 . �44�

In the rest of this paper, without loss of generality, we shall
focus on the case of harmonic approximation.

IV. ANALYSIS OF DISCRETE PML

We now study the behaviors of lattice PML and its related
PMMS method. Since the primary function of the PML zone
is to serve as an absorbing boundary, we want the solution in
the PML zone to have two properties: �i� spatial decay, i.e.,
the wave solution should attenuate when exiting the interface
toward the PML region; �ii� perfectly matched, i.e., the im-
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pedance at the multiscale interface should be matched. Both
properties hold true for conventional PML of continuous me-
dia with an appropriate choice of damping function d�X�. In
actual computations, if FE or finite difference �FD� are used
in discretization of a continuum, there will be reflections at
the interface. To estimate the reflection, a reflection coeffi-
cient, which is the amount of displacement being reflected
back at the interface, is often computed. In the following, we
want to answer two questions: �i� Do the two properties hold
true for the lattice PML? �ii� If there is reflection at interface,
what is the value of the reflection coefficient?

Furthermore, it is well known that in continuous media
traveling waves can have arbitrary frequencies in principle.
Whereas in a discrete lattice, only waves with certain fre-
quencies can propagate. This property is called
dispersion.15,16 Dispersion is a fundamental nature of lattice
dynamics, and it has been studied extensively in the
past.15–18 In this section, we focus on studying dispersion
relations in the PML region and its effects on eliminating
spurious phonon reflections.

A. Wave solution in PML zone

We first consider the following general traveling-wave so-
lution:

u���, j� = A��j�ei��t−2�k·X����, �45�

where k is the wave vector.
We then stretch the equilibrium distance in every crystal-

lographic direction:

h� → h�	1 +
d�

i�0

 . �46�

Here �0 denotes as a fixed frequency. Since both d� and �0
are our choices, for the sake of simplicity, we can combine
them together into a new damping function d�� ,�0�:

d��,�0� =
d�

�0
. �47�

We will adopt this notation from here on. The basis vectors
will be stretched as

an → an�1 − id� . �48�

The position vector X��� will be stretched as

X��� → X����1 − id� . �49�

Substitute the above relationship back into Eq. �45�; we ob-
tain the stretched solution, i.e., the solution in the PML re-
gion:

u���, j� = A��j�ei��t−2�k·X����e−2�dk·X���. �50�

Immediately, we find that the PML solution has a spatial
decaying term e−2�dk·X��� that is the hallmark of the PML for
continuous media. So we will have the desired property as
long as Eq. �50� is indeed the solution of Eq. �27�.

Remark 2. �i� The derivation given in Ref. 9 essentially
relies on Eq. �49�. Therefore if the harmonic approximation
is adopted, all the results in Ref. 9 will hold. �ii� In the

solution �50�, the frequency depends on the wave number.
This brings out the issue of dispersion. �iii� Usually, the
original lattice possesses certain symmetry or anisotropy,
e.g., a hexagonal lattice, or a cubic lattice, etc. The corre-
sponding PML zone should have the same symmetry or an-
isotropy as that of the original lattice. This means that the
stretched lattice structure in the PML zone should maintain
the same symmetry in accordance with that of the original
lattice system, such that they can be perfectly matched,
whereas in construction of a continuous PML, the distinctive
coordinate stretching may be performed along the three di-
rections of the Cartesian coordinates. This is another major
difference between discrete PML and continuous PML.

B. Dispersion in the PML zone

For a self-contained presentation, we first review the con-
cept of dispersion in a simple lattice. Consider a one dimen-
sional �1D� lattice of infinitely particles, each with mass M.
The equilibrium distance is h. We can choose an arbitrary
particle as the origin and number it 0. So the current position
of particle n is given by

xn = nh + un, �51�

where un is the displacement of particle n. For the harmonic
potential, the equation of motion is

mün =
C

h2 �un+1 + un−1 − 2un� . �52�

Assume the following wave solution:

un = Aei��t−2�knh�, �53�

where � is the angular frequency, k is the wave number, and
A is the amplitude. For the above expression to be the solu-
tion, the following condition has to be satisfied:

�2A = DA , �54�

where

D = −
C

mh2 �e−i2�kh + ei2�kh − 2� , �55�

Eq. �54� can be viewed as an 1D eigenvalue problem. The
solutions of �2 are obtained as the eigenvalues of D, which
is called the dynamic matrix. For real h, Eq. �54� reduces to

�2 =
4C

mh2 sin2 �kh . �56�

This is the dispersion relationship between � and k in the
simple lattice.15 One may find that only frequencies lower
than a certain value �crit can be carried by the wave solution
�53�.

Now we study the dispersion in the PML region, where
we have stretched atomic spacing h:

h → h�1 − idn� . �57�

Here dnªd�Xn� is the damping function defined at each par-
ticle. The solution changes to
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un = Aei��t−2�knh�e−2�knhdn. �58�

Substituting the above expression into Eq. �52�, we obtain

h2m

C
�1 − dn

2 − 2idn��2 = 2 − e−i2�khe−2�khdn+1 − ei2�khe2�khdn−1.

�59�

This is the new dispersion relationship. It is much more com-
plicated than the one in the original lattice �56�. We are in-
terested in the dispersion relation at the interface, which can
give us an idea of which waves can travel into the PML
region without distortion.

Assume that the interface is at the particle n=0. Further-
more, we let d0=0, since the damping function is by our
choice. Then we can re-write Eq. �59� as

�2A = D̃A , �60�

where the stretched dynamic matrix D̃ has the following ex-
pression:

D̃ =
C

mh2 �2 − e−i2�khe−2�khd1 − ei2�khe2�khd−1� . �61�

This is the dispersion relation at the interface. For �2 to have
a real solution, we must have

d−1 = − d1. �62�

Again, the above equation is valid since we can choose d.
With this choice, Eq. �61� reduces to

�2 =
2C

mh2 �1 − cos 2�khe−2�khd1� . �63�

This is the final dispersive relationship at the interface. We
plot it in comparison with the dispersive relationship of the
original lattice shown in Fig. 1.

Remark 3. �i� Based on Eq. �63�, we can calculate the
group velocity vg:

vg =
d�

dk
=

1

�

C

mh2 �sin 2�kh + 2�hd1 cos 2�kh�e−2�khd1.

�64�

So when k→�, i.e., in the case of small wavelength, we will
have a zero group velocity, which means that the PML zone
looks like a continuum for small waves.

�ii� Assume d1
1. Under long wavelength approx-
imation, i.e., 2�kh�1→1−cos 2�kh exp�−2�khd1�
�0.5�2�kh�2. Based on Eq. �63�,

�2 = 	C

m

�2�k�2. �65�

This again leads to the continuum limit. Therefore both cases
imply that we have constructed a “transitional semidiscrete-
semicontinuum layer” that can seamlessly couple a discrete
region with a continuous region. This may be the meaning of
the atomic distance stretching, or the meaning of the term
“perfectly matched” for discrete systems.

�iii� In Figs. 2 and 3, at the right edge of the first half

FIG. 1. The dispersion relation at the interface. FIG. 2. The dispersion relation at the interface.

FIG. 3. Numbering in a hexagonal lattice. The shaded part is the
PML region.
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Brillouin zone, the wave frequency of a PML region is not
zero. This is because the medium of a PML lattice is inho-
mogeneous, and thus the dispersive relations inside the Bril-
louin zone are no longer periodic.

It is clear that the original band structure of the dispersion
relation has changed. More specifically, the bandwidth is re-
duced, which means waves with certain frequencies that can
propagate along the regular �original� lattice cannot propa-
gate into the PML zone directly. If they cannot propagate in
the discrete PML zone, will they be reflected back? We will
comment on this at the end of this section. For the moment,
we first examine dispersive relations of PML zone for some
other types of lattice.

Let us consider a 1D diatomic lattice. In particular we
have

particle with mass m1: X2n+1 = �2n + 1�
h

2
, �66�

particle with mass m2: X2n = nh . �67�

Thus the period of the lattice is h, and the original distance
between two neighboring particles is 0.5h. We shall assume
nearest-neighbor interaction. For a pair of particles 2n and
2n+1, we have the following equations of motion:

m0ü2n =
4C

h2 �u2n+1 + u2n−1 − 2u2n� , �68�

m1ü2n+1 =
4C

h2 �u2n+2 + u2n − 2u2n+1� . �69�

The following wave solutions satisfy the above equations:

u2n = A0ei��t−2n�kh�, �70�

u2n+1 = A1ei��t−�2n+1��kh� �71�

with the dispersive relation

�2A = DA , �72�

where A= �A0 ,A1�T and dynamic matrix D has the following
expression:

D =
8C

m0m1h2� m1 m1 cos �kh

m0 cos �kh m0
� . �73�

The solution of the eigenvalue problem �72� is

�2 =
4C

m0m1h2 �m0 + m1 ± �m0
2 + m1

2 + 2m0m1 cos 2�kh� .

�74�

Now we consider the dispersion in PML region. In par-
ticular we are interested in the MD-PML interface to inves-
tigate the change of dispersion curve. So we shall consider
particles 2n, 2n+1, 2n+2, and 2n−1, with the interface at
particle 2n. Similar to what we did to the simple lattice, we
stretch h:

h → h�1 − id2n� . �75�

Then the assumed solutions will change to

ũ2n = A0ei��t−2n�kh�e−2n�khd2n, �76�

ũ2n+1 = A1ei��t−�2n+1��kh�e−�2n+1��khd2n+1. �77�

The new solutions satisfy the conditions

−
m0h2

4C
�1 − d2n

2 − 2id2n�A0e−2n�khd2n�2

= A1�e−i�kh−�2n+1��khd2n+1 + ei�kh−�2n−1��khd2n−1�

− 2A0e2n�khd2n �78�

−
m1h2

4C
�1 − d2n+1

2 − 2id2n+1�A1�2e−�2n+1��khd2n+1

= A0�e−i�kh−�2n+2��khd2n+2 + ei�kh−2n�khd2n�

− 2A1e�2n+1��khd2n+1. �79�

Similar to the case of the 1D simple lattice, we let the
damping coefficient

d2n = 0 �80�

at the interface. For the diatomic lattice, we further let

d2n+1 = 0. �81�

This makes sense if we assume d being uniform in a lattice
cell instead of being defined at a single atom.

Equations �78� and �79� then reduce to the following ei-
genvalue problem:

�2A = D̃A , �82�

where the D̃ is given by

D̃ =
4C

m0m1h2�2m1 D̃12

D̃21 2m0
� �83�

and

D̃12 = �e−i�kh + ei�khe−�2n−1��khd2n−1�m1, �84�

D̃21 = �e−i�khe−�2n+2��khd2n+2 + ei�kh�m0. �85�

The condition for the eigenvalue problem �82� to have real
eigenvalues is

Im��e−i�kh + ei�khe−�2n−1��khd2n−1�

��ei�kh + e−i�khe−�2n+2��khd2n+2�� = 0. �86�

That is equivalent to

d2n−1 =
2n + 2

2n − 1
d2n+2 �87�

If the above condition is satisfied, we will have the following
equation for �2:

m0m1h4

16C2 �4 −
m0 + m1

2C
�2 − �2 cos 2�khe−�2n+2��khd2n+2

+ e−2�2n+2��khd2n+2 − 3� = 0 �88�

which yields the solution
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�2 =
4C

m0m1h2 �m0 + m1 ± ��m0 + m1�2 − m0m1�3

− 2 cos 2�khe−�2n+2��khd2n+2 − e−2�2n+2��khd2n+2��1/2� .

�89�

The dispersion curves for standard diatomic lattice and the
stretched lattice are shown in Fig. 2. The band gap is en-
larged by PML, as expected.

The last type of lattice that we shall study is a two-
dimensional �2D� hexagonal lattice. With only one equilib-
rium spacing h, the fundamental translation vectors are

k1 = he1, k2 = h cos
�

3
e1 + h sin

�

3
e2 =

h

2
e1 +

�3h

2
e2.

�90�

As we did in previous cases, we will use an integer pair
�m ,n� to identify a particle in the lattice. Suppose we already
have a reference point X00, then

Xmn = X00 + ma1 + na2. �91�

In the harmonic case, the particles are connected by linear
springs with axial stiffness C /h2. We will assume small dis-
placements. Then the equation of motion can be written as

mh2ümn = C1�2umn − um+1,n − um−1,n�

+ C2�2umn − um,n+1 − um,n−1� + C3�2umn − um−1,n+1

− um+1,n−1� , �92�

where Ci are stiffness matrices in three directions. They are

C1 = C�1 0

0 0
� , �93�

C2 = C� 1/4 �3/4

�3/4 3/4
� , �94�

C3 = C� 1/4 − �3/4

− �3/4 3/4
� . �95�

Based on Eq. �45�, we assume the solution to be

umn = Aei��t−k·X�m,n�� �96�

Substitute Eq. �96� into the equation of motion, we have

mh2�2A = C1�2 − e−ik1h − eik1h�A + C2�2 − e−ik2h − eik2h�A

+ C3�2 − ei�k1−k2�h − e−i�k1−k2�h�A . �97�

It can be further simplified as the following eigenvalue prob-
lem:

�2A = DA , �98�

where

D =
2C

mh2�D11 D12

D21 D22
� , �99�

where

D11 =
3

2
− cos k1h −

1

4
cos k2h −

1

4
cos�k1 − k2�h ,

�100�

D12 =
�3

4
�cos�k1 − k2�h − cos k2h� �101�

D21 =
�3

4
�cos�k1 − k2�h − cos k2h� , �102�

D22 =
3

2
−

3

4
cos k2h −

3

4
cos�k1 − k2�h . �103�

The characteristic equation is

�mh2�2�2 − 2Cmh2�D11 + D22��2 + 4C2�D11D22 − D12
2 � = 0.

�104�

This is the dispersion equation for the regular hexagonal lat-
tice. The solution has two branches:

�2 =
C

mh2 �D11 + D22 ± ��D11 − D22�2 + 4D12
2 � . �105�

Now we stretch the lattice,

h → h�1 − id�X�� . �106�

We shall now look at the solution with h. Without losing
generality, we let

X00 = 0 . �107�

Assume particle �m ,n� is at the interface, particles �m ,n
−1�, �m−1,n�, and �m+1,n−1� are in the original lattice
region, and particles �m ,n+1�, �m+1,n�, and �m−1,n+1�
are in the PML zone as shown in Fig. 3. We then have

umn = Aei�te−i�mk1+nk2�he−�mk1+nk2�hd. �108�

Substituting the solution into Eq. �97� yields

mh2�1 − id�X��2�2e−�mk1+nk2�hdmn
A

= C1A�2e−�mk1+nk2�hdmn
− e−ik1he−��m+1�k1+nk2�hdm+1,n

− eik1he−��m−1�k1+nk2�hdm−1,n
� + C2A�2e−�mk1+nk2�hdm,n

− e−ik2he−�mk1+�n+1�k2�hdm,n+1
− eik2he−�mk1+�n−1�k2�hdm,n−1

�

+ C3A�2e−�mk1+nk2�hdm,n

− ei�k1−k2�he−��m+1�k1+�n−1�k2�hdm+1,n−1

− e−i�k1−k2�he−��m−1�k1+�n+1�k2�hdm−1,n+1
� . �109�

Let

dmn = 0 �110�

and we further denote

�m,n+1 = ��m + 1�k1 + nk2�hdm+1,n = ��m − 1�k1 + nk2�hdm−1,n,

�m,n+1 = �mk1 + �n + 1�k2�hdm,n+1 = �mk1 + �n − 1�k2�hdm,n−1,
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�m+1,n−1 = ��m + 1�k1 + �n − 1�k2�hdm+1,n−1

= ��m − 1�k1 + �n + 1�k2�hdm−1,n+1.

Equation �109� can then be written as

mh2�2A = 2�C3�1 − cos�k1 − k2�he−�m+1,n−1
�

+ C2�1 − cos k2he−�m,n+1
�

+ C1�1 − cos k1he−�m+1,n
��A . �111�

Now the eigenvalue problem becomes

�2A = D̃A �112�

with

D̃ =
2C

mh2�D̃11 D̃12

D̃21 D̃22

� , �113�

where

D̃11 =
3

2
− cos k1h exp�− �m+1,n� −

1

4
cos k2h exp�− �m,n+1�

−
1

4
cos�k1 − k2�h exp�− �m+1,n−1� , �114�

D̃12 =
�3

4
�cos�k1 − k2�h exp�− �m+1,n−1�

− cos k2h exp�− �m,n+1�� , �115�

D̃21 = C̃12, �116�

D̃22 =
3

2
−

3

4
cos k2h exp�− �m,n+1�

−
3

4
cos�k1 − k2�h exp�− �m+1,n−1� . �117�

The solutions then have a similar form to the one in original
lattice:

�2 =
C

mh2 �D̃11 + D̃22 ± ��D̃11 − D̃22�2 + 4D̃12
2 � . �118�

To explore the physical implication of the PMMS, we
examine the dispersion relation pairs: Eq. �54� vs Eq. �60�,
Eq. �72� vs Eq. �82�, and Eq. �99� vs Eq. �112�. We observe
that all three pairs of eigenvalue problems have the same
structure, except that in the PML zone the dynamic stiffness
matrices have spatial decaying terms. This suggests that the
discrete absorbing PML zone is a direct consequence of the
fact that propagation dispersive wave solutions are mapped
into the similar dispersive wave solutions with exponentially
decaying coefficients, which may be a general characteriza-
tion of lattice PML.

The wave vector k can be defined in the reciprocal lattice:

k = k1b1 + k2b2, �119�

where bi satisfy

bi · a j = h�ij . �120�

It is ready to obtain that

b1 = e1 −
1
�3

e2, b2 =
2
�3

e2. �121�

Figure 4 shows the dispersion surfaces in the standard lattice
and the stretched lattice. The two surfaces in each plot are on
top of each other. The wave vector used is k=k1b1+k2b2,
with k1 ,k2� �0,2��. Note that although there are two
branches in the hexagonal lattice, there is no band gap.

Remark 4. After examining the PML dispersive relations
in several different lattices, we would like to make the fol-
lowing tentative remarks: �i� The band structure of the lattice
changes in the PML zone; �ii� the range of admissible fre-
quencies reduces in the PML region; and �iii� By choosing
the suitable damping function, most of the admissible fre-
quencies can be kept in the PML region.

As for those waves with frequencies inadmissible to the
PML region, will they be completely reflected back? Or will
they be transformed to other forms of waves? Currently we
do not have the answer yet. We have performed numerical

FIG. 4. �Color online� The dispersion surfaces of a hexagonal
lattice: �a� branch 1, and �b� branch 2.
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experiments, in which we let a harmonic wave with an inad-
missible frequency passing into the PML region. We found
that the wave is being suppressed, and there is not much
reflection. So we are inclined to the second scenario that the
wave may be converted into another wave. One possible ex-
planation is that the wave is transformed into one with com-
plex wave vectors. However, this hypothesis needs to be
verified.

C. Reflection coefficient of a 1D simple lattice

Up to now, we have not discussed much about the damp-
ing function d, except on how to choose d near the interface.
In this section, we shall examine how d will affect the re-
flection coefficient.

To make it simple, we use the 1D simple lattice as an
example. We consider two 1D simple lattices L1 and L2. The
former may be viewed as the regular lattice and the latter as
the PML lattice. They are jointed at a point P, where the
mass is imagined to be split into halves. The left half belongs
to L1 and the right half belongs to L2.

We now examine the characteristic impedance. For a lat-
tice extending from �−� ,nh�, the impedance Z is defined as

fn,n+1 = − Zu̇n, �122�

where fn,n+1 is the force needed to be on particle n for a
harmonic wave to travel without being reflected back. It is
found that

Z =
C

h

sin 2�kh

�
. �123�

In the case of a stretched lattice, the result is more compli-
cated. It is more natural to think of the stretched lattice as
extending from �0,��. In this case, the impedance Z should
be defined as

f−1,0 = Zu̇0. �124�

We consider the equation of motion for the particle at inter-
face, i.e., the 0th particle:

C

h2 �u1 − u0� + Zu̇0 =
1

2
mu0. �125�

Without loss of generality, we assume the general solution
for un as

un = Aei��t−2�knh�e−2�knhdn. �126�

Note that d0=0. So,

u0 = Aei�t, �127�

u1 = Aei��t−2�ah�e−2�khd1. �128�

We then have the following equation of motion:

C

h2 �u1 − u0� + Zu̇0 =
1

2
mu0. �129�

Substitute u0 and u1 into the above equation, and we have the
following result:

Z = Zr + iZi, �130�

Zr =
C

h2

sin 2�khe−2�khd1

�
, �131�

Zi =
C

h2�
	cos 2�khe−2�khd1 − 1 +

1

2
m�2
 . �132�

Note that when d1=0, we recover the result for the regular
lattice.

The energy flow through the lattice is then defined by

Q =
1

2
Re�Z��u̇n�2. �133�

Now consider a wave traveling to the interface. We denote
the incident wave I, transmitted wave T, and reflected wave
R. Assume the initial position for point P is

Xp = ph , �134�

where p is an integer. Then the displacements are assumed to
be

uI = AIe
i��t−2�kph�, �135�

uT = ATei��t−2�kph�e−2�kphdp, �136�

uR = ARei��t+2�kph�. �137�

But we should have dp=0, since P is the beginning of the
PML zone. So we write the equations again:

uI = AIe
i��t−2�kph�, �138�

uT = ATei��t−2�kph�, �139�

uR = ARei��t+2�kph�. �140�

The conservation of energy requires

QI = QT + QR. �141�

The condition for two halves of the particle P to move to-
gether is

AT = AI + AR �142�

and the reflection coefficient R is defined as

R =
AR

AI
. �143�

It is not difficult to obtain the following relation:

R =
Z1 − Z2

Z1 + Z2
. �144�

From the previous discussion, we have

Z1 =
C

h

sin 2�kh

�
, �145�
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Z2 =
C

h2

sin 2�khe−2�khd1

�
. �146�

Then

R =
1 − e−2�khd1

1 + e−2�khd1
. �147�

It is of interest to study R as a function of k. By doing so, one
can show how well waves with a specific wave number are
transmitted into the PML zone. Reflection coefficients for
three different concurrent methods are plotted versus reduced
angular frequencies in Fig. 5. For PMMS, the damping co-
efficient d is chosen to be 0.1 in this example. We observe
that the reflection coefficient is almost zero at the low fre-
quency �long wavelength� limit, and it increases as the fre-
quency increases. It stays lower than 0.2 at the end of the
first Brillouin zone. For comparison purpose, we also
showed in Fig. 5 the result obtained from the concurrent

method with a variational boundary condition �VBC� devel-
oped by Li and E,3 and the result obtained from the method
with an atomic-elastic boundary developed by Deymier and
Vasseur.12 One may find that the PML has an obvious advan-
tage at the high-frequency end as both other BCs’ reflection
coefficient approach 1. For the lower frequencies, the PML
still does a good job. Its reflection coefficient is lower than
that of the atomic-elastic boundary and higher than that of
the VBC. Moreover, compared to the VBC, the PML has a
lower computational cost, since the VBC is nonlocal in time.

We also want to study the effect of the damping function
d. A plot of R against d1 is shown in Fig. 6. We observe that
R approaches 1 as d increases. So although a larger d1 will
make the PML solution decay faster �see Eq. �126��, it will
also give a bigger reflection. Therefore we have to judi-
ciously choose damping function d close to the interface in
order to achieve optimal results. It is worth mentioning that
by recalling Eq. �63�,

1

2
m�2 =

C

h2 �1 − cos 2�khe−2�khd1� , �148�

and comparing it with Eq. �132� we obtain Zi=0. This agrees
with the result of standard lattices, which makes sense.

V. APPLICATIONS

The implementation of the revised PMMS is almost the
same as the one described in the original paper.9 For the case
with harmonic approximation, they are exactly the same. As
expected, the computational results are only slightly affected.
So in this section, we shall present only one example from
the original paper and devote the remaining part to multiple
dimensional problems.

We re-calculated the 1D wave propagation example in the
original paper. A 1D lattice is considered. The interatomic
potential is chosen to be the Lennard-Jones potential:

��r� = 4	�	


r

12

− 	


r

6� �149�

with 
=	=1. We prescribe an initial displacement:

u0�x� =
A

A − uc
�Ae−�x/
�2

− uc��1 + b cos	2�x

H

� ,

�150�

where

uc = Ae−�rc/
�2
. �151�

The parameters are chosen as A=0.15, 
=5.0, H=
 /4, rc
=5
, and b=0.1. The equilibrium bond distance is h=21/6.
We simulate this problem with 181 atoms and 60 FE ele-
ments. The coarse scale time step is 0.1 and the fine scale
time step is 0.002.

Figure 7 shows the displacement at t=20. Results calcu-
lated by both PMMS and MD �600 atoms� are shown. We
can see only the low-frequency part of the wave passing into
the coarse scale region. And there are very small reflections.

The second example is the 2D version of the previous 1D
example. The initial condition is axis-symmetric and the ra-

FIG. 5. The reflection coefficient vs reduced angular
frequency.

FIG. 6. �Color online� The reflection coefficient vs dn.
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dial component has the same expression as Eq. �150�. The
lattice is of hexagonal type. The dimension of the domain is
300h in width and 150�3h in height. The fine scale region is
chosen to be 50h in width and the PML region has five
layers. We simulate the problem with 61�61 atoms and
1800 FE elements. Figure 8 shows the domain, the MD re-
gion, the PML region, and the initial condition.

Figure 9 shows the displacement profile at the 210th
coarse scale time step. Here we compare the PMMS results
with the one without the PML region. We can see clearly
from the figure that reflection occurs at the interface without
the PML region. On the other hand, if we put a PML zone in,
the reflection will be significantly reduced.

FIG. 7. The 1D wave problem: displacement at t=20: �a�
PMMS solution, �b� the exact MD solution, and �c� a multiscale
solution without PML.

FIG. 8. �Color online� The 2D wave problem: �a� the problem
domain, and �b� the problem’s initial condition.

FIG. 9. �Color� The displacement profile of the 2D wave prob-
lem: �a� with PML, and �b� without PML.

FIG. 10. �Color online� The domain of the screw dislocation
simulation.
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In the last example, we are applying the proposed PMMS
method to simulate a screw dislocation passing through re-
gions with different scales, i.e., spatial resolution. First the
screw dislocation enters a fine scale region modeled by MD
from a coarse scale region modeled by quasicontinuum FE,
then it travels through the fine scale region, and it re-enters
the coarse scale region.

The 2D molecular-dynamics model used is based on Refs.
19 and 20. The domain is two dimensional but only the out-
of-plane displacement is considered. The underlying lattice
structure is cubic. The neighboring atoms are assumed to
connected by springs with z-direction stiffness. The disloca-
tion is initiated in the coarse scale region. It propagates into
the fine scale region and then re-enters the coarse scale re-
gion. The MD equation of motion in the fine scale region can
be written as19

maẅm,n = A�wm+1,n + wm−1,n�

+ B�wm,n+1 + wm,n−1� − 2�A + B�wm+n

− Bb��m,k+1/2�n,1/2 + �m,k+1/2�n,−1/2� , �152�

where A and B are force constants between an atom and his
x-direction neighbors and y-direction neighbors, respectively.
b is the length of Burger’s vector, and w�m ,n� is the out-of-
plane direction displacement of atom �m ,n�, which has an
in-plane position of

X�m,n� = mhe1 + nhe2, m,n = . . . ,−
3

2
,−

1

2
,
1

2
,
3

2
, . . . .

�153�

Here h is the equilibrium distance. The dislocation is as-
sumed to be in the n=0 plane.

The dimension of the whole domain is 150�200. The
fine scale region has a dimension of 70�70 and the PML
region has ten layers of atoms. The positions of the three

FIG. 11. �Color� The displacement profile of the screw disloca-
tion problem �with PMMS�: �a� dislocation starts from the coarse
region, �b� dislocation enters the fine region, and �c� dislocation
enters the coarse region again. FIG. 12. �Color� The displacement profile of the screw disloca-

tion problem �without PMMS�: �a� dislocation starts from the
coarse region, �b� dislocation enters the fine region, and �c� dislo-
cation enters the coarse region again.
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different regions are illustrated in Fig. 10. The initial equi-
librium distances are 1. We simulated the problem with 2556
atoms and 650 FE elements.

When a dislocation propagating, opposite cohesive forces
due to dislocation gliding are applied to the pair of atoms
located next to the dislocation plane �n= ± 1

2
�. A so-called

“quarter jump” rule 21 is adopted as the dislocation propaga-
tion criterion, i.e., when the displacement of the atom ahead
of the dislocation reaches to b /4, we consider that the dislo-
cation has passed this atom already and apply the dislocation
force to the next pair of atoms lying on the propagation
direction. To simulate a screw dislocation moving in a coarse
scale region modeled by the quasicontinuum method,22 we
exploit a procedure called “cohesive quasicontinuum
method,” which is the combination of the cohesive FEM
technique23,24 and the quasicontinuum method. A detailed
discussion of that method will be reported in a separated
paper.25

Figures 11�a�–11�c� show the propagating dislocation at
different stages by using PMMS. For comparison, Figs.
12�a�–12�c� show the simulation results without the PML
region. It is found that although the dislocation can pass
through the fine scale region successfully, it causes signifi-
cant reflection when re-entering the coarse scale region.

VI. CONCLUSIONS

In this paper, we present the latest developments of
PMMS. In particular, we have found that �i� the lattice PML
can be constructed by stretching the lattice constant in the

Fourier domain; �ii� the physical meaning of such lattice con-
stant stretching operation is equivalent to replacing the origi-
nal lattice stiffness with certain complex lattice stiffness; �iii�
the form of the dispersive relation in the PML zone is the
same of that in the original lattice, expect that the stretched
dynamic stiffness matrix contains spatial decaying terms, and
consequently, the lattice PML becomes an absorbing bound-
ary layer; �iv� the PML zone may serve as a low-pass filter,
because the bandwidth of admissible frequencies is usually
reduced in the PML zone; �v� the reflection coefficient at the
interface can be controlled by choosing the damping func-
tion, and �vi� we have demonstrated that by using the PMMS
technique we easily pass a defect �dislocation in the ex-
ample� from a scale to another scale.

The fact of bandwidth change in the PML zone leaves a
door open for other possible approaches to construct per-
fectly matched layers. For example, instead of using com-
plex coordinate stretching, we can try to construct a different
physical lattice in the PML region with gradual impedance
change, or, using some techniques suggested in Ref. 18, con-
struct a special microstructure for PML zone. This may also
suppress the wave solution in the PML zone without causing
significant phonon reflection. This topic will be a future re-
search subject. Finally, we would like to mention that a finite
temperature �thermalized� version of PMMS is currently be-
ing implemented, which will be reported in a separate paper.
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