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Phonon-induced orbital and spin relaxation rates of single electron states in lateral single and double quan-
tum dots are obtained numerically for realistic materials parameters. The rates are calculated as a function of
magnetic field and interdot coupling, at various field and quantum dot orientations. It is found that orbital
relaxation is due to deformation potential phonons at low magnetic fields, while piezoelectric phonons domi-
nate the relaxation at high fields. Spin relaxation, which is dominated by piezoelectric phonons, in single
quantum dots is highly anisotropic due to the interplay of the Bychkov-Rashba and Dresselhaus spin-orbit
couplings. Orbital relaxation in double dots varies strongly with the interdot coupling due to the cyclotron
effects on the tunneling energy. Spin relaxation in double dots has an additional anisotropy due to anisotropic
spin hot spots which otherwise cause giant enhancement of the rate at useful magnetic fields and interdot
couplings. Conditions for the absence of the spin hot spots in in-plane magnetic fields �easy passages� and
perpendicular magnetic fields �weak passages� are formulated analytically for different growth directions of the
underlying heterostructure. It is shown that easy passages disappear �spin hot spots reappear� if the double dot
system loses symmetry by an xy-like perturbation.
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I. INTRODUCTION

The spin degree of freedom in solid state systems has a
much longer memory than orbital degrees. This fact is ex-
ploited in spin electronics1 and potentially, in future spin
quantum computing, most notably in quantum dots2 in which
electron spin provides a qubit for controlled single and two-
qubit operations.2,3 The performance of the spin qubits is
ultimately limited by spin relaxation and decoherence. At
present we believe that general principles and mechanisms of
spin relaxation and decoherence in quantum dots are known,
while it remains to develop particular models, understand
realizations of the mechanisms as well as to perform realistic
calculations, in special cases of interest.

There appear to be two principal mechanisms of spin re-
laxation in quantum dots. At low magnetic fields �say, tens of
gauss�, the relaxation proceeds via hyperfine coupling of the
electron spin with the lattice or impurity nuclei.4–6 On the
other hand, at higher fields �Teslas� the relaxation is due to
phonon-induced spin-flip transitions.7–19 These are allowed
due to the presence of spin-orbit coupling. Variants of the
phonon-induced spin relaxation has been proposed, such as
ripple coupling,20,21 important in very small quantum dots
�10 nm�, or fluctuations in spin-orbit parameters, important
when underlying heterostructure inhomogeneities22 are
present. A possible direct spin-phonon coupling,7,8,23 due to
spin-orbit modulated electron-phonon coupling, have been
found to be of lesser importance. Phonons can also change
the spin precession rate and cause spin decoherence.24 As
was shown in Ref. 25 phonon-induced spin relaxation and
decoherence proceed on similar time scales. Another source
of the decoherence is the fluctuation of the gate potential.26

The experimental results on spin relaxation in single27–32 and
double dots,33,34 as well as on orbital relaxation,35,36 support
the above theoretical picture.

Here we present a systematic and comprehensive investi-
gation of phonon-induced orbital and spin relaxation in lat-

eral single and double quantum dots, defined in a GaAs het-
erostructure. We consider the most relevant electron-phonon
couplings—the deformation potential and piezoelectric
acoustic phonons, and realistic spin-orbit couplings—the
Bychkov-Rashba and the linear and cubic Dresselhaus ones.
We numerically calculate the relaxation rates in the presence
of in-plane and perpendicular magnetic fields. We have al-
ready reported on new anisotropy effects of spin relaxation
in double dots, in Ref. 37. The anisotropy arises due to an-
isotropic spin hot spots, the parameter �magnetic field and
interdot coupling� regions in which a spectral crossing be-
tween a spin up and a spin down state is lifted �producing an
anticrossing� by spin-orbit coupling.38,39 At these points the
spin and orbital relaxation rates are equal. In single quantum
dots spin hot spots were found in Ref. 40, while in vertical
few-electron quantum dots in Ref. 41. In lateral double dots
spin hot spots appear at useful magnetic fields �1 T� and
interdot couplings �0.1 meV�, due to the crossing of the low-
est orbital antisymmetric �with respect to the quantum dot
axis� state and the Zeeman split symmetric state of the op-
posite spin.42 This occurs when the tunneling energy equals
the Zeeman energy. Manipulation of interdot coupling in the
presence of a magnetic field thus in general results in a short
spin lifetime. Fortunately, we have found37 that the spin hot
spots are absent for certain arrangements of the double dots’
axis and the orientation of the in-plane magnetic field. In
particular, if the dots are oriented along a diagonal �on a
�001� heterostructure plane�, and the magnetic field is per-
pendicular, the spin hot spots are absent �due to symmetry
reasons� for any values of spin-orbit parameters. We have
proposed such a geometry, which corresponds to what we
call “easy passage,”37 for quantum information processing.

The particular results of our paper, Ref. 37, are not re-
peated here. Instead we focus on providing a unified descrip-
tion, both analytical and numerical, of orbital and spin relax-
ation rates. We give analytical formulas describing the
trends, with respect to magnetic fields and confinement en-
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ergies of the dots, of the rates. We present the numerically
calculated orbital relaxation rates and demonstrate that they
are due to the deformation potential phonons at low magnetic
fields and due to piezoelectric phonons at high fields �at zero
magnetic field orbital relaxation in a biased double dot was
studied in Ref. 13, using a two-level model�.

As for spin relaxation, we demonstrate here the different
origin of spin hot spots in single and double quantum dots.
While in single dots spin hot spots appear due to the
Bychkov-Rashba coupling,40 in double dots both the
Bychkov-Rashba and Dresselhaus couplings contribute. The
reason is the different symmetry of the underlying states in
single and double dots.42 Furthermore, we classify here the
conditions for the absence �or narrowing� of spin hot spots in
double dots defined in quantum wells grown in different
crystallographic directions, in which the Dresselhaus spin-
orbit coupling takes on different functional forms. We also
explore the orbital effects of a perpendicular magnetic field
component—the main effect is the absence of easy passages;
only narrow “weak passages” appear instead with inhibited
but finite spin hot spots. Finally, we show that easy passages
are also absent in general asymmetric double dots, implying
stringent symmetry requirements on coupled dots for spin
information processing.

The paper is organized as follows. In Sec. II we describe
our model of single and double quantum dots, derive rel-
evant perturbations responsible for the spin relaxation, and
write useful expressions for orbital and spin relaxation rates.
In Sec. III we describe the orbital and spin relaxation in
single dots for the case of in-plane and perpendicular mag-
netic fields. Section IV gives a similar description for double
dots. Finally, in Sec. V we give conclusions.

II. MODEL

A. Hamiltonian

We study a two-dimensional electron gas confined in a
�001� plane, spanned along x and y directions, of a zinc-
blende semiconductor heterostructure. An additional confine-
ment into lateral quantum dots is given by top gates. The
single electron Hamiltonian, in the presence of magnetic
field and spin-orbit coupling, is

H = T + V + HZ + HBR + HD + HD3. �1�

Here T=P2 /2m is the kinetic energy with the effective elec-
tron mass m and kinematic momentum P=p+eA=−i��
+eA; e is the proton charge and A is the vector potential of
the magnetic field B. If the magnetic field is perpendicular to
the plane, B�= �0,0 ,B��, we choose the vector potential as
A�= �B� /2��−y ,x ,0�. If the field is in the plane, lying under
the angle � relative to x̂, B� =B��cos � , sin � ,0�. The orbital
effects of the in-plane field are inhibited—only the Zeeman
interaction is taken into account in this case. The position
vector is denoted as R= �x ,y ,z�= �r ,z�. We will also find
it useful to introduce the kinematic angular momentum
L=R�P.

The quantum dot geometry is defined by the confining
potential

V�r� =
1

2
m�0

2 min��r − d�2,�r + d�2� . �2�

The distance between the minima of the potential is 2d,
which is further called the interdot distance. The angle be-
tween d and x̂ is denoted as �. If d=0, the potential is para-
bolic, V= �1/2�m�0

2r2, representing the single dot case with
the confinement energy E0= ��0 and the confinement length
l0= �� /m�0�1/2, setting the energy and length scale, respec-
tively. Both the confining potential and the vector potential
of the perpendicular magnetic field define the effective
length lB= l0�1+B�

2 e2l0
4 /4�2�−1/4.

The Zeeman energy is given by HZ= �g /2��B� ·B, where
g is the conduction band g factor, �B is the Bohr magneton,
and � are the Pauli matrices. To shorten the notation, we will
use a renormalized magneton �= �g /2��B.

Spin-orbit coupling gives three important terms in con-
fined systems.1 The Bychkov-Rashba Hamiltonian �Refs. 43
and 44�,

HBR = �̃BR��xPy − �yPx�/ � , �3�

appears if the confinement is not symmetric in the growth
direction �here ẑ�. The strength �̃BR of the interaction can be
tuned by modulating the asymmetry by top gates. Due to the
lack of spatial inversion symmetry in zinc-blende semicon-
ductors, the spin-orbit interaction of conduction electrons
takes the form of the Dresselhaus Hamiltonian,45 which
gives two terms, one linear and one cubic in momentum
�Ref. 46�:

HD = �c�Pz
2/�2	�− �xPx + �yPy�/ � , �4�

HD3 = ��c/2���xPxPy
2 − �yPyPx

2�/�3 + H.c., �5�

where �c is a material parameter. The angular brackets in HD
denote quantum averaging in the z direction—the magnitude
of HD depends on the z confinement strength. We express the
strengths of the linear spin-orbit interactions in length units
by lBR=�2 /2m�̃BR and lD=�4 /2m�c�Pz

2	.
In our numerical computations we use bulk GaAs materi-

als parameters: m=0.067me, g=−0.44, and �c=27.5 eV Å3.
For the coupling of the linear Dresselhaus terms we choose
�c�Pz

2	 /�2=4.5 meV Å, corresponding to the 11 nm thick
ground state of the triangular confining potential.47 To agree
with experimental data �see Ref. 37� we choose for �̃BR a
value of 3.3 meV Å, which is in line with experimental
observations48,49 and corresponds to the carrier density of 5
�1011 cm−2 in Ref. 50. These values correspond to length
units of lBR=1.8 �m, and lD=1.3 �m.

For a confinement length of 32 nm �used in a recent
experiment29� and a perpendicular magnetic field of 1 T, one
gets the following typical magnitudes for the strengths of the
contributions to the Hamiltonian given by �1�: 1.1 meV for
the confinement energy E0, 13 �eV for the Zeeman splitting,
and 14, 10, and 0.8 �eV for the linear Dresselhaus,
Bychkov-Rashba, and the cubic Dresselhaus terms, respec-
tively. The spin-orbit interactions are small perturbations,
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with strengths comparable to the Zeeman splitting. This
leads to the many orders of magnitude difference between
the orbital and spin relaxation rates.

We numerically diagonalize the full Hamiltonian �1� �see
Ref. 42 for further details� and compute the orbital and spin
relaxation rates using Fermi’s Golden Rule. We also present
analytical calculations for various limiting cases.

B. Perturbative eigenfunctions

Our numerical results can be qualitatively understood
from considering the lowest order of the perturbative solu-
tion of the Hamiltonian �1�. We assume that spin-orbit cou-
plings are small perturbations and that one can solve the
Schrödinger equation for Hamiltonian H0=T+V+HZ. First,
we transform10 the Hamiltonian to remove the linear spin-
orbit terms

H → eHop
He−Hop

= H0 + H1, �6�

where

H1 = HD3 + HD
�2� + HBR

�2� + HD
Z + HBR

Z . �7�

The transformation is defined by operator Hop=HBR
op +HD

op,

Hop = �i/2lBR��y�x − x�y� − �i/2lD��x�x − y�y� . �8�

Keeping only terms up to the second order in the linear spin-
orbit and Zeeman couplings and the lowest order term in the
cubic Dresselhaus coupling, the new terms of the trans-
formed Hamiltonian are as follows:

HD
�2� = �HD,HD

op�/2 = − ��2/4mlD
2 ��1 − Lz�z� , �9�

HBR
�2� = �HBR,HBR

op �/2 = − ��2/4mlBR
2 ��1 + Lz�z� , �10�

HD
Z = �HZ,HD

op� = − ��B�/lD��x�y + y�x�

+ ��B�/lD��z�x sin � + y cos �� , �11�

HBR
Z = �HZ,HBR

op � = ��B�/lBR��y�y + x�x�

− ��B�/lBR��z�x cos � + y sin �� . �12�

While HD
�2� and HBR

�2� are transformed linear spin-orbit terms in
the absence of the magnetic field, the terms HD

Z and HBR
Z

describe the mixing of the spin-orbit and Zeeman interaction
in the unitary transformation given by Hop; these terms are
essential for understanding spin relaxation anisotropy.

We denote the eigenfunctions and eigenenergies of H0 as
	 and 
. We use the standard perturbation theory for nonde-
generate states and then remove the unitary transformation to

get the approximate eigenfunctions, 	̄, of the original
Hamiltonian �1�:

	̄i = e−Hop
	i + �
j�i

�	 j�H1�	i	

i − 
 j

	 j
 . �13�

For degenerate states, which normally lead to spin hot spots
with strongly enhanced spin relaxation, we use Löwdin’s
perturbation theory. If two eigenstates, 	i and 	 j, of H0 are

degenerate, the corresponding perturbed states are as fol-
lows:

	̄i = e−Hop
�ii	i + �ij	 j + �
k�i,j

�	k�H1�	i	

i − 
k

	k
 . �14�

The coefficients � are the solutions of the appropriate secular
equation. If 
i−
 j � �H1�ij, then �ii�1 and �ij 
1 – Eq. �13�
is recovered. The other case, when 
i−
 j � �H1�ij, describes
anticrossing—spin hot spots.38,39 In the limiting case, when

i=
 j, we get �ii=1/ �2=�ij.

The analytical solution of H0 for the single dot case is
known. The eigenstates are the Fock-Darwin51,52 states,
	n,l,�, where n is the principal quantum number, l is the
orbital quantum number, and � is the spin. For the double
dot case the analytical solution is not known, but for our
double dot potential the eigenfunctions can be approximated
by a properly symmetrized linear combination of Fock-
Darwin functions centered at the potential minima.42

C. Phonon-induced orbital and spin relaxation rates

By orbital relaxation we mean the transition from the first
excited orbital state to all lower lying states. By spin relax-
ation we mean the transition from the upper Zeeman split
orbital ground state to all lower lying states �except at high
magnetic fields, there is only one lower Zeeman split orbital
ground state�. The spin of a state 	 is quantized in the di-
rection of the magnetic field. However, due to the spin orbit

interactions, the perturbed states 	̄ have no common spin
quantization axes. We call a state to be spin up �down� if the
mean value of the spin in the direction of the magnetic field
is positive �negative�. Since the spin-orbit interactions are a
small perturbation, these mean values are close to ±1/2, ex-
cept at anticrossings.

Given the initial and final states for the transition we com-
pute the rates by Fermi’s Golden Rule, where the perturba-
tion is the electron-phonon interaction. The relevant terms
for our GaAs system comprise deformation �df� and piezo-
electric acoustic �pz� phonons, described by Hamiltonian
terms �Ref. 53�

Hdf = �e�
K
� �K

2�Vcl
�bK,l + b−K,l

† �eiK·R, �15�

Hpz = − ieh14�
K,�

� �

2�Vc�K
M��bK,� + b−K,�

† �eiK·R.

�16�

Here the three-dimensional phonon wave vector is de-
noted by K= �kx ,ky ,kz�= �k ,kz�, and �= l, t1, or t2 is the
phonon’s polarization �one longitudinal and two transversal�;
� is the material density �5.3�103 kg m−3, for GaAs�, V is
the volume of the crystal, c� is the sound velocity, �cl=5.3
�103 m/s, ct=2.5�103 m/s�, bK,�

† , bK,� are the creation
and annihilation phonon operators, �e is the deformation po-
tential �7.0 eV�, and eh14 is the piezoelectric constant �1.4
�109 eV/m�. Finally, the geometrical factors M� are equal
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to 2�kxkyez
�+kzkxey

�+kykzex
�� /K2, where e� are unit polariza-

tion vectors.
Consider first the deformation potential, Eq. �15�, in

which only longitudinal ��= l� phonons take part. Using Fer-
mi’s Golden Rule, a relaxation �orbital or spin� rate can be
written

�df = �n�E� + 1��dfE
2� d2k�F�k��2�f�kz

l��2/kz
l �17�

=�n�E� + 1��df�E2/lB��df�El� . �18�

Here E is the energy difference between the initial and final
states, n�E�= �exp�E /kBT�−1�−1 is the occupation number of
the phonon state with energy E at temperature T �further we
use zero temperature�, �df=�e

2 /8�2�cl
4�3 is the strength of

the deformation electron-phonon interaction �8.3

�1010 s−1 nm/ �meV�2�, F�k�=�d2r	̄i
†eik·r	̄ f is the xy over-

lap, and f�kz�=�dz�0
†eikzz�0 is the z overlap, contribution of

which can be neglected, f�kz��1, if the energy difference E
is much smaller than the excitation energy in the z confine-
ment potential. The z component of the wave vector is given
by kz

�=�E�
2 / lB

2 −k2, where the dimensionless parameter E�

=ElB / �c� is the ratio of the effective length, lB, and the
wavelength of the emitted phonon. Finally, �df�El� is an in-
tegral of the xy-overlap F�k�. Since the typical linear dimen-
sion of a wave function is the effective length lB, we express
it as follows:

�df�El� = �
kz�0

d2�klB�
�F�k��2

�El
2 − k2lB

2
. �19�

We compute the relaxation rate �df numerically using for-
mula �17�. However, we can gain physical insight in two
important limits. First, if the wavelength of relevant phonons
is smaller than the size of the dots, El�1, the square root can
be taken out from the integral and �df �1/El. Physically, this
means that the energy to be absorbed by the phonon is large
and the phonon is emitted almost perpendicularly to the
xy–plane. Second, in the opposite limit of El
1, the integra-
tion is only in the vicinity of point k=0. Because of the
orthogonality of the eigenfunctions the overlap integral van-
ishes, F�k→0�→0, and the lowest order gives �F�2��klB�2.
This leads to the dependence of �df�El��El

3.
Analogous expression holds for the piezoelectric interac-

tion which contains contributions from longitudinal and
transverse phonons. The relaxation rate can be written

�pz = �n�E� + 1��pz�1/lB��pz�E� , �20�

with �pz= �eh14�2 /8�2�cl
2� =4�1010 s−1 nm �note the

different unit from �df� and �pz�E�=���cl
2 /c�

2�
��d2�klB� �M��2 �F�k��2 /kz

�lB. The geometrical factors, M�,
have no influence on the limiting expressions for �pz in the
limit E
1, where �pz�E��E3. If E�1, the fact that M� con-
tains factors �kx /K�2 and kx /K leads to limits E−5 and E−3 for
the longitudinal and transverse phonons, respectively. Table I
summarizes the limiting expressions.

In addition to the deformation and piezoelectric phonons,
there are additional electron-phonon spin dependent interac-
tions which can lead to spin relaxation. However, a direct
spin-phonon coupling �spin-orbit modulated electron-phonon
interaction7,8� is believed to give a negligible contribution. In
very small �say, 10–20 nm, which is not our case� quantum
dots spin relaxation due to the so called ripple mechanism20

can be as important as the spin-orbit mechanism and should
be considered. Finally, at low magnetic fields the relaxation
is believed to be dominated by the hyperfine interaction be-
tween the electron and nuclei of the host material.4,5

III. SINGLE DOTS

In the single dot case we identify the unperturbed lower
and upper Zeeman split orbital ground, and excited orbital
states as 	0,0,↑, 	0,0,↓, and 	0,−1,↑, respectively.42 The nega-
tive value of the g factor energetically favors spin up rather
than spin down states. Having opposite spin, the perturbed
ground and spin states will have a nonzero overlap due to
those perturbations in the transformed Hamiltonian �6� which
do not commute with the Zeeman term. Therefore the
xy-overlap F�k� will be proportional to the strengths of the
corresponding perturbations. In the case of the spin relax-
ation, the coefficient A in Table I will be approximately equal
to these strengths divided by a typical energy difference be-
tween the corresponding coupled states, as can be seen from
Eq. �13�. On the other hand, since the excited orbital and
ground states have the same spin, the coefficient A for the
orbital relaxation is of order 1.

This consideration leads to the following approximations
which we use when estimating the rate analytically. For or-
bital relaxation

H1 � 0. �21�

For spin relaxation, in analytical calculations we neglect the
cubic Dresselhaus term. If the magnetic field is in plane, Eqs.
�9� and �10� do not couple the ground or the spin state, which
have zero orbital momenta, with any other state. If the mag-
netic field is perpendicular, Eqs. �9� and �10� commute with
the Zeeman term, again giving no contribution to the spin
relaxation. For the spin relaxation we therefore approximate

H1 � HD
Z + HBR

Z . �22�

TABLE I. The relaxation rates and the relative strength of the
contributions due to deformation ��= l�, piezoelectric longitudinal
��= l�, and piezoelectric transversal ��= t� phonons. The two limit-
ing cases are defined by the ratio, E�, of the wavelength of the
emitted phonon of polarization �, and the effective length lB. The
initial and final states are encoded into the coefficient A, which
needs to be evaluated for specific cases.

E��1 E�
1

�df A2�dfE
2 / lBEl A2�dfE

2El
3 / lB

�l
pz A2�pz/ lBEl

5 A2�pzEl
3 / lB

�t
pz A2�pzcl

2 / lBEt
3ct

2 A2�pzEt
3cl

2 / lBct
2

Relative �df��t
pz��l

pz �t
pz��cl /ct�5�l

pz��df
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A. In-plane magnetic field

Earlier37 we compared our calculation of the spin relax-
ation in an in-plane magnetic field with the experiment.29 We
have found that the experiment can be explained with a rea-
sonable set of spin-orbit parameters which we also use in the
present paper. Using Eqs. �13�, �20�, and �22� we get for the
dominant contribution to the spin relaxation due to piezo-
electric transversal phonons in the low magnetic field limit

�t
pz �

256��pzcl
2m2

105�7ct
5 l0

8��B��5LSO
−2 , �23�

where

LSO
−2 =

lD
2 + lBR

2 − 2 sin�2��lDlBR

lD
2 lBR

2 �24�

describes the effective �anisotropic� spin-orbit length. The
angular dependence of the spin relaxation rate, expressing
the C2v symmetry of the heterostructure, allows one to find
the ratio of the Dresselhaus and Bychkov-Rashba couplings:

min�lD/lBR,lBR/lD� = 2/��ra + 1� − 1, �25�

where ra is the ratio of the rates at �=45° and �=135°. A
possible measured angular dependence with the minimum at
�=45° would be a convincing indication that the admixture
due to spin-orbit is the mechanism of the relaxation. A more
general angular dependence, allowing for out-of-plane mag-
netic fields, was derived in Ref. 25.

The reason for the angular dependence of �t
pz follows

from Eq. �22�, which for an in-plane field is written

H1 = − �B��z�x
 cos �

lBR
−

sin �

lD

 + y
 sin �

lBR
−

cos �

lD

� .

�26�

Due to the selection rules for the Fock-Darwin states, x and y
do not mix in the coupling of the states. The coefficient A2 is
then proportional to the sum of the squared couplings from
Eq. �26�, at x and y. Taking E0 as a typical energy difference
E of the coupled states and using lB for a natural length unit,
we get A2���B�lB /E0�2LSO

−2 . Noting that lB= l0 for in-plane
field and using the low energy limit for �t

pz from Table I, one
recovers Eq. �23� up to a numerical factor. The numerical
result has been presented in Ref. 37 �Fig. 1� and is not re-
peated here.

B. Perpendicular magnetic field

1. Orbital relaxation rates

In the case of a perpendicular magnetic field, the numeri-
cally calculated orbital and spin relaxation rates in a single
dot are shown in Fig. 1. The orbital relaxation rate is of the
order of 109 s−1. The spin-orbit contributions to the rate �not
shown in the figure� are of the order of 106 s−1 for the linear
spin orbit terms and 105 s−1 for the cubic Dresselhaus term,
validating the approximation Eq. �21�. The energy difference
of the orbital and the ground state is E=�2 /2mlB

2

− ��e /2m�B�. At low magnetic fields the high E limit applies

and the deformation potential dominates the orbital relax-
ation rate. The results are listed in Table II. The values at
zero magnetic field, up to a numerical factor, follow from
Table I, if one uses A=1 and the low magnetic field limits,
where E��2 /ml0

2, and lB� l0. The dependence of the rates
on the energy difference of the states, shown in Table I, is
enough to understand the different dependence of the defor-
mation and piezoelectric contributions to the orbital relax-
ation rate at low magnetic fields shown in Figs. 1 and 2. The
deformation contribution drops with increasing both the
magnetic field and confinement lengths, while the piezoelec-
tric contribution increases with the increase of these two pa-
rameters.

For fields lower that 1 T the dominant deformation con-
tribution manifests itself in Fig. 2. At magnetic fields higher
than 1 T the piezoelectric contribution dominates. Up to
about 4 T we are still in the regime E�1 and the rate grows
with increasing magnetic field and increasing confinement
length. Since the energy difference E drops with increasing
magnetic field, for magnetic fields �6 T we get into the limit
E
1. The corresponding orbital relaxation rates in Table II
then follows from Table I using A=1 and high magnetic field
limits, where E��3 /emBl0

4 and lB
2 �2� /eB. This leads to a

much stronger drop of the deformation contribution to the
rate with the increase of both magnetic field and the confine-
ment length, than the drop of the piezoelectric contribution.

Finally, we explain the influence of the anticrossing on the
orbital relaxation rate, seen in Fig. 1. The anticrossing con-
tributes by an overall factor of ��ii�2, see Eq. �14�, which
multiplies the orbital relaxation rates listed in Table II. Solv-
ing the appropriate secular equation, we get �Ref. 40�

��ii�2 =
1

2
+

�E�

2�E2 + �C�2
, �27�

where E=�2 /2mlB
2 − ��e /2m�B�−2�B� is the energy differ-

ence between the crossing states, and C=− �2

mlBlBR
�1

−B�elB
2 /2� � is the strength of the coupling between these

states due to the Bychkov-Rashba term. Away from anti-

FIG. 1. �Color online� Orbital and spin �labels D, BR, and D3
denote which spin-orbit interaction is present� relaxation rates in a
single quantum dot, for the piezoelectric �solid� and deformation
potential �dashed� phonons. The confining length is 32 nm. Anti-
crossing of the unperturbed spin and orbital state occurs at B�

=5.2 T.
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crossing �ii�1, while directly at the anticrossing the rate is
reduced by a factor of 2. The anticrossing region for the
orbital relaxation is rather narrow ��0.1 T� and manifests
itself as a narrow line of the suppression of the rate in Fig. 2.

2. Spin relaxation rates

For spin relaxation the relevant energy difference is the
Zeeman splitting, E�2 ��B�. Therefore the low energy limit,
E
1, applies up to rather high magnetic fields ��10 T�.
Piezoelectric transversal phonons dominate the rate. The lin-
ear spin-orbit terms dominate over the cubic Dresselhaus
term, although the difference becomes smaller for higher
magnetic fields. We use an example of the linear Dresselhaus

term for analytical expressions. Using Eq. �22� and the limits
of low and high magnetic fields we present the analytical
spin relaxation rates in Table II �these results were also de-
rived in Refs. 40 and 8�. These formulas approximately fol-
low from Table I using A= ��B� � lB / lD�E and E= ��B��,
while noting that �E=E0 for low and �E= ��B�� for high
magnetic fields. The trends described by the Dresselhaus
contribution can be seen in Fig. 1. The spin relaxation rate
grows much steeper with increasing magnetic field at low B�

�fifth power� than at high B��first power�. Interestingly, at
high magnetic fields the rate does not depend on the confin-
ing length.

Away from anticrossing analogous formulas, up to a nu-
merical factor, as those listed in Table II, hold for the contri-
bution to the spin relaxation due to the Bychkov-Rashba
term after the substitution lD→ lBR. In this case the contribu-
tion to the overlap between the spin and ground states due to
the term �ij in Eq. �14� is negligible. However, comparing
the analytical formulas from Table II with the numerical cal-
culation in Fig. 3, we find a discrepancy, except at low mag-
netic fields. This is because, as can be seen also in Fig. 1, the
rate is actually dominated by a spin hot spot �anticrossing�.
The anticrossing occurs for single dots only when the
Bychkov-Rashba term is present, since the Dresselhaus
terms do not couple the unperturbed orbital states.40,42 In this
case we can neglect all terms but that one containing �ij in
Eq. �14� and for the spin relaxation rate due to the anticross-
ing one gets ��spin,acr�= ��ij�2��orbital�. The secular equa-
tion gives

��ij�2 =
1

2
−

�E�

2�E2 + �C�2
, �28�

where the variables are those defined under Eq. �27�. Thus,
the anticrossing effectively mixes what we usually call spin
and orbital rates. The spin relaxation rate has a sharp peak at
the anticrossing. With increasing the “distance” from the an-

TABLE II. Approximate orbital and spin �due to Dresselhaus coupling� relaxation rates in a single quantum dot at low and high magnetic
fields in lowest order of the nondegenerate perturbation theory. In the last column we state the maximal or minimal magnetic field by
requiring that at l0=32 nm the presented approximation does not differ from the numerical value by more than a factor of 2.

Low mag. field

Orbital �df ���df�
3cl /m�l0

−4�1−B�el0
2 /2� � �0.6 T

�l
pz �459��pzcl

5m5 /4�5�l0
4�1+5B�el0

2 /2� � �0.5 T

�t
pz �61��pzcl

2ctm
3 /4�3�l0

2�1+3B�el0
2 /2� � �0.8 T

Spin �df �128��dfm
2 /3�7cl

3�l0
8 ��B��7lD

−2 �4 T

�l
pz �128��pzm

2 /35�7cl
3�l0

8 ��B��5lD
−2 �4 T

�t
pz �l

pz�4cl
5 /3ct

5 �4 T

High mag. field

Orbital �df �2��df�
13/3e6m5cl

3�l0
−20B�

−6 �4 T

�l
pz �8��pz�

7 /35e4m3cl
3�l0

−12B�
−4 �4 T

�t
pz �l

pz�4cl
5 /3ct

5 �6 T

Spin �df �32��df ���5 /3�e2cl
3�B�

3 lD
−2 �8 T

�l
pz �32��pz ���3 /35�e2cl

3�B�lD
−2 �7 T

�t
pz �l

pz�4cl
5 /3ct

5 �7 T

FIG. 2. �Color online� Orbital relaxation rate �the sum of the
deformation and piezoelectric contribution� in a single quantum dot
as a function of magnetic field and the confinement length l0/the
confinement �excitation� energy E0. The rate is given on the loga-
rithmic scale in the units of s−1. The solid lines represent equal
relaxation rates �equirelaxation lines� with values shown by the la-
bels. The granular structure in the figure is an artifact of the limited
data resolution.
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ticrossing the rate drops, mirroring the drop of the coefficient
��ij�2. Only far enough from the anticrossing the term �ij is
negligible in Eq. �14� and the rate is described by expres-
sions analogous to those from Table II. In Fig. 1 the
Bychkov-Rashba contribution to the spin relaxation rate is
dominated by the �ij term unless the magnetic field is
smaller than 2 T. Similarly in Fig. 2, for fields higher than
2 T the total spin relaxation rate is dominated by the anti-
crossing contribution due to Bychkov-Rashba term. Conse-
quently, the influence of the anticrossing is substantial in a
much larger region �several Tesla� than in the case of the
orbital relaxation.

In Ref. 40 spin relaxation rates due to the deformation
potential were computed in the lowest order of the perturba-
tion theory and an analogous figure to our Fig. 1 was pre-
sented. Our results for both orbital and spin relaxation rates
are in a quantitative agreement.

IV. DOUBLE DOTS

In our double dot potential the ground �excited orbital�
state can be approximated as a symmetric �antisymmetric�
combination of two Fock-Darwin functions, 	0,0,↑, placed at
the two potential minima. In Ref. 42 we have studied the
energy spectrum and classified the symmetries of the states
of a double dot with a potential given by Eq. �2�. What we
call here ground, spin, and orbital state is denoted there as
�S

↑, �S
↓, and �A

↑ , respectively. The upper index indicates spin
and the lower index indicates the symmetry of a particular
state with respect to spatial inversion. The energy difference
between the ground and excited orbital state, 2�Et, is
strongly influenced by the ratio of the interdot distance and
the effective length,42 D=d / lB,

2�Et =
�2

mlB
2

2D�1 − �2��1 + D�� Erfc�D� − e−D2
�

���eD2�1+�2� − e−D2�1+�2��
, �29�

where a dimensionless parameter �=B�elB
2 /2�. The tunnel-

ing energy �Et gives the frequency of single-electron coher-

ent oscillations between the left and right dots. The approxi-
mation of Eq. �22� for spin relaxation is correct also here,
since Eqs. �9� and �10� do not couple any two of the ground,
spin, and orbital states due to a definite symmetry of the Lz
operator.42 There is a coupling through higher excited states
with appropriate symmetry, but, as we learn from numerics,
this is negligible.

A. In-plane magnetic field

The spin relaxation rate as a function of the in-plane mag-
netic field and the interdot distance is plotted in Fig. 4. The
rates for small interdot distances are similar to the single dot
case, where the rate grows with increasing magnetic field; for
low magnetic fields more steeply than for large. The order of
magnitude of the rate is given by Eq. �23�, being about
102 s−1 at 1 T and 105 s−1 at 10 T. At large interdot distances
the rate is strongly influenced by the presence of an anti-
crossing �spin hot spot�, which occurs when the Zeeman and
twice the tunneling energies are equal.42 If the tunneling en-
ergy is changed from zero to a value of order of the single
dot excitation energy, regardless of the magnetic field
strength, one always passes through a spin hot spot region,
where the spin relaxation is very fast. Fortunately there exist
specific orientations of the double dot system and the mag-
netic field, where this anticrossing does not occur. We call
such a configuration “easy passage.”37

To understand the angular dependence of the rate pre-
sented in Ref. 37 and find conditions for an easy passage we
transform the Hamiltonian �6� with H1 given by Eq. �22� into
coordinates in which the new x axis lies along the dots’ axis
d. Since there are no orbital effects in in-plane magnetic
fields, in these new coordinates the unperturbed solutions of
the Hamiltonian H0 have a definite symmetry under inver-
sions about x̂—the ground and spin states are symmetric,
while the orbital state is antisymmetric. The transformed H1
of Eq. �22�, is

H1 = − �B��z�x�lBR
−1 cos�� − �� − lD

−1 sin�� + ���

+ y�lBR
−1 sin�� − �� − lD

−1 cos�� + ���� . �30�

In the single dot case the coefficient A2 in Table I is propor-

FIG. 3. �Color online� Spin relaxation rate in a single quantum
dot as a function of magnetic field and the confinement length l0/the
confinement energy E0. The rate is given on the logarithmic scale in
the units of s−1. The solid lines represent equirelaxation lines.

FIG. 4. �Color online� Spin relaxation rate in a double quantum
dot as a function of in-plane magnetic field for �=0° and the inter-
dot distance d/tunneling energy �Et, for a confinement length
32 nm. The relaxation rate is given on the logarithmic scale in the
units of s−1. The double dot is oriented along �100� ��=0° �.
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tional to the sum of the squared couplings in Eq. �30� at x
and y. However, in the double dot case, x and y can couple
states differently. For large interdot distances the most im-
portant influence on the spin relaxation comes from the an-
ticrossing of the spin and orbital states, which are coupled by
terms with the x-like symmetry. Thus, the anticrossing will
not occur if

lBR
−1 cos�� − �� − lD

−1 sin�� + �� = 0. �31�

The angles � and � that satisfy the above equation define an
easy passage. For a double dot oriented along the �100� di-
rection ��=0� the easy passage occurs for an in-plane mag-
netic field oriented along angle � given by tan �= lD / lBR.
Similarly to the single dot case, the measured angular depen-
dence recovers the ratio of the spin-orbit couplings. Now
also revealing which one is larger. More important, as can be
seen from Eq. �31�, both linear Bychkov-Rashba and
Dresselhaus �also cubic� spin-orbit terms contribute to the
anticrossing; in single dots it is only the Bychkov-Rashba
coupling which gives relevant spin hot spots. The position of
the easy passage is then given by an interplay of all the
spin-orbit terms. If the double dot is oriented along �110�
��=� /4�, the condition for the easy passage is �=135°, be-
ing independent of the spin-orbit couplings. The importance
of this result has been pointed out already in Ref. 37, where
the corresponding numerical results are presented.

B. Perpendicular magnetic field

1. Orbital relaxation rate

There are two different regimes for the orbital relaxation,
depending on the energy difference of the ground and orbital
states, E=2�Et, which is more sensitive to the interdot dis-
tance than to the confinement length. If D�d / lB
1, then
E��2 /mlB

2 , decreasing with increasing the magnetic field or
the interdot distance. The limit of high E applies and the rates
are comparable to the single dot case. On the other hand, if
D�1 the energy, and thus also the rates, drop exponentially
with increasing the magnetic field or the interdot distance.
Due to the complex interplay of the magnetic field and inter-
dot distance, no power law dependence of the rates on the
magnetic field can be identified. However, approximations in
Table I give analytical formulas with a fair agreement with
numerics, if the energy difference E�2�Et which is given
by Eq. �29�.

The dependence of the orbital relaxation rate on the mag-
netic field and the interdot distance, for a confining length
32 nm, is shown in Fig. 5. The lower left corner is the regime
of the high E limit. The rate here is similar to the single dot
case. The opposite corner is the regime of an exponentially
small energy difference and the rate is practically zero. The
transition between these two regimes comes for a smaller
interdot distance if the magnetic field is higher, since the
transition occurs when d� lB. Again, as in the single dot
case, the anticrossing does not have a large influence on the
orbital rate—in the figure it can hardly be seen. For interdot
distances much larger than lB the dots are effectively iso-
lated.

2. Spin relaxation rate

Spin relaxation in double dots reveals a surprising com-
plexity as compared to the single dot case. The complexity is
due to the strong anisotropy of spin hot spots. While aniso-
tropy appears already in single dots, caused by the interfer-
ence of the Bychkov-Rashba and Dresselhaus couplings, ad-
ditional anisotropy appears in spin hot spots. This anisotropy
does not require the presence of both couplings. Instead, it is
caused by the selection rules for spin-orbit virtual transitions
in the double-dot spectrum. The corresponding physics is
described by the transformed Hamiltonian H1 of Eq. �30�.
We have presented the corresponding numerical calculation
in Ref. 37. Here we discuss the individual contributions of
the Bychkov-Rashba and Dresselhaus terms in the spin re-
laxation rate and, specifically, in the spin hot spot anisotropy.

The contribution to the spin relaxation rate from the
Bychkov-Rashba �Dresselhaus� term is shown in the upper
�lower� part of Fig. 6. The changes of the upper figure, if the
Dresselhaus terms were present, would be very small �com-
pare with Fig. 2 in Ref. 37�. For low magnetic fields the rate
grows with increasing magnetic field, as we expect from
Table I. However, similarly to the in-plane magnetic field
case, the spin hot spots �ridges in Fig. 6� dominate the rate
for most of the parameters’ range. The interdot distance
strongly influences the spin relaxation rate by determining
the position of anticrossings. In high magnetic fields, the spin
state can anticross higher orbital states depending on the
symmetry of these states. However, the influence of these
anticrossings on the rate is limited to a narrow region of
magnetic fields, since the dots are effectively isolated at high
fields and the crossing states do not comply with the selec-
tion rules for spin-orbit couplings of single dot states.

It is interesting to compare the contribution to the spin
relaxation by the Bychkov-Rashba and the Dresselhaus
terms. Let us first look at the single dot regime, which in Fig.
6 is visible at d=0. The spin hot spot appears only for the
Bychkov-Rashba coupling, in line with our earlier
observation.42 The Dresselhaus coupling becomes effective

FIG. 5. �Color online� Orbital relaxation rate in a double quan-
tum dot as a function of in-plane magnetic field for �=0° and the
interdot distance d/tunneling energy �Et, for a confinement length
32 nm. The relaxation rate is given on the logarithmic scale in the
units of s−1. The double dot is oriented along �100� ��=0° �.
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only in the coupled-dot system in which the symmetry of the
lowest orbital states allows the coupling at the level cross-
ings. The coupling is again absent at two isolated dots �d
→ � �. Another nice feature seen in Fig. 6 is the transforma-
tion of the single-dot spin hot spot at about 5 T to a double-
dot spin hot spot at lower fields, while the single-dot spin hot
spot that starts at about 9 T shifts towards 5 T in the double
dot and remains there at all couplings.

Similarly to the in-plane field case, we can understand the
anisotropy of the spin relaxation in the perpendicular mag-
netic field by transforming the Hamiltonian of Eq. �22� into a
coordinate system with the x axis being along d:

H1 = �B��x��x�lBR
−1 − lD

−1 sin 2�� − �ylD
−1 cos 2��

+ y��y�lBR
−1 + lD

−1 sin 2�� − �xlD
−1 cos 2��� . �32�

Due to the presence of the orbital effects of the perpendicular
magnetic field, the unperturbed states have no specific sym-
metry under inversions along x. As a result only in the limit
of low magnetic fields �lB� l0�, for us below 1 T, the term in
Eq. �32� containing x dominates over the term containing y;
in higher fields both terms contribute. In this limit the con-

dition for a suppression of the anticrossing is lD= lBR and �
=45°. This we call a “weak passage,” since the anticrossing,
while strongly suppressed, is still present. If the condition for
a weak passage is not fulfilled, the spin relaxation rate, as a
function of �, still has a minimum at �=45° and a maximum
at �=135°. However, the ratio between the two extremal
values is in general of order 1.

C. Other growing directions

Thus far we have considered lateral quantum dots defined
in a �001� plane of a GaAs heterostructure. A different grow-
ing direction leads to a different form of the Dresselhaus
spin-orbit interactions1 �the form of the Bychkov-Rashba
term remains unchanged� and to different conditions for the
easy passage. Our results are summarized in Table III. For
the �111� growth direction the Dresselhaus term has the same
form as the Bychkov-Rashba one. Our results easily translate
for this case by placing formally lD→�. There will be no
spin relaxation anisotropy in single dots, while in double
dots spin hot spots vanish for cos��−��=0 at in-plane fields.
For a general magnetic field a weak passage occurs only at
specific spin-orbit parameters, given by 2�3lBR+ lD=0 �the
couplings can be negative�.

A less trivial situation occurs for the �110� grown quan-
tum well. The linear Dresselhaus coupling has the form

HD = −
�

4mlD
�zPx. �33�

Unlike the Bychkov-Rashba coupling, which has eigenspins
always in the plane, the �110� Dresselhaus term has eigen-
spins oriented out of the plane.

The calculated spin relaxation rate for the double-dot sys-
tem oriented along �=� /2 in an in-plane magnetic field of
B� =1 T is shown in Fig. 7. The spin hot spots exist for all
orientations of the field except at multiples of �. This is
confirmed by analytical considerations summarized in Table
III. The easy passage exists if the dot is oriented along the
�rotated� x axis, while the in-plane magnetic field is along ŷ.

FIG. 6. �Color online� Spin relaxation rate as a function of per-
pendicular magnetic field for �=0° and the interdot distance
d/tunneling energy �Et �at zero magnetic field only�, for a confine-
ment length 32 nm. The relaxation rate is given in logarithmic scale
in the units of s−1. The double dot is oriented along �100� ��=0° �.
The upper figure shows results when only the Bychkov-Rashba
term is present in the Hamiltonian. In the lower figure, only the
Dresselhaus terms are present.

TABLE III. Easy passage conditions for several growing direc-
tions in an in-plane magnetic field and weak passage conditions for
a magnetic field with a nonzero perpendicular component. The axes,
originally along crystalographics axes, are rotated such that the z
axis points in the growth direction. The angle between d and the
�rotated� x axis is �, the angle between the in-plane part of the
magnetic field and the x axis is �, while � is the angle between the
magnetic field and the z axis.

Growing direction In-plane General

�001� lBRcos ��+��
=lD sin��−��

lD= lBR, �=� /4

�111� cos��−��=0 2�3lBR+ lD=0

�110� �=0, �=� /2 lBR cos �= ±2lD cot �,
sin��−��= ±1

�cos � sin � 0� �=� /2,
lD tan �=−lBR cos 2�

lD=−lBR cos 2�,
�=� /4, �=0
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Also, the �110� Hamiltonian is not invariant under the in-
plane inversion of the coordinates which is why the period in
� for the relaxation rate is twice as in the case of the �001�
growing direction. However, the part of the Hamiltonian im-
portant for anticrossing is invariant with respect to inversion
along ŷ. Therefore, the results in Fig. 7 for ��� are equal to
those at 2�−� to a very good approximation.

In order to demonstrate the difference between easy and
weak passages, we plot in Fig. 8 the calculated spin relax-
ation rate in double dots defined in a �110� plane. The dots
are oriented along ŷ. From Table III one gets the conditions
for the weak passage to be �=0, and, for our spin-orbit cou-
plings, �=56°, where � is the angle between the magnetic
field and ẑ. This arrangement corresponds to the “neck” on
the spin hot spot in Fig. 8. However, contrary to an easy
passage, here the width of the anticrossing region is finite
and gets larger with increasing magnetic field �not shown�.
Since all weak passages we found depend on spin-orbit cou-
plings, they �better, the corresponding geometries� are much
less useful for robust inhibiting of spin relaxation than easy
passages.

In the above analysis we have not considered the cubic
Dresselhaus term, HD3, in deriving the conditions for easy
passages. Being cubic, even after rotating the double dot ��
�0�, it always has qualitatively the same symmetry proper-
ties with respect to inversions about x̂ and ŷ—it is a sum of
two terms, one with symmetry of x and one y. Therefore the
presence of HD3 does not destroy the easy passage. It can
only slightly change the conditions for the easy passage to
occur. For our parameters this change, checked numerically,
is only on the order of 1° for the angles in Table III, so the
linear terms should provide a realistic guidance to experi-
mental demonstrations of the predicted anisotropy.

V. CONCLUSIONS

We have calculated phonon-induced orbital and spin re-
laxation rates of single electron states in single and double
quantum dots. The rates were calculated as a function of
inplane and perpendicular magnetic fields, as well as a func-
tion of the field and �in the case of double dots� dots’ orien-
tation. Realistic, GaAs defined, electron-phonon piezoelec-
tric, and deformation potential Hamiltonians were
considered. Similarly, relevant spin-orbit interactions,
namely the Bychkov-Rashba, and linear and cubic Dressel-
haus couplings, were used to calculate the spin relaxation
rate. We have supported our numerical findings by analytical
models based on perturbation theory, deriving effective
Hamiltonians which display, in the lowest order, all the im-
portant effects seen in numerics. We have proposed using a
classifying dimensionless parameter E which allows one to
obtain relevant trends and order-of-magnitude estimates in
important limiting cases.

In the case of single dots, we have carefully analyzed the
theoretically predicted anisotropy of the spin relaxation rate
in an in-plane magnetic field. The anisotropy comes from the
interplay of the linear Bychkov-Rashba and Dresselhaus
terms �if only one of the terms dominates, the anisotropy is
absent�. Experimental verification of the anisotropy would
give a strong evidence of the spin-orbit mechanism of spin
relaxation. Furthermore, such a measurement would enable
one to estimate the ratio of the two relevant spin-orbit terms.

For single dots in a perpendicular magnetic field, which
causes cyclotron effects as well as Zeeman splitting, we have
numerically investigated the orbital relaxation rate. In addi-
tion, we have provided a simple analytical scheme to esti-
mate the rates in the important limits of low and high mag-
netic fields, and found the corresponding rate as a function of
the confining length. The orbital relaxation rate is found to
be of the order of 109 s−1, with a relatively small dependence
on the magnetic field. At anticrossings the orbital relaxation
rate is reduced by a factor of two. At low magnetic fields the
rate is dominated by the deformation potential electron-
phonon interaction, while at high fields it is dominated by
piezoelectric phonons.

On the other hand, the spin relaxation in single dots is
always dominated by piezoelectric transversal phonons. The
contribution of deformation potential phonons is more than a
decade smaller. The rate is on the order of 105 s−1 over a
large region of parameters �magnetic field and excitation en-

FIG. 7. �Color online� Spin relaxation rate as a function of � and
the tunneling energy for B� =1 T, for �110� growing direction. The
dot orientation is given by �=� /2. The relaxation rate is given in
logarithmic scale in the units of s−1.

FIG. 8. �Color online� Spin relaxation rate as a function of � and
tunneling energy for B=1 T, for �110� growing direction. The dot
orientation is given by �=� /2. The relaxation rate is given in loga-
rithmic scale in the units of s−1.
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ergy�. However, the rate is strongly enhanced in the region of
anticrossing/spin hot spots, where it becomes comparable to
the orbital relaxation rate. We have also provided analytical
estimates of the rate �away from the spin hot spots� for vari-
ous phonon contributions, at the limits of low and high mag-
netic fields.

The physics is more complex in coupled dots. We have
numerically studied spin relaxation in double dots in in-plane
magnetic fields, in which the rate is strongly anisotropic in
the direction of both the magnetic field and the dots’ axis.
Similarly to the single dot case, the piezoelectric phonons
dominate spin relaxation here. We have demonstrated that a
spin hot spot exists at useful magnetic fields �say, 1 T� and
interdot couplings �0.1–0.01 meV�. In fact, a spin hot spot is
a typical phenomenon in symmetric double dots since it ap-
pears when the tunneling �coupling� energy becomes compa-
rable to the Zeeman splitting. Fortunately, the spin hot spots
are strongly anisotropic, due to the symmetry of the lowest
orbital electronic states, and they vanish at certain orienta-
tions of the field and the dots’ axis. We have systematically
investigated these “easy passages” using an analytical model.
We have found the criteria for the absence of spin hot spots
for different growth directions of the underlying quantum
well. These criteria should be seriously considered in fabri-
cating double-dot systems for spin-based quantum informa-
tion processing which requires low spin relaxation.

For double dots in a perpendicular magnetic field, the
orbital relaxation rate is most influenced by the energy dif-
ference of the corresponding coupled states. The energy has
a range over eight orders of magnitude due to the cyclotron
effects in the interdot coupling. As in the single dot case,
both deformation potential and piezoelectric phonons can
dominate the orbital relaxation. The spin relaxation in double
dots in a perpendicular field has similar qualitative features
as in the single dot case, with an additional anisotropy given
by the orientation of the double dot with respect to the crys-
tallographic axes. However, unlike in in-plane fields, only
weak easy passages �in which spin hot spots form a neck on
the parameter map, rather than disappear altogether� exist in
a perpendicular magnetic field. We have also observed a nice
shift of spin hot spots to the lower field neighbors as the
tunneling between the dots decreases. While the perpendicu-
lar fields provide a nice opportunity to study fundamental
physics of double-dot systems, they are less useful in quan-
tum information processing due to the omnipresence of spin
hot spots and weak passages.

Our final note concerns the symmetry of the double-dot
systems investigated in this paper. Do our conclusions hold if
the symmetry is broken? The answer is yes, if the double-dot

system still possesses either x- or y-like symmetry. Suppose,
for example, that a weak electric field is applied along x̂ or ŷ,
or one of the dots is somewhat smaller than the other. The
spin hot spot anisotropy still leads to easy passages in spin
relaxation in in-plane magnetic fields. On the other hand, if
the symmetry breaking is xy-like �an electric field pointing
along a diagonal, for example�, the easy passage is destroyed
since the selection rules for the lowest orbital states will
allow coupling of the states by the term containing y in H1 of
Eq. �30� �recall that it was the vanishing of the term contain-
ing x that led to the appearance of easy passages�. This situ-
ation is demonstrated in Fig. 9. A double-dot system in an
in-plane field of 5 T is oriented along �110� �the growth di-
rection is �001��. If the double dot is symmetric, an easy
passage exists for �=135° �the corresponding figure is given
in Ref. 37�. However, if one of the dots is subject to a y-like
electric field, so that the overall symmetry of the perturbation
is xy-like, the easy passage turns to a weak passage—at all
directions of the in-plane magnetic field there exists an inter-
dot coupling in which the spin relaxation rate is greatly en-
hanced. This is another important message for spin-based
quantum information processing in quantum dots.
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