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Higher electrical resistivity is observed in metals when dimensions approach the mean free path of the
electrons. The effects of electron scattering at surfaces and at grain boundaries are then becoming substantial.
This issue has been extensively studied on thin films but rarely on wires, where both small dimensions �width
and height� influence the resistivity increase. In this study, copper wires having variable width and height down
to 100 nm are investigated. An alternative approach is suggested in which the resistivity of such wires at
different temperatures is compared to that of films having thickness that is equal to the height of the wires. The
main outcome is a reliable model that overcomes the well-known difficulty of separating the contribution of
surfaces to the resistivity from that of grain boundaries. It is shown that when both width and height of the wire
are larger than one third of the mean free path, its resistivity exhibits a filmlike behavior with a separate
contribution to the resistivity of each small dimension. The scattering of electrons at the surfaces of the
investigated wires was best described by a zero specularity parameter, indicating the importance of this effect
for the resistivity increase in small wires.
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I. INTRODUCTION

Materials with nanometric dimensions exhibit higher elec-
trical resistivity due to additional scattering centers for the
conduction electrons, mainly from surfaces and grain bound-
aries. Higher resistivity is observed when at least one of the
material’s dimensions approaches the mean free path of the
electrons. The collisions of the electrons with surfaces and
grain boundaries are then becoming substantial in compari-
son to their collisions with other lattice imperfections. This
issue has been a topic for extensive studies in the last several
decades. Most noteworthy are the pioneering works of
Fuchs,1 who attributed the resistivity increase to the diffuse
scattering of the electrons at the surfaces, and of Mayadas
and Shatzkes2 who realized the importance of electron scat-
terings at the grain boundaries. Each of these theories sug-
gested a phenomenological parameter with which the resis-
tivity increase can be quantified: the specularity parameter of
the surfaces �p� in the first case and the grain boundary re-
flection coefficient �R� in the second. These parameters en-
able the testing of these theories against experimental data
and the verification of their validity. Extensive work has been
made in this regard on thin films with variable thickness, as,
for example, in some recent studies on copper,3–5 a material
which draws special interest as an interconnecting metal in
the continuously shrinking dimensions of integrated circuits.

When wires �and not films� are concerned, a different pic-
ture is revealed. Only very little experimental data is avail-
able, lacking especially in the highly interesting case of
wires with two small dimensions. For rectangular wires, it
means that both width and height are small in comparison to
the mean free path of the electrons. The surface-induced re-
sistivity is then no longer filmlike, but rather exhibits a more
complicated behavior on which this study is focused. The
few previous attempts to tackle this problem analyzed wires
with constant height and only variable width6,7 or such that
were measured only at room temperature.8 We use sets of

wires when both width and height are varying. Furthermore,
the resistivity measurements are carried out at both room and
liquid nitrogen temperatures. This enables us to analyze an
alternative approach in which the resistivity of each wire
�with known width and height� is compared to that of a film
with identical height �thickness�. The main outcome is a
more reliable model that succeeds in separating the contribu-
tions to the resistivity of surfaces versus grain boundaries.
This is an essential step towards better understanding of each
effect. We chose copper wires as our model system due to
their technological importance as interconnects in integrated
circuits.

II. EXPERIMENTAL

Copper wires of rectangular profile were embedded inside
SiO2 layers grown on a silicon substrate. Different SiO2
thicknesses were chosen to control the depth �height� of the
trenches that were later etched inside the SiO2 layer. For
each height, the same lithography mask was used to create
trenches of different widths, together with a Van der Pauw
structure for a film having the same height as the trenches.
The resulting structures were lined with a thin tantalum layer
and were then electrochemically filled with copper. After re-
moval of the excess copper by chemical mechanical polish-
ing, the wires �and films� were covered with a silicon oxyni-
tride passivation layer. In this way, an array of wires with
different dimensions was obtained, having width in the range
of 100 to 200 nm, height in the range of 150 to 300 nm, and
a constant length of 100 �m. Each set of wires with variable
width was accompanied by a corresponding film having the
same height �thickness�.

The resulting structures were imaged using a high-
resolution scanning electron microscope. Figure 1 shows a
top view of the Van der Pauw structure containing the film
and two of the neighboring wires. The surrounding pads used
for the resistivity measurements can also be seen. Figure 2
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shows a series of cross-sectional images taken for one set of
wires having a constant height �156 nm in this case� and a
variable width. From such images the dimensions of copper
in each wire can be determined. Three wires are shown for
each width to demonstrate the good uniformity of the pro-
cess, resulting in dimension and resistivity spans of less than
5%. The resistance of the wires was measured in a standard
four-terminal configuration using currents of up to 10 �A to

avoid heating. Resistivity was calculated from the resistance
and the measured dimensions of the copper, neglecting the
tantalum since its resistivity is at least one order of magni-
tude higher than that of the copper. After measurements at
room temperature, all structures were dipped in liquid nitro-
gen and remeasured for their resistivity at this temperature.

One set of wires was prepared in a different way to further
reduce its dimensions. After etching of the trenches, they
were first lined with a SiO2 layer and only then the regular
process of tantalum and copper filling was continued.
Smaller wires were obtained this way, about 100 nm high
and down to 80 nm wide, as shown in Fig. 3. The original
trenches before the addition of the extra SiO2 layer can be
clearly seen.

III. MODELING

A. Surface-induced resistivity of a rectangular wire

Fuchs1 developed the following expression for the resis-
tivity of a thin film �� f� that is higher than that of a bulk
material ��B� due to the diffuse scattering of electrons at the
surfaces,

�B

� f
= 1 −

3�

2h
�1 − p��

0

�/2

cos �

�sin3 �

1 − exp�−
h

� cos �
�

1 − p exp�−
h

� cos �
�d� , �1�

where h is the film thickness, � is the mean free path of the
electrons in a bulk material, and p is the specularity param-
eter, representing the fraction of specular �versus diffuse�
scatterings at the surfaces.

A similar approach can be used to analyze the resistivity
of a wire due to the diffuse scatterings at its walls, as imple-
mented by MacDonald and Sarginson9 for square wires and
by Dingle10 for circular ones. It is possible in principle to
extend this approach for rectangular wires, but this is ex-
pected to result in complicated expressions that may not be
simplified for calculation. Chambers11 developed an alterna-
tive method, based on kinetic theory arguments, with which
the resistivity of a wire with an arbitrary shape can be cal-
culated. Authors who implemented this approach for rectan-

FIG. 1. Scanning electron microscope top view image of the
Van der Pauw structure containing the film and two of the neigh-
boring wires. The surrounding pads were used for the resistivity
measurements in a standard four terminal configuration.

FIG. 2. Scanning electron microscope cross-section images of
one set of wires having constant height �156 nm in this case� and
variable width. Three copper wires are shown for each width, sur-
rounded by the peripheral tantalum layer. Nonuniformity in the cop-
per appearance is due to the plastic deformation caused by the cut
made for preparing the cross-section samples.

FIG. 3. Scanning electron microscope cross-section images of a
set of wires where its trenches were lined with a SiO2 layer before
tantalum and copper filling. Smaller wires were thus obtained,
about 100 nm in height and down to 80 nm in width. The original
trenches before deposition of the extra SiO2 layer can also be seen.
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gular wires6,7 have reached different results that we find in-
correct in one case6 and inaccurate �probably due to typo-
graphical error� in the other.7 We therefore elaborate on de-
riving our expression in the Appendix.

For the case of fully diffuse scattering at the wire’s walls
�p=0�, we obtained the following expression for the resistiv-
ity ��w�:

�B

�w
= 1 −

3

2�hw
�IDA + IAB� , �2�

where IDA and IAB are the following integrals:
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We find the result in Ref. 6 incorrect because both the
function to integrate and the � limits of integration must
depend on the x and y coordinates �numerical calculations
also yielded different results�. In comparison to Ref. 7, our
cos2 � is replaced there by cos2 �, probably due to a typo-
graphical error.

The above expressions contain fourth-order integrals that
are relatively difficult for numerical calculations. We have
managed to simplify and reduce them to first- and second-
order integrals that are much easier to calculate �using dif-
ferent mathematical manipulations that involved Kaplan’s
generalization for the Leibniz integral rule, integrations by
parts and changes in the order of integration�. The following
result that is mathematically identical to the former one is
obtained:
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When either h or w approaches infinity, the result con-
verges to that of Fuchs for thin films. The resistivity of the
wire is affected not only by the separate contributions of
each small dimension �filmlike behavior� but also by the in-
teraction between them. Using these expressions, the resis-
tivity of different wires was calculated for the case of fully
diffuse scattering �p=0� as shown in Fig. 4�a�. Dimensions

FIG. 4. Calculated resistivities of rectangular wires taking into
account the effect of electron scattering at the wire’s walls: �a� fully
diffuse scattering and �b� partially diffuse scattering with specular-
ity parameter of p=0.5. Dimensions are shown with respect to the
mean free path of the electrons for continuous range of widths
�0.1	w /�	10� and several representing heights �h /�=0.1,
0.3,1 ,10�. The effect of two small dimensions is demonstrated.
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are shown with respect to the mean free path of the electrons,
for a continuous range of widths �0.1	w /�	10� and sev-
eral representative heights �h /�=0.1,0.3,1 ,10�. The effect
of two small dimensions can be very strong, as demon-
strated, for example, in the case of the smallest calculated
wire with normalized height and width of h /�=0.1 and
w /�=0.1 respectively. A resistivity value 10.4 times larger
than the bulk value is then obtained, in comparison to only
4.8 times larger for a film with the same thickness.

To describe real systems, a nonzero specularity parameter
�p�0� should be considered. As shown by Chambers,11 the
resistivity in this case can be expressed in terms of that with
zero specularity parameter by the following series expansion:

� �B

�w
�

p,�
= �1 − p�2


n=1




npn−1� �B

�w
�

0,�/n
, �9�

where ��B /�w�p,� is the bulk to wire resistivity ratio in the
case of specularity parameter p and mean free path � and
��B /�w�0,�/n is this ratio in the case of zero specularity pa-
rameter and mean free path � /n. The higher p is, the lower
the resistivity, as demonstrated in Fig. 4�b� for the same
wires calculated in Fig. 4�a�, but with a specularity parameter
of p=0.5.

B. Grain boundary-induced resistivity of a rectangular wire

The effect of grain boundaries on the resistivity of thin
films is commonly explained by the theory of Mayadas and
Shatzkes.2 According to this theory, the resistivity of a thin
film �� f� that is higher than that of a bulk material ��B� only
due to the scattering of electrons at the grain boundaries is
given by

�B

� f
= 1 −

3

2
� + 3�2 − 3�3 ln�1 +

1

a
� , �10�

where � is a parameter defined by

� =
�

D

R

1 − R
, �11�

� is the mean free path of the electrons, D is the mean grain
size, and R is the grain boundary reflection coefficient, rep-
resenting the fraction of electrons reflected backward at scat-
tering from each grain boundary.

Unlike the case of surface-induced resistivity, here it is
tempting to use the film model also for wires, since only
grain boundaries that are perpendicular to the direction of the
current are being considered anyway. Such an approach is
valid provided the wires have columnar grains structure �as
in films�, or at least semicolumnar, with grains not necessar-
ily extending from bottom to top, but having boundaries per-
pendicular to the main axis of the wire. Experimental evi-
dence that this is the case in our study is given in Fig. 5. All
grain boundaries clearly fit this description, justifying the use
of the film model also for wires. A difference between films
and wires may still exist in the average size of the grains that
may be limited in wires not only by their height but also by
their width.

C. The combined resistivity of a rectangular wire

The influence of both surfaces and grain boundaries needs
to be considered when we want to analyze real wires. As-
suming each mechanism can be described by an independent
relaxation time, Matthiessen’s rule can be applied and the
contributions to the resistivity can be added. Taking into ac-
count the contributions of background �bulk� scattering ��B�,
surface scattering ��s

*�, and grain boundary scattering ��g
*�,

the total resistivity ��� can be expressed as

� = �B + �s
* + �g

*. �12�

It is more convenient to replace the excess resistivity due
to each size-dependent effect by the total resistivity resulting
from this effect. Denoting by �s, the resistivity of a film or
wire taking into account only the surface effect ��s=�B

+�s
*�, and by �g its resistivity taking into account only the

grain boundaries effect ��g=�B+�g
*�, the total resistivity can

be written as

� = �g + �s − �B. �13�

The advantage of this form is that expressions for �s and
�g were already given in other notations: �s is the same as � f
in Eq. �1� for films or as �w in Eqs. �5� and �9� for wires. �g
is identical to � f in Eq. �10� for films, which holds also for
wires. Although Matthiessen’s rule is not valid for this com-
bined case of scattering mechanisms �background, surfaces,
and grain boundaries�, calculations show that the above ex-
pression gives a very good approximation in comparison to
the accurate treatment made by Mayadas and Shatzkes for
thin films. We will therefore use this approximation for both
films and wires.

In principle, it is possible to fit experimental results to Eq.
�13�, with a minimal number of two free parameters that are
needed �p for �s and R for �g�, provided the dimensions, the
mean grain size, and the bulk properties �� ,�B� of the mate-
rial are known. The problem with this approach is that dif-
ferent sets of p and R values, representing different contri-
butions to the resistivity of surfaces and grain boundaries,
can be fitted equally well, as we demonstrated in a previous
work for thin films.12 The same problem exists also for wires
as shown in Fig. 6 using the results of Steinhogl et al.7 for
copper wires 230 nm in height and 40–800 nm in width. The
authors best fitted their results to the values of p=0.6 and
R=0.50, assuming a certain mean grain size for each wire.
As can be seen in the figure, extreme values of the specular-
ity parameter, from fully diffuse surface scattering �p=0� to

FIG. 5. Top view of a scanning electron microscope image of a
wire with approximately a square profile of 150 nm. Grain structure
seems to be columnar with grain boundaries that are clearly perpen-
dicular to the length of the wire �the direction of current�.
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no influence of surface scattering at all �p=1�, can be fitted
equally well. In a more recent work,8 the authors tried to set
some limits on the range of these parameters, but a distinct
separation between them remained a severe problem. With-
out such a distinction, there is no reliable way to test the
theory and extract meaningful parameters. In particular, it is
impossible to study the surface effect by itself, and analyze
the difference in this effect between films and wires.

D. A new approach to study the resistivity of rectangular wires

To deal with the above-mentioned problem, we suggest an
approach where the resistivity of the wire at different tem-
peratures is compared to that of a film that its thickness is
equal to the height of the wire. Since Eq. �13� is valid for
both films and wires, we can write

� f = ��g� f + ��s� f − �B, �14�

�w = ��g�w + ��s�w − �B. �15�

The subscripts f and w denote whether a film or a wire is
being considered. Subtracting one equation from the other
yields

�w − � f = ���g�w − ��g� f� + ���s�w − ��s� f� . �16�

The difference between the resistivity of the wire and that
of the film can be expressed as the sum of the differences in
their grain boundaries and in their surface-induced resistivi-
ties. We will choose such a film that its thickness is equal to
the height of the wire. If only the vertical dimension deter-
mines the mean size of the grains, then both the film and the
wire are expected to have the same component of grain
boundaries induced resistivity. This is certainly a good as-
sumption for wide wires, where the process of grain growth
is not limited by their width and a columnar grain structure is

developed with grains extending from the bottom to the top
surface. As explained by Thompson,13 the mean grain size in
this case is determined by the vertical dimension, so both
film and wire would have the same value and hence the same
grain boundaries induced resistivity. In such a case the dif-
ference ���g�w− ��g� f� can be neglected and we can write

�w − � f = ��s�w − ��s� f . �17�

Our experimental results show that neglecting the differ-
ence ���g�w− ��g� f� is justified in our case also for narrow
wires with widths that are smaller than the height, provided
both dimensions are larger than 100 nm �see Sec. IV or fur-
ther details�. Equation �17� is therefore valid for all our
wires. It means that the difference between the resistivity of
the wire and that of the chosen film �with identical height� is
equal to the difference in their surface-induced resistivity,
which is just the effect we wanted to isolate. At room tem-
perature, this difference is small because the dimensions are
still large in comparison with the mean free path of the elec-
trons �about 40 nm for copper�. But lowering the tempera-
ture increases the mean free path, and should therefore em-
phasize the relative importance of the surface effect. The
difference between the resistivities of the wire and the film
could then be observed. We chose to work at liquid nitrogen
temperature �77 K� when the mean free path of the copper
electrons �about 300 nm� is much larger than the wire’s di-
mensions.

Equation �17� can also be written as

�w − � f = �B� ��s�w

�B
−

��s� f

�B
	 . �18�

On the left-hand side, we have the difference between the
resistivity of the wire and that of the film, which is measured
in our experiment. On the right-hand side, the surface-
induced resistivities are normalized with respect to the bulk
resistivity in order to correspond with the format of the the-
oretical models. The appropriate theoretical expressions were
already given in Eq. �1� for films and in Eqs. �5� and �9� for
wires. Knowing the dimensions and the bulk values, the
right-hand side of the equation depends only on the specu-
larity parameter. If good fitting to experiment is obtained,
this value can be reliably extracted from the results, over-
coming the problem of the two parameters fitting. More im-
portant than that, good fitting would confirm the theory of
surface-induced resistivity for wires with two small dimen-
sions, unlike the case in previous studies where this effect
was masked and mixed with that of grain boundaries.

IV. RESULTS AND DISCUSSION

The experimental data for the resistivity of the films are
shown in Fig. 7 both at room temperature and at liquid ni-
trogen temperature. As expected, an increase in resistivity is
observed with the decrease in film thickness. For all films,
almost a constant difference between the resistivities in the
two temperatures was measured. This is in agreement with
our theoretical prediction as for the dependence of resistivity
on temperature for thin films,14 predicting approximately a

FIG. 6. Demonstrating the difficulty in extracting meaningful
parameters of surface scattering versus grain boundary scattering
from experimental results. Theoretical curves were fitted to the re-
sults of Steinhogl et al.7 for the resistivity of copper wires 230 nm
high and 40–800 nm wide. As can be seen, extreme values of
specularity parameter, ranging from fully diffuse surface scattering
�p=0� to no influence of surface scattering at all �p=1�, can be
fitted equally well �parameters in the first row are the original au-
thors’ choice�.
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constant slope in these conditions, regardless of the film
thickness.

Room temperature measurements of wires with width
down to 100 nm showed very similar resistivity values to
films with the same vertical dimension. At this temperature,
the resistivity increase is dominated by the grain boundary
effect with only a small contribution from the surface effect.
This result supports our assumption that the difference in the
grain boundary effect between the wire and its corresponding
film can be neglected for this range of dimensions. As ex-
plained by Thompson,13 it is the vertical dimension that de-
termines the mean grain size in thin films, resulting from
energetic and kinetic considerations. Similar arguments are
applicable also for wires, provided columnar grain structure
is reached with no growth process that is limited by the
wire’s sidewalls. Experimental evidence that this is the case
in our study was given in Fig. 5. The reason for such struc-
ture is probably related to the grain growth during the an-
nealing process that takes place before the excess of copper
is removed from top of the trenches. The copper height is not
limited then by the trench, enabling a columnar grain struc-
ture to be formed, even when the wire’s width is smaller than
its height, but still larger than 100 nm. In such a case, no
difference is expected between the multidirectional mean
grain size in the film and unidirectional mean grain size
along the wire, which explains our resistivity results. It
should be noted that Steinhogl et al.8 measured a difference
of up to 20% between the room temperature resistivity of
wires 100 to 800 nm wide �and larger difference for nar-
rower wires�. They attributed part of this difference to the
grain boundary effect, supporting their claim by showing a
decrease in the mean grain size with decreasing width. The
difference between their results and ours may be due to their
lower annealing temperature that limited the extent of grain
growth �175 °C in their case in comparison to 250 °C in
ours�.

The resistivity of the wires at liquid nitrogen temperature
is shown in Fig. 8�a�. Each group of wires with a constant
height but a variable width is connected with a dotted line.
As can be seen, both dimensions affect the resistivity of the
wire, which is larger the narrower and the shallower the

trench is. As previously demonstrated, separating the contri-
bution of the grain boundaries from that of the surfaces is
impossible from these results. In Fig. 8�b�, we subtracted
from the resistivity of each wire the resistivity of the film
with the same vertical dimension �each group of wires has
one corresponding film, the resistivity of which was shown
in Fig. 7�. The result reflects the net surface contribution of
the sidewalls to the resistivity of the wires. Surprisingly, all
results seem to fall on the same line, implying a separate
contribution of each small dimension �filmlike behavior�
with no substantial interaction between them. To get a better
understanding of this result, the theoretical resistivity of the
wire was compared to the expected resistivity in the absence
of any interaction between the two dimensions. In this case,
the resistivity of the wire can be approximated using Mat-
thiessen’s rule and expressed as

�w = � f�h� + � f�w� − �B, �19�

where � f�t� is the resistivity of a film with thickness t. We will
check this approximation only for surface-induced resistivity
since the incorporation of the grain boundary effect would
only add a constant value. For this case,

FIG. 7. Experimental data for the resistivity of the films that
were used for comparison with the wires. Results are shown for
both room and liquid nitrogen temperatures. As expected, an in-
crease in resistivity is observed with decreasing film thickness.

FIG. 8. The resistivity of wires with variable width and height in
liquid nitrogen temperature: �a� as measured; and �b� when the re-
sistivity of films with identical vertical dimension is subtracted.
Each group of wires having constant height but variable width is
connected with a dotted line. The effect of each small dimension
and the net contribution of the sidewalls to the resistivity of the
wires can be seen.
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��s�w = ��s� f�h� + ��s� f�w� − �B. �20�

Figure 9 shows a comparison between the accurate solu-
tion and the above approximation. The case of fully diffused
scattering �p=0� was chosen to estimate the maximal pos-
sible deviation. The accurate calculation was identical to the
one presented in Fig. 4�a�. The approximation in Eq. �20�
was calculated using Eq. �1� to express the surface-induced
resistivity of the films. As can be seen, the approximation
�shown in gray� is good as long as dimensions are not too
small in comparison to the mean free path of the electrons. It
is valid within 5% accuracy as long as both width and height
are larger than one third of the mean free path. All our wires
are within this range at liquid nitrogen temperature when the
mean free path for copper is about 300 nm, which explains
the obtained result.

Substituting this approximation into Eq. �18� further sim-
plifies it to

�w − � f = �B� ��s� f�w�

�B
− 1	 . �21�

Comparison to experiment can now be made with only
the specularity parameter to be fitted, provided the bulk re-
sistivity and the mean free path are known at the measured
temperature. In fact, since the product of the bulk resistivity
and the mean free path is constant for all temperatures �B�
=C �free electron approximation�, the last equation can be
written as

�w − � f =
C

�
� ��s� f�w�

�B
− 1	 . �22�

The advantage of this form is that the expression on the
right-hand side depends very weakly on the mean free path,
so in addition to the specularity parameter only the constant
C has to be determined for the fitting process. Taking the
room temperature values of �B=1.67 �� cm and �=39 nm
for pure copper results in C=6.51�10−16 �m2. With this

value the fit to experimental results is shown in Fig. 10�a�.
The experimental data from the special set of wires shown in
Fig. 3 was also included this time �height of this set was
96 nm and the measured resistivity of its film was
3.17 �� cm at room temperature and 1.13 �� cm at liquid
nitrogen�. The very weak dependence on the mean free path
value is demonstrated by choosing two extreme values of
200 and 330 nm for it at liquid nitrogen temperature �the last
is the tabulated value used in Ref. 7�. As can be seen, the fit
to experimental results is closest for a zero specularity pa-
rameter, but the predicted values are still low in comparison
to the measured ones. We attribute this difference to the bulk
resistivity, which is higher in our case than the literature
value for macroscopic copper conductors. This is due to the
process of electrochemical deposition that incorporates im-
purities and other defects that increase the background scat-
tering within the grains. Higher bulk resistivities were also
obtained by Steinhogl et al.7,8

We can estimate the bulk resistivity from the films mea-
surements shown in Fig. 7. It is certainly less than 2.52
�� cm which is the resistivity of thickest film �274 nm�. An
asymptotic value of �B=2.30 �� cm seems as a good ap-

FIG. 9. Comparison between accurate solution �black� and ap-
proximation �gray� for the resistivity of a wire with variable width
and height. The case of zero specularity parameter �p=0� is consid-
ered. The approximation neglects the interaction between the width
and height of the wire and assumes separate contribution to the
resistivity from each small dimension �filmlike behavior�.

FIG. 10. Fitting theory to the experimental results: �a� assuming
the literature value of �B=1.67 �� cm for the room temperature
bulk resistivity and �b� taking the estimated value for our case of
�B=2.30 �� cm. The weak dependence on the mean free path
value at liquid nitrogen temperature is demonstrated by choosing
two extreme values of 200 nm �gray� and 330 nm �black�. Best fit is
obtained for zero specularity parameter.
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proximation. With this value excellent agreement with the
experimental results is obtained for zero specularity param-
eter, as shown in Fig. 10�b� �changing the value of the bulk
resistivity in the allowed range results in a very similar con-
clusion with near zero specularity parameter�. The presented
theory of surface-induced resistivity in wires is thus con-
firmed and meaningful extraction of the specularity param-
eter is enabled. The low value obtained for this parameter
emphasizes the importance of surface scattering to the resis-
tivity increase of nanometric wires.

V. SUMMARY

Comparing the resistivity of wires to that of films with
identical vertical dimension was shown to be very useful for
studying their surface-induced resistivity. The suggested
model enabled us to separate the contribution of surfaces
from that of grain boundaries and extract meaningful param-
eters from the experimental results. When both width and
height of the wire are larger than one third of the mean free
path of the electrons, the wire exhibits filmlike behavior with
separate contribution to the resistivity from each small di-
mension. Matthiessen’s rule can then be applied to calculate
the resistivity of the wire from the known expressions for the
resistivity of thin films. Zero specularity parameter best de-
scribed the scattering of the copper electrons at their inter-
faces with the surrounding tantalum layer. It means a very
strong surface effect that must be taken into account. It is left
for further investigation to try to understand the obtained
specularity parameter on the basis of the interface properties.
The presented approach enables such an investigation and it
would be especially interesting to predict and test whether
another material in the interface �titanium, for example�
would result in a different specularity parameter.
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APPENDIX

Chambers11 developed the following expression for the
resistivity of a wire with general cross section ��w� that is
higher than that of a bulk material ��B� due to fully diffuse
scattering at the wire’s walls �p=0�:

�B

�w
= 1 −

3

4�s
�

s

ds�
0

2�

d��
0

�

d� sin � cos2 � exp�−
OP

�
� ,

�A1�

where s is the cross section of the wire in the xy plane, O is
some point inside the wire, P is some point on its surface,
OP is the distance between O and P, � is the angle between

the vector PO and the z axis, and � is the azimuthal angle of
PO around the z axis. For a wire with a rectangular cross
section �width w and height h�, this expression becomes

�B

�w
= 1 −

3

4�hw
I , �A2�

where

I = �
0

w

dx�
0

h

dy�
0

2�

d��
0

�

d� sin � cos2 � exp�−
OP

�
� .

�A3�

To calculate the resistivity, one has to express OP in terms
of the angles � and � and then conduct the integration. Since
� is the angle between PO and the z axis, then OP
=OPxy / sin �, where OPxy is the projection of OP on the xy
plane. This projection is shown in Fig. 11. Point O has gen-
eral coordinates �x ,y� and point P is anywhere on the sur-
face, including the marked points in the corners. It is conve-
nient to split the integral I to the four segments between the
corners and treat each segment separately. Thus I= IAB+ IBC
+ ICD+ IDA; since it is clear that IAB= ICD and IBC= IDA, we can
write I=2�IAB+ IDA�. Focusing on the DA segment, it is easy
to verify that for all points on this surface OPxy =x / cos �.
The integration over � should be performed from �D to �A
�see Fig. 11� that can be found from the geometry of the
problem �note that � is defined by the direction PO and is
measured with respect to the x axis�: �A=arctan�y /x� and
�A=arctan��y−h� /x�. We can therefore write

IDA = �
0

w

dx�
0

h

dy�
arctan��y−h�/x�

arctan�y/x�

d��
0

�

d� sin � cos2 �

�exp�−
x

� sin � cos �
� . �A4�

A similar analysis can be used to find IAB but it is easier to
take advantage of the symmetry of the problem and deduce

FIG. 11. Using Chambers’s approach to calculate the surface-
induced resistivity of a rectangular wire �see Appendix for further
details�.
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IAB from IDA simply by replacing each x with y �and vice
versa� and each h with w �and vice versa�. Thus,

IAB = �
0

w

dx�
0

h

dy�
arctan��x−w�/y�

arctan�x/y�

d��
0

�

d� sin � cos2 �

�exp�−
y

� sin � cos �
� . �A5�

Using the above expressions for IAB and IDA, the resistiv-
ity of the wire in the case of fully diffuse scattering �p=0�
can be written as

�B

�w
= 1 −

3

2�hw
�IDA + IAB� . �A6�
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