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We study transport through an electronic Mach-Zehnder interferometer recently devised at the Weizmann
Institute. We show that this device can be used to probe the statistics of quasiparticles in the fractional quantum
Hall regime. We calculate the tunneling current through the interferometer as the function of the Aharonov-
Bohm flux, temperature, and voltage bias, and demonstrate that its flux-dependent component is strongly
sensitive to the statistics of tunneling quasiparticles. More specifically, the flux-dependent and flux-independent
contributions to the current are related by a power law, the exponent being a function of the quasiparticle
statistics.
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I. INTRODUCTION

One of the key features of the quantum Hall effect �QHE�
is the fractional charge and statistics of quasiparticles. The
seminal shot noise experiments of the Weizmann and Saclay
groups1,2 allowed for direct observations of fractional
charges. A recent experiment on the mutual fractional statis-
tics of two quasiparticles with different charges has been
published in Ref. 3. It involved a setup consisting of an
island of a fractional quantum Hall liquid embedded in a
liquid with a different filling factor.4 Theoretically, several
approaches5–7 such as the Hanbury-Brown-Twiss setup have
been proposed as possible tools to probe the mutual statistics
of identical quasiparticles. However, to this date, no experi-
mental verification of the statistics of identical quasiparticles
has been reported.

In this paper we propose a different approach to observing
the statistics of identical quasiparticles. Our approach em-
ploys the electronic analog of the Mach-Zehnder interferom-
eter, recently designed at the Weizmann Institute.8 This de-
vice has been used to observe the Aharonov-Bohm effect in
the integer quantum Hall regime.8 As is shown below, in
higher magnetic fields this type of device would allow the
observation of fractional statistics.

The proposed method of the observation of fractional sta-
tistics has a number of advantages in comparison with other
setups. In Refs. 6 and 7 one needs to measure the noise or the
current-current correlation function. In our approach it is suf-
ficient to find the current through the interferometer. This
resembles Ref. 5. However, in Ref. 5 one has to control the
number of quasiparticles trapped in the interferometer in or-
der to probe the fractional statistics. There is no such diffi-
culty in our case. Besides, the interference pattern can be
observed in the Mach-Zehnder interferometer at a larger in-
terferometer size than in the standard geometry.5

An electronic Mach-Zehnder interferometer is sketched in
Fig. 1. Charge propagates along two quantum Hall edges and
tunnels between the edges at the point contacts QPC1 and
QPC2. Figures 1�a� and 1�b� depict two possible setups: �a�
tunneling takes place between two different fractional quan-
tum Hall puddles, and �b� tunneling is between the edges of

a single puddle. In the latter case, fractionally charged qua-
siparticles can tunnel at QPC1 and QPC2. In the former case,
only electrons are allowed to tunnel.9 Pinching off the edges
closer to each other, one can deform the system depicted in
Fig. 1�b� into the configuration of Fig. 1�a�. The tunneling
current between the edges depends on their voltage
difference and the magnetic flux through the region
A-QPC1-B-QPC2-A. As shown below, the current includes a
flux-independent contribution I0 and a contribution I� which
oscillates as function of the magnetic flux with period
�0=hc /e. We will calculate I� and I0 as functions of the
tunneling amplitudes �1 and �2 at QPC1 and QPC2. If no
tunneling occurs at QPC2—i.e., �2=0—then the total cur-
rent I��1 ,�2�= I0��1 ,0� is independent of the magnetic flux.
At weak tunneling at QPC2—i.e., small �2��1—the
flux-dependent component of the current scales as
I���1 ,�2���I0��1 ,�2�− I0��1 ,0��b, where the exponent b
depends on the statistics of tunneling particles. In the case of
electron tunneling, b=1/2. In the case of the tunneling of
fractional quasiparticles, the exponent depends on their sta-
tistics and is always greater than for electrons. In a fractional
QHE system with the filling factor �=1/ �2m+1�, the expo-
nent b=� /�, where �=2�� is the statistical angle describing
the mutual statistics of two quasiparticles.

The outline of the paper is the following. First, we give a
qualitative explanation of our results. Next, we introduce the

FIG. 1. �Color online� Schematic picture of the Mach-Zehnder
interferometer. S and D denote sources and drains. Arrows indicate
the propagation direction of the chiral edge modes. The source and
drain voltages are VS1=V, VD1=VD2=VS2=0. �a� Electrons tunnel
between the puddle defined by edge 2e and the QHE strip �edge
1e�. �b� Fractionally charged quasiparticles tunnel between edges
1q and 2q. In both cases the difference of the chemical potentials
equals the voltage drop between S1 and S2.
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model which is used in our calculations. Then, we calculate
the I-V curves, respectively, for quasiparticle tunneling in the
fractional QHE regime with filling factors �=1/ �2m+1� and
electron tunneling between quantum Hall liquids with filling
factors �1,2=1/ �2m1,2+1�. In the latter case our calculations
follow the standard route.5,10 In the former case one has to
carefully treat the Klein factors describing quasiparticle sta-
tistics. The Appendixes discuss some technical details of the
perturbation theory employed.

II. QUALITATIVE DISCUSSION

We study charge transport through the Mach-Zehnder in-
terferometer in the limit of weak tunneling at QPC1 and
QPC2. Thus, we assume that the edges of the fractional
quantum Hall liquid are far from each other in comparison
with the magnetic length l0. Hence, �1 ,�2�� /�c, where the
ultraviolet cutoff scale �c� l0 /v and v is the excitation ve-
locity along the edges. The tunneling amplitudes can be con-
trolled by gate voltages. We assume that the gate voltages are
chosen such that one of the situations shown in Figs. 1�a�
and 1�b� takes place. Other situations—e.g., weak quasipar-
ticle tunneling at QPC1 and weak electron tunneling at
QPC2—are also possible but will not be considered here.

We first address the electron tunneling case depicted in
Fig. 1�a�. There are three contributions to the current
I= I1+ I2+ I12. The first contribution is due to the tunneling at
QPC1, I1=c1��1�2, where c1 depends on the temperature and
voltage and is independent of the magnetic flux through the
interferometer. The second contribution is due to the second
quantum point contact, I2=c1��2�2. Finally, a contribution
arises due to quantum interference between the electrons
which tunnel at QPC1 and QPC2. This contribution equals
I12=c2�1�2

* exp�−i	�+c.c., where c2 depends on the voltage,
temperature, and distance between the point contacts, and 	
is the difference of the Aharonov-Bohm phases picked up by
electrons propagating between QPC1 and QPC2 along two

edges. The phase 	= e
�c ��QPC1-A-QPC2A� dl�−�QPC1-B-QPC2A� dl��

=2�� /�0, where A� is the vector potential, �
0 the mag-
netic flux through the region A-QPC2-B-QPC1-A, e
0 the
electron charge, and �0 the magnetic flux quantum hc /e.
The coefficients c1 and c2 will be calculated in Sec. IV. Thus,
the current exhibits a periodic dependence on the magnetic
flux � with period �0. The amplitude of the flux-dependent
contribution to the current I�=max I12 is related to the flux-
independent contribution I0= I1+ I2 by the equation

I���1,�2� � �I0��1,�2� − I0��1,0��1/2. �1�

Equation �1� is derived rigorously in Sec. IV.
A similar relation with a different exponent can be ob-

tained for the setup Fig. 1�b� in which fractionally charged
quasiparticles tunnel between the edges. Quasiparticles in a
quantum Hall liquid with the filling factor �=1/ �2m+1� can
be described as point charges q=�e with attached
solenoids.11 Each solenoid carries one magnetic flux quan-
tum �0. When one quasiparticle makes a circle around an-
other it picks up the Aharonov-Bohm phase

� = 2�� �2�

which describes the fractional statistics. The total flux �̃
through the interferometer includes the contribution from the

applied magnetic field �=�B� dS� and the statistical contribu-
tion from the flux tubes attached to quasiparticles.

Figure 2 is topologically equivalent to Fig. 1�b�. As is
clear from Fig. 2, the solenoids attached to quasiparticles do
not contribute to the magnetic flux through the dashed circle
if there is no tunneling between edges 1q and 2q. Thus, in

the absence of tunneling the total magnetic flux �̃=�. Each

tunneling event changes the flux �̃ by one flux quantum. The
flux decreases by ��0� when a quasiparticle tunnels from the
outer edge to the internal edge and increases by ��0� for the
tunneling events from edge 2q to edge 1q. Hence,

�̃=�+n�0, where n is an integer.
We will assume that the electrochemical potential of

source S1 is higher than the electrochemical potential of
source S2 by eV, where e is an electron charge. These elec-
trochemical potentials are equal to the chemical potentials of
edges 1q and 2q.

Let us first consider the simplest limit of zero tempera-
ture. In this case, quasiparticles can tunnel from the edge
with the higher chemical potential to the edge with the lower
chemical potential only and cannot tunnel from edge 2q to
edge 1q. The tunneling probability can be derived in the
same way as Eq. �1�,

p��̃� = c̃1���1�2 + ��2�2� + �c̃2�1�2
* exp�− i	̃� + c.c.� , �3�

where 	̃=2���̃ /�0=2��� /�0+2��n is the Aharonov-
Bohm phase accumulated by a quasiparticle with the charge
�e along the path A-QPC2-B-QPC1-A. The phase 	̃ is
periodic in n with period 1/�. Let us assume that initially

n=k /�. Then p��̃�= p��� and the transfer of a quasiparticle
requires the time t1=1/ p���. After a quasiparticle tunneling
event the statistical flux changes and the second quasiparticle
tunnels after the time interval t2=1/ p��+�0�. After 1 /� tun-

FIG. 2. �Color online� Quasiparticle propagation and tunneling
in the Mach-Zehnder interferometer. Once quasiparticle q1a with its
attached flux tube tunnels through QPC2 it arrives in D2 �q1b� and
the flux tube is released within the MZ hole. The flux tube ��
affects the statistical phase accumulated by the next tunneling qua-
siparticle. A quasiparticle emitted from S2 will have its flux tube
folded �q2b� and will not affect the statistical phase accumulated by
other quasiparticles.
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neling events we return to the situation with n being a mul-
tiple of 1 /�. The time needed for the transfer of 1 /�
quasiparticles—i.e., a single electron charge—is t=�l=1

1/�tl.
Hence, the current

I =
e

t
=

1/�

�
l=1

1/�
1

Il

, �4�

where Il=�ep��+ �l−1��0�. If the quasiparticles did not
carry flux tubes, the current through the Mach-Zehnder
interferometer in the presence of the magnetic flux
��+ �l−1��0� would equal Il. Thus, the current of quasipar-
ticles obeying fractional statistics is a harmonic average of
1 /� currents corresponding to the imaginary situation of
fractionally charged quasiparticles which do not obey frac-
tional statistics.

If �2��1, then the current I can be expanded in powers
of �2. The term of order �2

u�2
*w is proportional to

exp�2��i�u−w�� /�0�. The current �4� is a periodic function
of the magnetic flux with period �0. Hence, �u−w�=k /� in
all nonzero contributions. Thus, the linear in ��2� contribu-
tion to the current vanishes. Hence, the leading power of �2
in the expansion is ��2�2. Such second-order terms do not
exhibit a magnetic flux dependence. Hence, the flux-
independent contribution to the current I0 satisfies the equa-
tion

I0��1,�2� − I0��1,0� � ��2�2. �5�

The leading flux-dependent contribution scales as

I� � const �2
1/� exp�2�i�/�0� + c.c. �6�

Finally, one gets, from the comparison of Eqs. �5� and �6� at
�2��1,

I���1,�2� � �I0��1,�2� − I0��1,0���/�, �7�

where � is the statistical angle �2�. Equation �7� is
derived rigorously in Sec. V. The flux-dependent and
flux-independent contributions to the current can be ex-
pressed via the maximal and minimal values of the current as
function of the magnetic flux: I0= �max I+min I� /2,
I�= �max I−min I� /2. The exponent � /� is determined by
the quasiparticle statistics. It equals 1 /2 for fermions, Eq.
�1�, and exceeds 1/2 for fractional quasiparticles.

Luttinger liquid effects are known to give rise to power
laws in the edge physics in quantum Hall systems.12 We
would like to emphasize that Luttinger liquid physics is ir-
relevant for the above result, Eq. �7�. The exponent � /�
emerges due to the statistical magnetic flux carried by
quasiparticles—i.e., due to their fractional statistics.

We now discuss the finite-temperature regime. In this case
quasiparticles can tunnel both from edge 1q to edge 2q and
from edge 2q to edge 1q. The tunneling probabilities are
related by the principle of detailed balance,

p−	� + 
k �
1

�
+ r��0� = p+	� + 
k �

1

�
+ r − 1��0� ,

�8�

where =exp�−�eV/kBT�; 1�r��; the convention

r−1=1/� is used at r=1; p+��̃=�+statistical flux before

tunneling� and p−��̃=�+statistical flux before tunneling�
denote the probabilities of the tunneling events from edge 1q
to 2q and from edge 2q to 1q, respectively. They depend
quadratically on �1,2 and are calculated in Sec. V. The tun-
neling probabilities depend on the total magnetic flux which
includes the statistical contribution �s=�k�

1
� +s��0,

1�s�1/�. Since the Aharonov-Bohm phase due to the sta-
tistical flux �s equals 	AB= �2�k+2��s�, the probabilities
depend on � and s only and are independent of k. Thus, the
tunneling current is given by the equation

I = e��
r=1

1/�

fr�p+�� + r�0� − p−�� + r�0�� , �9�

where fr is the probability to find the system in one of the
states with �s=�k�

1
� +r��0, 1�r�1/�, k being an arbi-

trary integer. The distribution function fr can be determined
from the steady-state condition

fr�p+�� + r�0� + p−�� + r�0��

= fr−1p+�� + �r − 1��0� + �fr+1p−�� + �r + 1��0�� ,

�10�

where we use the convention 1/�+1=1. Using Eq. �8� the
kinetic equation �10� can be rewritten as

p+�� + r�0��fr − fr+1� = p+�� + �r − 1��0��fr−1 − fr� ,

r = 1, . . . ,1/� . �11�

One finds, from the above system of equations,

fr − fr+1 =
�

p+�� + r�0�
, �12�

where � is a constant independent of r. To calculate this
constant we add Eq. �12� with all possible r. Since �fr=1,
one gets

� =
1 − 

�
r=1

1/�
1

p+�� + r�0�

. �13�

Thus, the current, Eq. �9�, equals

I = e��
r=1

1/�

p+�� + r�0��fr − fr+1� = e� =
1/�

�
r=1

1/�
1

Ir�

, �14�

where Ir�=�e�1−�p+��+r�0�. Similarly to Il, Eq. �4�, the
currents Ir� can be understood as the currents of fictitious
fractionally charged quasiparticles which do not obey frac-
tional statistics. A rigorous derivation of Eq. �14� is discussed
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in Sec. V. Finally, the same analysis as in the zero-
temperature case shows that Eq. �7� is satisfied at finite tem-
peratures.

Equation �7� is the main result of the article. An experi-
mental test of this relation will allow the observation of frac-
tional statistics. In such an experiment one needs to change
�2 at fixed �1. The tunneling amplitudes �1,2 are controlled
by gate voltages. Generally, any change of gate voltages af-
fects both tunneling amplitudes. They can be controlled in-
dependently only if QPC1 and QPC2 are far from each other.
In most interferometer setups an increase in the distance be-
tween QPC1 and QPC2 would result in the suppression of
the interference pattern. Fortunately, this is not the case for
the Mach-Zehnder interferometer. The calculations for the
electronic Mach-Zehnder interferometer in the integer quan-
tum Hall regime13,14 show that the visibility of the interfer-
ence pattern depends not on the distance between QPC1 and
QPC2 but only on the difference of the distances between the
point contacts along two edges. We confirm the same con-
clusion for the fractional quantum Hall systems in Secs. IV
and V.

In order to determine the relation between the flux-
dependent and flux-independent components of the
current one has to vary the magnetic field and measure the
current at different values of the field. The magnetic flux �
through the region QPC1-A-QPC2-B-QPC1, Fig. 1�b�, in-
cludes two contributions: the flux through the hole in the
interferometer—i.e., the upper half of the region
QPC1-A-QPC2-B-QPC1—and the flux through the lower
half of the region QPC1-A-QPC2-B-QPC1 which is occu-
pied by a quantum Hall liquid. If the magnetic field changes
at the fixed density, then the filling factor in the lower half
deviates from �. As a result, quasiparticles can enter the re-
gion QPC1-A-QPC2-B-QPC1. Each of them brings one flux
quantum. This does not change any of the results of the
paper. Indeed, we predict that the current is a periodic
function of the magnetic flux through the region
QPC1-A-QPC2-B-QPC1 with period �0. Hence, changing
the flux by one flux quantum does not affect the current.

Several other quantum Hall interferometer setups have
been discussed in the literature. The simplest setup5 is illus-
trated in Fig. 3. In contrast to the Mach-Zehnder interferom-
eter, the effective magnetic flux perceived by quasiparticles
does not change after tunneling events in the setup of Fig. 3.
Hence, the current is independent of the statistical phase �,
Eq. �2� �if no quasiparticles are trapped between the quantum
point contacts�. On the other hand, the current exhibits a
“fractional” Aharonov-Bohm periodicity with period �0 /�.
On the technical level the setup5 and our problem are de-
scribed by very similar models �see Sec. III�. The main dif-
ference consists in the Klein factors which describe frac-

tional statistics. They are present in the model of the Mach-
Zehnder interferometer �Sec. III� and are absent in the model
of Ref. 5. This difference between the models results in
qualitatively different transport behavior. A setup related to
the Mach-Zehnder interferometer was studied in Ref. 7, Fig.
4. The interferometer, Fig. 4, has the same topology as the
Mach-Zehnder interferometer but includes three edges and
three quantum point contacts. In the absence of QPC3 the
setup of Fig. 4 is equivalent to Fig. 3. If weak tunneling at
QPC3 is allowed, the system exhibits strong telegraphic
noise which carries information about fractional statistics. In
contrast to Ref. 7 we investigate the setup with two point
contacts that was studied experimentally.8 In our case not
only the noise but also the average current is strongly sensi-
tive to fractional statistics.

III. MODEL

A. Effective action for electron tunneling case

We first consider the system represented by Fig. 1�a�. Its
low-energy behavior can be described by the chiral Luttinger
liquid model.9 Figure 5 illustrates the model. The two edges
1 and 2 correspond to two chiral Luttinger liquids with the
same propagation direction. The dashed lines describe quan-
tum point contacts where electrons tunnel between the edges.
Note that the respective distances L and L+a between the
point contacts along the two edges are different. The
Lagrangian assumes the standard form9

L = −
�

4�
 dxdt �

k=1,2
��t	k�x	k + v��x	k�2� − dt�T1 + T2� ,

�15�

where T1 and T2 are tunneling operators, v is the excitation
velocity along the edges, and �	k� represent two chiral Bose

FIG. 3. �Color online� The Aharonov-Bohm interferometer from
Ref. 5.

FIG. 4. �Color online� The Aharonov-Bohm interferometer con-
sidered in Ref. 7.

FIG. 5. Mach-Zehnder interferometer can be modeled as two
chiral Luttinger liquids with the same propagation direction.
Dashed lines represent quantum point contacts. In the case corre-
sponding to Fig. 1�b� quasiparticle tunneling is allowed while in the
case that corresponds to Fig. 1�a� only electron tunneling is
allowed.
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fields which satisfy the following commutation relations:

�	l�xl,t = 0�,	p�xp,t = 0�� = i��lp sgn�xl − xp� . �16�

The Bose fields are related to the charge densities �l through

�l = ���le/2���x	l, �17�

where e is an electron charge and �l=1/ �2ml+1� are the
filling factors of the QHE puddle defined by edge 2e and the
QHE strip bounded by edge 1e. The tunneling operators9

T1 = �1 exp�i�	1�0,t�/��1 − 	2�0,t�/��2�� + H.c.,

T2 = �2 exp�i�	1�L,t�/��1 − 	2�L + a,t�/��2�� + H.c..

�18�

are proportional to the electron annihilation and creation op-
erators �exp�±i	l /��l�. The action also includes operators
describing simultaneous tunneling of several electrons but
they do not play a significant role at low energies.

In the presence of a magnetic flux � through the region
A-QPC2-B-QPC1-A, the tunneling amplitude �2 should be
multiplied by the phase factor exp�2�i� /�0�, where
�0=hc /e is the flux quantum.15 This phase factor describes

the difference of the phases e / ��c��QPC1
QPC2A� dl� accumulated by

the electrons moving along two edges between the point con-
tacts. For one edge the integration path is QPC1-A-QPC2,
and for the other edge the integration path is
QPC1-B-QPC2 �Fig. 1�.

The voltage bias V results in the chemical potential dif-
ference �1−�2=eV between edges 1e and 2e. We would like
to emphasize that the potential difference between the edges
is determined by the voltage difference between the sources
S1 and S2 in both setups, Figs. 1�a� and 1�b�; however, the
shape of the edges 1e and 2e, Fig. 1�a�, is different from the
shape of the edges 1q and 2q, Fig. 1�b�. We will use the
interaction representation which makes both chemical poten-
tials equal and introduces a time dependence into the tunnel-
ing amplitudes:

�1,�2 � exp	−
ieVt

�
� . �19�

The difference of the chemical potentials results also in the
difference of the average densities between the edges. We
assume that edge 2 is connected to the ground. Then the
average density �2���x	2� is zero in the limit of weak tun-
neling. It will be convienient for us to shift the Bose field on
the first edge 	1�x�→	1�x�− f�x� by a function f�x� of the
coordinate in such a way that ��x	1� becomes zero. The
mean charge density on edge 1 is proportional to the voltage
bias and can be found from the minimization of the Hamil-
tonian

H = � dx
 v
4�

��x	1�2 −
eV��1

2��
�x	1� . �20�

This yields q= ��x	1�=eV��1 / ��v�. We next shift the field
	1→	1−qx such that ��x	1� vanishes. At the same time �2

is multiplied by the factor exp�ieVL /�v�.

Hereafter we assume that �1��2. The case �1=�2=1 cor-
responds to the free electron problem.13,14

B. Effective action for the quasiparticle tunneling case

We now consider the system depicted in Fig. 1�b�. The
model is given by the chiral Luttinger liquid action �15� with
a different choice of the tunneling operators.9 Several modi-
fications immediately follow from the fact that the quasipar-
ticle charge �e differs from the electron charge. �1� The tun-
neling operators should be expressed via the quasiparticle
annihilation and creation operators �exp�±i��	l�, �2� the
flux-dependent phase factor in �2 is now exp�2��i� /�0�,
�3� the phase factor exp�ie�VL /�v� should be used instead of
exp�ieVL /�v�, and �4� in the interaction representation the
time dependence of the tunneling amplitudes becomes

�1,�2 � exp	−
ie�Vt

�
� . �21�

The fifth difference from Eqs. �18� consists in the introduc-
tion of two Klein factors �1 and �2 �a related model without
Klein factors has been considered in Ref. 16�:

T1
q = �1�1 exp�i���	1�0,t� − 	2�0,t��� + H.c.,

T2
q = �2�2 exp�i���	1�L,t� − 	2�L + a,t��� + H.c. �22�

where the commutation relations are

�1�2 = exp�− 2��i��2�1,

�1�2
+ = �2

+�1 exp�2��i� . �23�

These commutation relations can be understood from a
locality argument similar to Ref. 7. Two tunneling operators
affect two distant parts of the system. Hence, for any reason-
able model �T1

q ,T2
q�=0. One can calculate �T1

q ,T2
q� employing

the commutation relations for the Klein factors, the commu-
tation relations, Eq. �16�, for the Bose fields, and the Baker-
Hausdorff formula. This results in �T1

q ,T2
q�= �T1

q , �T2
q�+�=0

provided that Eq. �23� is satisfied. A different formulation of
the same argument can be found in Ref. 7. Reference 17
discusses how Klein factors which ensure the commutativity
of tunneling operators can be derived using the duality be-
tween weak quasiparticle tunneling and strong electron tun-
neling.

The Klein factors serve as a manifestation of fractional
statistics and are absent in the case of fermion tunneling,
Sec. III A. The importance of Klein factors in quantum Hall
systems with more than two edges has been emphasized
previously.6,7,17–19 In our problem, the Klein factors are nec-
essary even though there are only two edges. Note that in the
setup of Fig. 1�a� no Klein factors are needed. Indeed, the
operators T1 and T2 defined by Eq. �18� commute. Commu-
tativity of the quasiparticle tunneling operators is also en-
sured without Klein factors for the standard Aharonov-Bohm
interferometer geometry,5 Fig. 3.

In our calculations we will use the following representa-
tion of the Klein factors by 1/��1/� matrices:
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�1 =�
0 1 0 0 ¯ 0

0 0 1 0 ¯ 0

¯ ¯ ¯ ¯ ¯ ¯

0 ¯ ¯ 0 1 0

0 ¯ ¯ ¯ 0 1

1 0 ¯ ¯ ¯ 0

� ,

�2 =�
0 � 0 0 ¯ 0

0 0 �2 0 ¯. . . 0

¯ ¯ ¯ ¯ ¯ ¯

0 ¯ ¯ 0 �1/�−2 0

0 ¯ ¯ ¯ 0 �1/�−1

1 0 ¯ ¯ ¯ 0

� , �24�

where �=exp�−2��i�. One can easily check that the above
matrices satisfy the commutation relations �23�. The tunnel-
ing operators �22� with the Klein factors �24� can be under-
stood as products of a quasiparticle creation operator, an an-
nihilation operator, and a phase factor which includes the
statistical phase accumulated during the tunneling event.

The charge distribution on the edges is determined by the
fields �	l�x��, the total charge being determined by the zero
modes of these fields. In the setup depicted in Fig. 1�a� the
charge distribution completely describes all states in the Hil-
bert space on which the effective low-energy Hamiltonian
acts. On the other hand, our discussion in Sec. II shows that
in the case of quasiparticle tunneling one needs to specify
both the charge distribution and the effective statistical flux
through the interferometer. Hence, the corresponding Hilbert
space is the product of the space Vcharge on which the Bose
operators 	l act and the space Vflux on which the Klein fac-
tors act. As is clear from the size of the matrices �24� the
dimensionality of the latter space is dim Vflux=1/�. This
agrees with our discussion in Sec. II where we found that the
interferometer has 1/� classes of states characterized by dif-
ferent probabilities of quasiparticle tunneling.

Calculations based on the model �15� with the tunneling
operators �22� confirm Eq. �7� of Sec. II. The Klein factors
keep track of fractional statistics and are crucial for this re-
sult. In the absence of the Klein factors—i.e., for fractionally
charged particles which do not obey fractional statistics—
one gets qualitatively different results.16

IV. ELECTRON TUNNELING

We now study the electric current between the two edges.
We consider the geometry depicted in Fig. 1�a�. The current
operator

Î =
d

dt
Q̂1

=
i

�
�Ĥ,Q̂1�

=
ie�1

�
exp�− ieVt/��exp�i�	1�0�/��1 − 	2�0�/��2��

+
ie�2

�
exp�ieVL/�v + 2�i�/�0�exp�− ieVt/��

�exp�i�	1�L�/��1 − 	2�L + a�/��2�� + H.c., �25�

where Q1 is the total charge of the first edge and H the
Hamiltonian. For our nonequilibrium problem we employ
the Keldysh technique.20 To this end we assume that the
tunneling amplitudes �1,2=0 at the moment of time t=−�
and are subsequently turned on gradually. At t=−� the sys-
tem is in thermal equilibrium at temperature kBT and chemi-
cal potential difference eV between the edges. The initial
equilibrium state determines the bare Keldysh Green func-
tions which will be used in the perturbative calculations be-
low.

The current at t=0 is

I = Tr��̂S�− �,0�ÎS�0,− ��� , �26�

where �̂ is the initial density matrix and S�0,−��
=T exp�−i� Ĥdt /�� the evolution operator. Expanding the
latter to first order in the tunneling amplitudes one finds

I =
e

�2
−�

+�

dt���1�2 + ��2�2�

�exp	−
ieVt

�
��F�0,0,t� − F�0,0,− t��

+
e

�2
−�

+�

dt��1�2
* exp	−

ieVL

�v
− 2�i�/�0�exp	−

ieVt

�
�

��F„− L,− �L + a�,t… − F�L,L + a,− t�� + H.c.� , �27�

where

F�b,c,t� = Tr��̂ exp�i	1�x = b,t�/��1�

�exp�− i	1�x = 0,0�/��1��

�Tr��̂ exp�i	2�x = c,t�/��2�

�exp�− i	2�x = 0,0�/��2�� . �28�

Let us first consider the zero-temperature case. The correla-
tion function is given by21

F�b,c,t� =
�c

1/�1

�� + i�t − b/v��1/�1

�c
1/�2

�� + i�t − c/v��1/�2
, �29�

where � is an infinitesimal positive constant and �c is the
ultraviolet cutoff.22 With the above expression we find

I = I0 + I�, �30�

where

I0 = −
2�e�c

�2 ���1�2 + ��2�2�
��ceV/��1/�1+1/�2−1

�1/�1 + 1/�2 − 1�!
, �31�
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I� =
2�ie�c

1/�1+1/�2

�2 �− 1�1/�2�1�+1/�2�2�

���1�2
* exp�− 2�i�/�0�

�� 1

�1/�1 − 1�!
� d1/�1−1

dz1/�1−1�
z=0

exp	−
ieVz

�
�

�z + a/v�1/�2

+
1

�1/�2 − 1�!
� d1/�2−1

dz1/�2−1�
z=−a/v

exp	−
ieVz

�
�

z1/�1
� − H.c.� .

�32�

The current oscillates as a function of the magnetic flux with
period �0. At low voltages it follows the power law

I � V1/�1+1/�2−1 �33�

�see Appendix A; cf. Ref. 10�. Figure 6 illustrates the I-V
curves for �1=�2=1, �1=�2=1/3 and �1=1, �2=1/3. In the
case when �1=�2, similar expressions for other interferom-
eter geometries were obtained in Refs. 5 and 10. One can
easily see that Eq. �1� follows from Eqs. �30�–�32�.

Notice that only the difference a of the lengths of the
edges enters the above expression for the current while the
total length L of the first edge drops out. In the standard
geometry of an Aharonov-Bohm interferometer5 the flux-
dependent contribution to the current depends on the total
interferometer size and decreases with the system’s size.
Thus, quantum interference effects cannot be observed at
large system sizes. In the Mach-Zehnder geometry, quantum

interference can be observed for L�a since only the differ-
ence of the phases accumulated by the particles moving
along two edges is important.

The case of nonzero temperature is considered in Appen-
dix B. The flux-dependent “interference” contributions I� to
the current vanishes at large akBT / �hv�. In the opposite limit
of akBT / �hv��1 as well as for akBT�hv, the flux-
independent contributions I0 and I� are related by Eq. �1�.
The linear conductance at low temperatures and low voltages
eV�kBT scales as

G = I/V � �kBT�1/�1+1/�2−2. �34�

V. QUASIPARTICLE TUNNELING

We now consider the geometry depicted in Fig. 1�b�. The
current through the interferometer oscillates as a function of
the magnetic flux. In the first subsection below we determine
the oscillation period. It turns out to be the same as in the
case of electron tunneling and equals one flux quantum �0.
Next, we use the perturbation theory to calculate the current
as a function of the voltage, temperature, and distance be-
tween the quantum point contacts. We confirm Eq. �14�. The
dependence of the current �14� on the tunneling amplitudes
�1 and �2 is nonanalytic. Such dependence cannot be ob-
tained in any finite order of the perturbation theory. Thus, we
have to sum up an infinite set of diagrams. In Sec. V B this is
made for the simplest case of zero temperature and low volt-
age, eVa��v, at the filling factor �=1/3. The general case
is considered in the final subsection.

A. Period of Aharonov-Bohm oscillations

The tunneling current operator can be found with the
same method as in the previous section:

Î =
d

dt
Q̂1

=
i

�
�Ĥ,Q̂1�

=
ie�1��1

�
exp�− ie�Vt/��exp�i���	1�0� − 	2�0���

+
ie�2��2

�
exp	 ie�VL

�v
+ 2��i�/�0�exp�− ie�Vt/��

�exp�i���	1�L� − 	2�L + a��� + H.c. �35�

The average current is given by Eq. �26�. Since the tun-
neling amplitudes �l are small, we will employ perturbation
theory. To lowest �second� nonzero order in �l the resulting
contributions are proportional to ��1�2 and ��2�2. The cross
terms proportional to �1

*�2 and �1�2
* vanish. Indeed, each

term of the perturbative expansion is proportional to the
product of the average of some function of the Bose opera-
tors �	l� and the average of some product of Klein factors.
The averages are determined by the initial density matrix �̂,
Eq. �26�. The latter depends on the effective action, Eq. �15�,
at t=−�. That action does not contain Klein factors. Hence,

FIG. 6. �Color online� Current I�V ,�=0� �thin line� and visibil-
ity R= �max�I�V ,��−min�I�V ,��� / �max�I�V ,��+min�I�V ,���
=max I� / I0 �thick line� as functions of V /V0�eVa / ��v�. The cur-
rent is normalized to its value at V=25V0; �1=�2; �a� �1=�2=1; �b�
�1=1, �2=1/3; �c� �1=�2=1/3 �cf. Refs. 5 and 10�.
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the density matrix �̂= �̂	�̂�, where �̂	 and �̂� act on the
spaces Vcharge and Vflux, respectively, and �̂� is proportional to
the unit matrix at any finite temperature. Thus, the cross
terms are proportional to expressions of the form Tr��l�m

+ �,
where l�m. Such traces are zero. This is readily seen from
the following argument. For any two linear operators
Tr AB=Tr BA. Hence, Tr��1�2

+�=Tr��2
+�1�. At the same time

it follows from Eq. �23� that Tr��1�2
+�=exp�2��i�Tr��2

+�1�.
Hence, Tr��1�2

+�=0. It follows that there are no cross terms
in the second order perturbation theory.

The above result implies that the second-order terms are
independent of the magnetic flux. The flux dependence of the
current emerges only in higher orders of the perturbation
theory. Each term of the perturbative expansion of Eq. �26�
contains a product of Klein factors. Let the number of the
Klein factors �l

+ in a given term I� be nl
+ and the number of

the factors �l be nl
−. Each of the four numbers nl

± indicates
the power in which the respective coefficient �1, �2, �1

*, or
�2

* enters in I�. Nonzero terms of the perturbation series de-
scribe the processes which do not change the edge charges.
Hence, n1

+−n1
−=−�n2

+−n2
−�.

We next show that ��n1
+−n1

−�2 is an integer for any non-
vanishing I�. Consider the trace W of the product of the
Klein factors in the term I�. We can move all operators �1

+ ,�1
to the left of all operators �2

+ ,�2. This will produce a phase
factor exp�i�. The trace can be represented as
W=exp�i�Tr K1K2, where K1 is a product of �1

+ ,�1 and K2

is a product of �2
+ ,�2. We know that

Tr K1K2 = Tr K2K1. �36�

At the same time, one can move all Klein factors �2
+ ,�2 in

the product K1K2 to the left of the operator K1 using the
commutation relations, Eq. �23�. This yields

K1K2 = exp�2��i�n1
+ − n1

−�2�K2K1. �37�

Equations �36� and �37� show that I��Tr K1K2�0 only if
��n1

+−n1
−�2 is an integer.

If �=1/�odd prime number�, including experimentally
relevant �=1/3 and �=1/5, the above result means that
�n1

+−n1
−�=−�n2

+−n2
−�=q /�, where q is an integer. The term

I���2
n2

−
��2

*�n2
+
�exp�2��i� /�0�n2

−−n2
+��. Hence, it follows

that the current is a periodic function of the magnetic flux
with period �0. As shown in the following subsections the
period is the same for any �=1/ �2m+1�. This can also be
verified by a direct calculation of the trace �36� using Eq.
�24�. Such periodicity agrees with the Byers-Yang
theorem.23,24 If fractionally charged quasiparticles did not
obey fractional statistics—i.e., if there were no Klein
factors—the period would be ��=�0 /� �cf. Ref. 16�.

Our effective hydrodynamic action �15�,�22� is applicable
only for low temperatures and voltages. We are going to use
the perturbation theory in �1,2. It turns out that the
lowest-order contribution to the current scales as
I�V�1,2

2 max�eV ,kBT��, where �=2�−2 is negative. The
perturbation theory can be used for the calculation of the
tunneling current only when the tunneling current is much

smaller than the current �e2V /h incoming from the sources.
Thus, our calculations are valid provided that
�1,2 max�eV ,kBT��−1� � �

�c
��.

We will see that interference effects can be observed only
for small enough a�hv /max�eV ,kBT�. This condition is
similar to the restriction on the total interferometer size in
Ref. 5. In our case the restriction on the total size L is
weaker. As is clear from Sec. II our analysis is based on the
assumption that the time �t between tunneling events ex-
ceeds the time L /v needed to a quasiparticle to travel from
QPC1 to QPC2. Thus, L
v�t� v�2

�1,2
2 �c

� �

max�eV,kBT��c
�2�−1

B. �=1/3, T=0, eVa™�v

We will use the expansion of the current, Eq. �26�, in
powers of the tunneling amplitudes �1,2. Only contributions
proportional to even powers of the tunneling operators are
nonzero. One might naively expect on the basis of power
counting that the terms of order 2n in �1,2 scale as
V��1�p��2�2n−p� �max�eV ,T��2n��−1�, if L�vh /max�eV ,kBT�.
This is, however, not the case beyond the second perturbative
order. In fact, the fourth-order contribution �as well as higher
orders� is infinite. To demonstrate this we use an analogy
between the power expansion of the average current and the
partition function of a Coulomb gas.26 Positively and nega-
tively charged “particles” correspond to the tunneling events
from edge 1q to edge 2q and from edge 2q to edge 1q,
respectively. The coordinates of the particles correspond to
the times of the tunneling events. The charges can be located
on both branches of the Keldysh contour, Fig. 7. The par-
ticles on the top and lower branches emerge from the expan-
sions of S�0,−�� and S�−� ,0� in Eq. �26�, respectively. As
discussed in Ref. 26, attraction between oppositely charged
particles binds them in pairs. The typical pair size is of order
� /max�eV ,kBT� at low temperatures and voltages27

�if L�hv /max�eV ,kBT�, then pairs of size L /v are

possible�. When
�1,2�c

�
�max�eV,kBT��c

�
��−1

�1 and L

FIG. 7. The fourth-order contributions in the Keldysh technique
can be represented in terms of two dipoles one of which is located
at t=0. The second dipole can include �a� two charges from the top
branch of the contour, �b� two charges from the bottom branch, or
�c� one charge from the top branch and one from the bottom branch.
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� v�2

�1,2
2 �c

� �

max�eV,kBT��c
�2�−1, the pairs are dilute and do not over-

lap. Hence, any term in the perturbation expansion reduces to
the trace of a product of Klein factors times a product of the
two-point correlation functions,

F�b = x1 − x2;c = �x1 − x2��L + a�/L;t = t1 − t2�

= Tr��̂ exp�i��	1�x = x1,t1��exp�− i��	1�x = x2,t2���

� Tr��̂ exp�i��	2�x = x1�L + a�/L,t1��

�exp�− i��	2�x = x2�L + a�/L,t2��� , �38�

corresponding to the bound pairs. This product should be
integrated over the times of all tunneling events—i.e., the
positions of the charges. This integration can be separated
into the product of the integrals over the dipole sizes
�t1− t2�, Eq. �38�, and the integrals over the dipole positions
�t1+ t2� /2.

Figure 7 illustrates the fourth-order contribution to the
current. One charge is located at t=0 and corresponds to the
current operator in Eq. �26�. It forms a dipole with an oppo-
site charge at the point �0�� /max�eV ,kBT�. Two more mu-
tually opposite charges are located at the points t1±�1 /2,
where �1 is the dipole size. The charges can reside on the
same or different branches of the Keldysh contour as shown
in Figs. 7�a�–7�c�. The integral over t1 diverges. In the ab-
sence of the Klein factors the infinite integrals corresponding
to the configurations of Figs. 7�a�–7�c� cancel but this is no
longer the case when the Klein factors are included. Hence,
the fourth-order contribution is infinite. The same argument
applies to higher-order contributions. Certainly, the sum of
all perturbative orders must be finite but as is clear from Sec.
II it is not an analytic function of �1,2. Below we develop a
method to sum up all orders of the perturbation theory.

We begin with the simplest case when �=1/3; T=0; eVa,
eVL��v. The same approach will be applied to the general
situation in Sec. V C. The first condition simplifies the struc-
ture of the Klein factors �24� which become 3�3 matrices at
filling factor 1 /3. The second condition allows us to use a
simpler zero-temperature expression for the correlation func-
tion:

F�b,c,t1 − t2� = Tr��̂ exp�i��	1�x = b,t1��

�exp�− i��	1�x = 0,t2���

�Tr��̂ exp�i��	2�x = c,t1��

�exp�− i��	2�x = 0,t2���

=
�c

�

�� + i�t1 − t2 − b/v���

�c
�

�� + i�t1 − t2 − c/v��� .

�39�

The third condition makes it possible to neglect the
distances L and �L+a� between the point contacts.
Indeed, the tunneling operator T2

q
¬�2�2exp�i���	1�L , t�

−	2�L+a , t��� : +H.c., Eq. �22�, can be rewritten as

T2
q
¬ �2�2 exp	i���	1�0,t� − 	2�0,t��

+ i���
k=1

� 
 �k	1

�xk Lk −
�k	2

�xk �L + a�k�/k!�: + H.c.

¬ �2�2 exp�i���	1�0,t� − 	2�0,t���

��1 + i��
 �	1

�x
L −

�	2

�x
�L + a�� + ¯ �: + H.c.,

�40�

where the ellipses denote higher-order gradients of 	l and
the colons denote normal ordering. After the substitution of
Eq. �40� in the perturbative expansion of the current one can
compare the contributions from the terms containing deriva-
tives of 	l with the contributions from the terms which do
not contain such derivatives. Power counting shows that the
terms with derivatives are suppressed by the factors of order
�LeV /�v�k; ��L+a�eV /�v�k and hence can be neglected. This
conclusion agrees with the results of Sec. V C for arbitrary
voltages, temperatures, and interferometer sizes.

Thus, we can use an effective single-impurity model. The
tunneling operator O= �T1

q+T2
q�, Eqs. �22� and �24�, assumes

the form

O = O− + O+, O− = O+
† = �−A−, �41�

where

A− = A+
† = exp�i���	1�0,t� − 	2�0,t��� �42�

and the �nonunitary� operator �− is

�− = �+
† = �1�1 + �2 exp�2��i�/�0��2 = � 0 C1 0

0 0 C2

C3 0 0
� ,

�43�

with C1=�1+�2 exp�2��i� /�0��, C2=�1

+�2 exp�2��i� /�0��2, C3=�1+�2 exp�2��i� /�0�, and �
=exp�−2�i /3�. In what follows we will denote the basis vec-
tors �1, 0, 0�, �0, 1, 0�, and �0, 0, 1� as �1�, �2�, and �3�,
respectively. Since we neglect L and �L+a� in the rest of this
section, we can use the correlation function �39� in the sim-
plest limit b ,c=0.

The contribution I2N of order 2N to the current corre-
sponds to the charge configuration with N dipoles. One di-
pole of size �0 is located at t=0. The remaining dipoles of
sizes �1 , . . . ,�N−1 are located at 0� t1� t2� ¯ � tN−1. One
finds
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I2N = − �
b0=±1

�
bk

±=±1

�
��0�=±

��0�
�ei2N

�2N 
−�

0

dt1
−�

t1

dt2 ¯ 
−�

tN−2

dtN−1
−�

0

d�0
−�

+�

d�1 ¯ d�N−1b0�kbk
+bk

−

�Tr
�̂TcO��0��t = 0�O−��0���0;b0�O−	t1 +
�1

2
;b1

−�O+	t1 −
�1

2
;b1

+�¯ O−	tN−1 +
�N−1

2
;bN−1

− �O+	tN−1 −
�N−1

2
;bN−1

+ �� ,

�44�

where Tc denotes time ordering along the Keldysh contour,
b0 ,bk

+ ,bk
−= +1 correspond to the bottom branch of the

Keldysh contour, and b0 ,bk
+ ,bk

−=−1 correspond to the top
branch.

The trace in Eq. �44� can be factorized as

Tr�¯� = �A��, �45�

where �A stays for the trace of a product of operators A± and
�� denotes the trace of a time-ordered product of the Klein
factors. The former trace can be further factorized into a
product of the two-point correlation functions �39� corre-
sponding to each dipole. We next simplify the expression for
��,

�� = Tr
�̂�Tc���0��t = 0��−��0���0;b0��−	t1 +
�1

2
;b1

−�
��+	t1 −

�1

2
;b1

+�¯ �−	tN−1 +
�N−1

2
;bN−1

− �
��+	tN−1 −

�N−1

2
;bN−1

+ �� . �46�

Using the matrix elements of the Klein factors the above
equation can be rewritten as

�� =
1

3 �
eN=1,2,3

�
ek

t/b=1,2,3;k=1,. . .,N−1

I�e1
t ,e1

b�

�B�e1
t ,e1

b;e2
t ,e2

b� ¯ B�eN−2
t ,eN−2

b ;eN−1
t ,eN−1

b �

�B�eN−1
t ,eN−1

b ;eN
t = eN,eN

b = eN� , �47�

where the factor of 1 /3 comes from the condition Tr �̂�=1;
I�e1

t ,e1
b�= �e1

b�Tc���0��t=0��−��0���0 ;b0��e1
t � and

B�ek
t ,ek

b;ek+1
t ,ek+1

b �

= �ek+1
b �ek

b��ek
t �Tc�−�tk + �k/2;− 1��+�tk − �k/2;− 1��ek+1

t �

for bk
+ = bk

− = − 1,

B�ek
t ,ek

b;ek+1
t ,ek+1

b �

= �ek+1
b �Tc�−�tk + �k/2; + 1��+�tk − �k/2; + 1��ek

b��ek
t �ek+1

t �

for bk
+ = bk

− = + 1,

B�ek
t ,ek

b;ek+1
t ,ek+1

b �

= �ek+1
b ��+�tk − �k/2; + 1��ek

b��ek
t ��−�tk + �k/2;− 1��ek+1

t �

for bk
+ = + 1; bk

− = − 1,

B�ek
t ,ek

b;ek+1
t ,ek+1

b �

= �ek+1
b ��−�tk + �k/2; + 1��ek

b��ek
t ��+�tk − �k/2;− 1��ek+1

t �

for bk
+ = − 1; bk

− = + 1. �48�

It is clear from Eqs. �48� that for equal ek+1
t =ek+1

b =ek+1,
the expression B�ek

t ,ek
b ;ek+1 ,ek+1� is nonzero only if ek

t =ek
b.

Hence, Eq. �47� can be represented as a matrix product

�� = �
ek

Ĩ�e1�B̃�e1,e2� ¯ B̃�eN−2,eN−1�B̃�eN−1,eN���eN� ,

�49�

where ��eN�=1/3, B̃�ek ,ek+1�=B�ek ,ek ;ek+1 ,ek+1�, and Ĩ�e1�
= I�e1 ,e1�. After the substitution of Eq. �49� in Eqs. �45� and

�44�, each matrix element B̃�ek ,ek+1� multiplies by the corre-
lation function i2�Tcbk

−A−�tk+�k /2 ;bk
−�bk

+A+�tk−�k /2 ;bk
+��.

The product should be integrated over d�k. One finally ob-
tains

I2N = 
−�

0

dt1
−�

t1

dt2 ¯ 
−�

tN−2

dtN−1�I�D̂N−1��� , �50�

where

��� = �1/3,1/3,1/3� , �51�

�I� = −
2e�

�2 �
k=1,2,3

Re 
−�

0

dt
�k��+�−�k�
exp�i�eVt/���c

2�

�� + it�2�

− �k��−�+�k�
exp�i�eVt/���c

2�

�� − it�2� ��k�

= −
e��1/3��c

2/3

�3�2 	 eV

3�
�−1/3

��C3�2, �C1�2, �C2�2� , �52�

D̂ = −
�3��1/3��c

2/3

�2 	 eV

3�
�−1/3� �C3�2 − �C1�2 0

0 �C1�2 − �C2�2

− �C3�2 0 �C2�2
� .

�53�

The total current
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I = � I2N = �I�exp�t̄D̂���� , �54�

where t̄= +� is the length of the Keldysh contour.

All elements of the matrix D̂ are real, all diagonal ele-
ments are negative, all nondiagonal elements are positive or
zero, and the sum of the elements in each column is zero.
The Rohrbach theorem28 applies to such matrices. Since

���D̂=0,0 is an eigenvalue of the matrix D̂. According to the
Rohrbach theorem, this eigenvalue is nondegenerate and the
real parts of all other eigenvalues are negative. This allows

for a simple calculation of exp�t̄D̂�. Let Ŝ be such a matrix

that D̃
ˆ

= ŜD̂Ŝ−1 assumes the Jordan normal form. Without loss
of generality we can assume that the first column and the first

string of the matrix D̃
ˆ

are zero. Then the first string of the

matrix Ŝ can be chosen in the form �1, 1, 1�. Thus, the matrix
exponent

exp�t̄D̂� = Ŝ−1�1 0 0

0 0 0

0 0 0
�Ŝ = Ŝ−1�1 1 1

0 0 0

0 0 0
� . �55�

Hence,

I = �I�Ŝ−1�1� = �I�S1
−1� , �56�

where �S1
−1� denotes the first column of the matrix Ŝ−1.

In order to complete our calculation we have to determine
the components f1, f2, and f3 of the vector �S1

−1�. From the

condition ŜŜ−1= Ê one finds that

f1 + f2 + f3 = 1. �57�

We also know that �S1
−1� is the eigenvector of D̂ with zero

eigenvalue—i.e., D̂�S1
−1�=0. Hence, for each k,

�Ck−1�2fk = �Ck�2fk+1, �58�

where we use the convention 3+1=1. The solution of the
above equation is fk=� / �Ck−1�2, where �= 1

1/�C1�2+1/�C2�2+1/�C3�2

can be found from Eq. �57�. Finally,

I =
− e��1/3��c

2/3

�3�2 	 eV

3�
�−1/3 3

1

�C1�2
+

1

�C2�2
+

1

�C3�2

. �59�

This expression is equal to the harmonic average of the three
tunneling currents in three systems with a single quantum
point contact with the tunneling amplitudes C1, C2, and C3,
respectively. In other words, Eq. �59� is equivalent to Eq. �4�.
Using the result of Appendix C, Eq. �59� can be represented
as

I =
− e��1/3��c

2/3

�3�2 	 eV

3�
�−1/3

���1�6 + ��2�6 + 2��1�2�3

�cos�3�0 + 2��/�0��
��1�2 − ��2�2

��1�6 − ��2�6
, �60�

where �0=arg��2 /�1�. This allows one to easily verify Eq.

�7� in the case �=1/3, T=0, eVL, eVa��v. At small
�2��1 the flux-independent and flux-dependent contribu-
tions to the current, Eq. �7�, are given by the equations

I0 =
− e��1/3��c

2/3

�3�2 	 eV

3�
�−1/3

���1�6 + ��2�6�
��1�2 − ��2�2

��1�6 − ��2�6

�
− e��1/3��c

2/3

�3�2 	 eV

3�
�−1/3

���1�2 − ��2�2� �61�

and

I� =
− 2e��1/3��c

2/3

�3�2 	 eV

3�
�−1/3

��1�2�3

�cos�3�0 + 2��/�0�
��1�2 − ��2�2

��1�6 − ��2�6

�
− 2e��1/3��c

2/3

�3�2 	 eV

3�
�−1/3 ��2�3

��1�
cos�3�0 + 2��/�0� .

�62�

C. Tunneling current for arbitrary filling factors,
temperatures, and voltages

The calculations follow the same route as in the previous
subsection. The contribution to the current of order 2N, I2N,
expresses via the trace � of the time-ordered product of 2N
tunneling operators which form N dipoles. The trace must be
integrated over the size of each dipole and the positions of
N−1 dipoles, the remaining dipole being located at t=0. The
trace � factorizes as the product �=���	, where ��

stays for the trace of the product of the Klein factors
�1, �2, �1

+, and �2
+; �	 stays for the trace of the product

of the operators exp�±i���	1�x=0�−	2�x=0��� and
exp�±i���	1�L�−	2�L+a���. The latter trace factorizes in
the product of the two-point correlation functions21 corre-
sponding to each dipole:

F�b,c,t1 − t2�

= Tr��̂ exp�i��	1�x = b,t1��

�exp�− i��	1�x = 0,t2���

�Tr��̂ exp�i��	2�x = c,t1��exp�− i��	2�x = 0,t2���

= 
 �kBT�c/�

sin��kBT�� + i�t1 − t2 − b/v��/����

�
 �kBT�c/�

sin��kBT�� + i�t1 − t2 − c/v��/����

. �63�

The former trace �� can be represented in a form similar to

Eq. �49�, where B̃�ek ,ek+1� are expressed via matrix elements
of �1 and �2. Next, one can rewrite I2N in the form �50� with

modified definitions of ���, �I� and D̂. ��� and �I� are now

1/�-dimensional vectors; D̂ is a matrix of size 1/��1/�.
Similar to the previous subsection, in order to obtain the

matrix elements of D̂, one has to multiply B̃�ek ,ek+1� by the
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correlation function �63� describing the dipole located at
t= tk and then integrate the product over the dipole size. One
finds

��� = ��,�, . . . ,�� , �64�

�I�ek� = e��Ik�V� − Ik�−V�� , �65�

�el�D̂�ek� = �k,l�Ik�−V� + Ik�V�� − �k,l−1Ik�−V� − �k,l+1Ik�V�,

�66�

where

Ik�−V� =
1

�2 ����1�2 + ��2�2�j�− V;0� + �1�2
*��*�kj�− V;− a�

+ �1
*�2�kj�− V;a�� , �67�

Ik�V� =
1

�2 ����1�2 + ��2�2�j�V;0� + �1�2
*��*�k−1j�V;a�

+ �1
*�2�k−1j�V;− a�� , �68�

where �=exp�−2�i��, the phase factor exp�2�i�� /�0

+ ie�VL /�v� should be included in �2, and

j�U,0� = − 
−�

+�

dt exp�i�eUt/��F�0,0,t� ,

j�U, ± a� = − 
−�

+�

dt exp�i�eUt/��F„±L, ± �L + a�,t… .

�69�

The total current is given by Eq. �54� of the previous section

with the above definitions of �I�, D̂, and ���.
One can easily check that j�U ,x�= j*�U ,−x�. Hence, Ik�±V�

are real. Appendix D shows that

Ik�−V� = exp	−
�eV

kBT
�I�k+1��V� = I�k+1��V�, �70�

which is equivalent to the detailed balance condition �8�. A
comparison with the geometry of Fig. 3, Ref. 5, shows that
the same integral which expresses the current IFig. 3 in the
geometry Fig. 3 also equals the expression

Ik�V� − I�k−1��−V� = �1 − �Ik�V� = IFig.3
�k� /��e� = −

22��c

�2 ��eff�2	�kBT�c

�
�2�−1��	� +

i�eV

2�kBT
��2

��2��
sinh

�eV

2kBT
, �71�

where

��eff�2 = 2�
��2��
���� �

m,l
�m�l

* exp�i�2���/�0 − e�Va/�2�v� − 2��k − 1�����m,2 − �l,2��
exp�− ��ãkBT/��v��

sinh�eV�/2kBT�

�Im� exp�ie�Vã/�2�v��F��,� − ie�V/2�kBT;1 − ie�V/2�kBT;e−2�kBTã/��v��
��� + ie�V/2�kBT���1 − ie�V/2�kBT� � , �72�

where ã=a�1−�m,l� and F is the hypergeometric function.5

Since the particle current flows from the edge with the
higher chemical potential to the edge with the lower poten-
tial, we know the sign of IFig. 3

�k� =dQ1 /dt�0 �electron charge
e
0�. Hence, Ik�±V�
0. One can also see that the sum of the

elements in any column of the matrix D̂, Eq. �66�, is zero.
Thus, the Rohrbach theorem28 applies again and hence

exp�t̄D̂�= Ŝ−1M̂Ŝ, where the matrix Ŝ reduces D̂ to the Jordan

normal form, the matrix M̂ has only one nonzero element in
its upper left corner, and this element is equal to 1 just like in
the preceding subsection. All elements of the first string of

the matrix Ŝ are equal to 1. This allows us to obtain the
expression for the current in the form �56� following exactly
the same steps as in Sec. V B.

The only thing left is the calculation of the components fr

of the vector �S1
−1�—i.e., the first column of the matrix Ŝ−1.

From the condition ŜŜ−1=E one finds

�
r=1

1/�

fr = 1. �73�

From the condition D̂�S1
−1�=0 one finds

Ik�V�fk − I�k−1��−V�fk−1 = I�k+1��V�fk+1 − Ik�−V�fk. �74�

At the same time the current �65� and �56� is

I = �e�
k

�Ik�V� − Ik�−V��fk. �75�
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The system of equations �73�–�75� together with the de-
tailed balance condition �70� is equivalent to the system
�8�–�10� of Sec. II with Ik�±V� playing the role of the transi-
tion probabilities p. The components fr of �S1

−1� have the
physical meaning of the distribution function. Thus, we can
directly use the solution �14�:

I =
1/�

�
k=1

1/�

Ik��V,T,a�

, �76�

where the current I�k= IFig. 3
�k� , Eq. �71�, equals the tunneling

current in the geometry of Fig. 3 with the tunneling
amplitudes �1 and �2 exp�i�2��� /�0−e�Va / �2�v�
−2��k−1����.

In the limit T=0; aeV�hv the above result reduces to a
simple generalization of Eq. �60�:

I =
− 2e� sin�2�����1 − 2���c

2�

�2 	 eV�

�
�2�−1 ��1�2 − ��2�2

��1�2/� − ��2�2/�

����1�2/� + ��2�2/� + 2��1�1/���2�1/� cos�2��/�0 + �0/��� .

�77�

If ��1�� ��2�, the current never vanishes. At ��1�= ��2� a
“resonance” is reached when �= �n+1/2−�0 / �2�����0 and
I=0.

VI. CONCLUSIONS

We have found that the tunneling current through the elec-
tronic Mach-Zehnder interferometer is a periodic function of
the magnetic flux with period �0. This result is valid both in
the weak quasiparticle tunneling regime and in the weak
electron tunneling regime. The relations between the flux-
dependent and flux-independent components of the current,
I� and I0, are different in these respective regimes. In the
electron tunneling case, I���1 ,�2���I0��1 ,�2�
− I0��1 ,0��1/2 at low voltages and temperatures, �2��1. In
the quasiparticle tunneling case the flux-dependent contribu-
tion scales as I���1 ,�2���I0��1 ,�2�− I0��1 ,0��b, where
b�1. The exponent in this power law contains information
about quasiparticle statistics since the exponent derives from
the algebra of the Klein factors. Thus, the Mach-Zehnder
interferometer can be used to probe fractional statistics. We
would like to emphasize the topological origin of the above
relation between I� and I0: As the discussion in Sec. II
shows, this relation is independent of the particular model
used to describe the edge states. Recently an interference
pattern has been observed experimentally for the integer
quantum Hall case in a Mach-Zehnder interferometer.8

Higher magnetic fields would allow an investigation of a
fractional quantum Hall liquid.
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APPENDIX A: ELECTRON TUNNELING AT LOW
VOLTAGES AND ZERO TEMPERATURE

In this appendix we verify that the current, Eqs. �30�–�32�,
satisfies the asymptotics �33� at V→0. The flux-independent
contribution to the current �31� scales as Vg1+g2−1, where
g1=1/�1 and g2=1/�2. Hence, we need to check that the
flux-dependent contribution I� does not exceed
const Vg1+g2−1 at low voltages. Expanding exp�− ieVz

�
� in Eq.

�32� in powers of ieVz /� one finds that the coefficient before
Vk in the Taylor expansion of I� equals

sk = const
 1

�g1 − 1�!
� dg1−1

dzg1−1�
z=0

zk

�z + a/v�g2

+
1

�g2 − 1�!
� dg2−1

dzg2−1�
z=−a/v

zk−g1� . �A1�

We want to show that sk=0 for all k
g1+g2−1.
Let us consider separately k�g1−1 and k�g1−1.
�1� k�g1−1. This inequality can be satisfied for g2�1

only since k
g1+g2−1. In this case � dg2−1

dzg2−1 �z=−a/vzk−g1 =0

since g2−1�k−g1�0. Since � dp

dzp �z=0zk=0 at p
k, one finds

� dg1−1

dzg1−1 �z=0
zk

�z+a/v�g2
=�p=0

g1−1Cg1−1
p dp

dzp zk dg1−1−p

dzg1−1−p
1

�z+a/v�g2
=0, where Ca

b

denote binomial coefficients. Thus, sk=0 for
g1+g2−1�k�g1−1.

�2� At k�g1−1 one finds

sk = const
 1

�g1 − 1�!
Cg1−1

k k!�− 1�g1−1−k

�a/v�g1+g2−k−1

�g1 + g2 − k − 2�!
�g2 − 1�!

+
1

�g2 − 1�!
�− a/v�k−g1−g2+1 �g1 + g2 − k − 2�!

�g1 − k − 1�! �
= 0. �A2�

Thus, sk=0 for all k
g1+g2−1.

APPENDIX B: PERTURBATION THEORY AT FINITE
TEMPERATURE

We want to calculate the current, Eq. �27�, at a finite tem-
perature, kBT�0. The correlation function, Eq. �28�, is21
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F�b,c,t� = 
 �kBT�c/�

sin��kBT�� + i�t − b/v��/���1/�1

�
 �kBT�c/�

sin��kBT�� + i�t − c/v��/���1/�2

. �B1�

Since 1/�1=g1 and 1/�2=g2 are odd integers,
F(−L ,−�L+a� , t)=F�L ,L+a ,−t� on the real axis except in
the vicinity of the two real poles t=L /v and t= �L+a� /v.
F�0,0 , t�=F�0,0 ,−t� except near t=0. Hence, the integral,
Eq. �27�, reduces to the sum of the contour integrals along

small circles around the real poles. A straightforward calcu-
lation yields

I =
e�c

�2 	�kBT�c

�
�g−1

���1�2 + ��2�2�J0 +
e�c

�2 	�kBT�c

�
�g−1

���1�2
* exp�− 2�i�/�0�J� + c.c.� , �B2�

where g=g1+g2=1/�1+1/�2 and

J0 =
2�

ig+1�g − 1�!
� dg−1

dzg−1�
z=0

exp�ieVz/�kBT�zg

sinhg z
, �B3�

J� =
2�

ig+1�g1 − 1�!
� dg1−1

dzg1−1�
z=0

exp	 ieVz

�kBT
�zg1

�sinh z�g1	sinh
z −
�akBT

�v
��g2

+
2�

ig+1�g2 − 1�!
� dg2−1

dzg2−1�
z=�akBT/�v

exp	 ieVz

�kBT
�	z −

�akBT

�v
�g2

�sinh z�g1	sinh
z −
�akBT

�v
��g2

.

�B4�

Note that the temperature enters the above expression in
the combination akBT but not in the combination LkBT. This
can be understood from the picture of noninteracting elec-
trons. For noninteracting particles the current is the sum of
independent contributions from different electron energies.
Each contribution depends on the phase difference between
the two paths connecting the point contacts but not the total
phase accumulated on any of those paths. The former is pro-
portional to a, the latter to L.

One can easily extract the asymptotical behavior of the
linear conductance G= dI

dV at low temperatures �34� from Eqs.
�B3� and �B4�. In the Loran expansion of G in powers of a,
each term of order an is proportional to T1/�1+1/�2−2+n since a
enters the expression for the current in the combination
�akBT /�v� only. In the limit a→0 the conductance must re-
main finite. Indeed, at L=0 this limit corresponds to a prob-
lem with a single tunneling contact. Hence, only positive and
zero powers of a are present in the Loran expansion and the
leading contribution to the temperature dependence of the
conductance scales as T1/�1+1/�2−2.

APPENDIX C: EFFECTIVE SINGLE-IMPURITY MODEL

In the effective single-impurity model, Sec. V B, the cur-
rent is given by Eq. �59�. The purpose of this appendix con-
sists in the calculation of the coefficient in Eq. �59�,

U =
N

�
k=1

N
1

�Ck�2

, �C1�

where Ck=�1+�2 exp�2�i� / �N�0�−2�ik /N�, Eq. �43�, N
=1/�. Without loss of generality we can assume that �1
= ��1� is real. Let �2= ��2�exp�i�0�. In the rest of the appendix
we will use the notation 1= ��2�, 2= ��2� and 	

=2�� / �N�0�+�0. U can be represented as the ratio of two
polynomials of 1 and 2:

U = N
�k�1 + 2 exp�i	 + 2�ik/N��2

�
k

�l�k� �1 + 2 exp�i	 + 2�il/N��2
, �C2�

where the prime after the product sign means that the term
with l=k is not included in the product. The nominator in Eq.
�C2� equals �P(2 exp�i	�)�2, where the polynomial

P�z� = �k�1 + z exp�2�ik/N�� . �C3�

All roots of the polynomial �C3� coincide with the roots of
the polynomial 1

N+zN. Hence, from the basic theorem of
algebra,

P�z� = 1
N + zN, �C4�

and the nominator is

�P„2 exp�i	�…�2 = �1
N + 2

N exp�iN	���1
N + 2

N exp�− iN	��

= 1
2N + 2

2N + 21
N2

N cos N	 . �C5�

The denominator in Eq. �C2� can be represented as

d = �
k
� P�2 exp�i	��

1 + 2 exp�i	 + 2�ik/N�
�2

= �
k
��

p=0

N−1

�− 1�p1
N−1−p2

p exp�ip	 + 2�pki/N��2

= �
k=0

N−1

�
p=0

N−1

�
r=0

N−1

1
N−1−p2

p�− 1�p

�exp�ip	 + 2�kpi/N�1
N−1−r2

r�− 1�r

�exp�− ir	 − 2�kri/N� . �C6�
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The sum �k=0
N−1 exp�2�k�p−r�i /N�=0, if p−r�nN. With the

help of this property, Eq. �C6� reduces to

d = N�
p=0

N−1

1
2�N−1�−2p2

2p = N
1

2N − 2
2N

1
2 − 2

2 . �C7�

Finally, the combination of Eqs. �C5� and �C7� yields

U =
1

2 − 2
2

1
2N − 2

2N �1
2N + 2

2N + 21
N2

N cos N	� . �C8�

APPENDIX D: DETAILED BALANCE

Here we derive Eq. �70�. We need to show that

j�− V;0� = j�V;0�, j�− V; ± a� = j�V; � a� . �D1�

This is equivalent to the equation


−�

+�

dtF�− b,− c,t�exp	−
ie�Vt

�
�

= 
−�

+�

dtF�b,c,t�exp	 ie�Vt

�
� , �D2�

where F is given by Eq. �63�. Both integrals are taken over
contour 1 which goes below the real axis in Fig. 8. We can
change the sign of t in the first integral in Eq. �D2�. This also
changes the integration contour into contour 2, Fig. 8 �infini-
tesimal � is positive�. The integral over contour 2 is equal to
the integral over contour 3. The latter integral equals
�−�

+�dtF�b ,c , t�exp� ie�Vt
�

� indeed.
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