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The results of an experimental study of interaction quantum correction to the conductivity of two-
dimensional electron gas in A3B5 semiconductor quantum well heterostructures are presented for a wide range
of T� parameter �T��0.03−0.8�, where � is the transport relaxation time. A comprehensive analysis of the
magnetic field and temperature dependences of the resistivity and the conductivity tensor components shows
that the interaction correction can be divided into the ballistic and diffusion parts. It is shown that the ballistic
part renormalizes in the main the electron mobility, whereas the diffusion part contributes to the diagonal and
does not contribute to the off-diagonal component of the conductivity tensor. We have experimentally found
the values of the Fermi-liquid parameters describing the electron-electron contribution to the transport coeffi-
cients, which are found to be in good agreement with the theoretical results.
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I. INTRODUCTION

The temperature and magnetic field dependences of the
resistivity of the degenerated two-dimensional �2D� gas at
low temperatures are determined by the quantum corrections
to the conductivity. They are the weak localization �WL� or
interference correction and the correction caused by the
electron-electron �e-e� interaction. The WL correction to the
conductivity in the absence of the spin relaxation is negative
and logarithmically increases in absolute value with decreas-
ing temperature. The interaction correction for low rs values
and within the diffusion regime, T��1 �where rs is the gas
parameter, and � is the transport relaxation time, hereafter we
set �=1, kB=1� is, as a rule, negative and also increases in
absolute value with the temperature decrease. However, the
detailed theoretical analysis of the interaction correction to
the conductivity for the intermediate �T��1� and ballistic
�T��1� regimes carried out in Refs. 1–3 shows that this
correction can result in a different sign of the T dependence
of the resistivity. It is dictated by the value of the Fermi-
liquid constant �see Figs. 7 and 8 in Ref. 1�. Just this fact
comes to special attention to the interaction correction in the
ballistic regime because it can explain the metalliclike tem-
perature dependence of the conductivity4–6 observed in some
2D structures.

The e-e correction in the diffusion regime can be easily
separated experimentally because it contributes only to the
diagonal component of the conductivity tensor and not to the
off-diagonal one. It is more difficult to extract experimen-
tally the correction in the intermediate and the ballistic re-
gimes because the theories do not divide the interaction cor-
rection into the diffusion and ballistic parts and do not
predict any specific features of this correction. Besides, some
classical mechanisms such as temperature dependent
disorder,7 classical magnetoresistance due to scattering by
rigid scatterers8 can complicate the situation.6,9 In the ballis-
tic regime, T��1, for the white-noise disorder and classi-

cally low magnetic field, �B�1, where � is the mobility, the
theoretical prediction1,10 is that the e-e interaction contrib-
utes both to �xx and �xy in such a way that it does not influ-
ence the Hall coefficient, RH. This means that the e-e inter-
action in this regime reduces to a renormalization of the
transport relaxation time. The same result was obtained for
the long-range and mixed disorder at high magnetic field,
�B�1, in Refs. 2 and 3.

In this paper we systematically study the e-e interaction
correction to the conductivity of n-type AlxGa1−xAs/
GaAs/AlxGa1−xAs and GaAs/ InxGa1−xAs/GaAs quantum
wells �QW�. The comprehensive analysis of the data within
wide T� range �T�=0.03−0.8� and classically strong mag-
netic field shows that the interaction correction to the con-
ductivity can be divided into two parts. The first part contrib-
utes to �xx only, it is proportional to ln�1/ �T��+1� within the
whole T� range �we refer to this part as the “diffusion part”�,
while the second one reduces to renormalization of the trans-
port relaxation time and is proportional to T� �this part is
termed the “ballistic part” in the paper�.

II. THEORETICAL BACKGROUND

The conductivity of a system at zero magnetic field is
given by the expression

� = �0 + ��ee + ��WL. �1�

Here, �0=en� with n as the electron density is the Drude
conductivity, ��WL and ��ee stand for the weak-localization
and interaction quantum correction, respectively. The weak-
localization correction is as follows:

��WL

G0
= − ln�1 +

��

�
� +

1

1 + 2��/�
ln�1 +

��

�
� +

ln 2

1 + �/2��

,

�2�

where G0=e2 / �2	2� ��1.23
10−5 �−1, �� is the phase re-
laxation time, and the second and third terms take into ac-
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count nonbackscattering processes.11 The interaction correc-
tion was calculated in Refs. 1 and 3, and for a white-noise
disorder is given by:

��ee

G0
= 2	T��1 −

3

8
f�T�� +

3F̃0
�

1 + F̃0
�


 �1 −
3

8
t�T�,F̃0

���	
− �1 + 3�1 −

ln�1 + F0
��

F0
� �	ln

EF

T
. �3�

The functions f�T�� and t�T� , F̃0
�� are given in Ref. 1. In

contrast to Eq. �2.16c� of this paper we have explicitly writ-
ten the different Fermi-liquid constants in the first and sec-
ond terms of Eq. �3� �for details see last paragraph on p. 5 of
Ref. 1�. When the T� value is low enough, the temperature
dependence of ��ee is controlled by the second term in Eq.
�3� and it is logarithmic. For the high T� value, the first term
in Eq. �3� becomes dominant, because the functions f�T��
and t�T� , F̃0

�� go to zero when T�→�. In this limit, the con-
ductivity changes with the temperature linearly. Noteworthy
is the argument of the logarithm in Eq. �3�, which is written
by the authors as EF /T instead of the usual 1 /T�.12

Unfortunately, the knowledge of the behavior of the inter-
action correction in the absence of magnetic field is not suf-
ficient for the reliable determination of ��ee. The reason lies
in the existence of additional temperature-dependent scatter-
ing mechanisms, for instance, phonon scattering or the
temperature-dependent disorder,7 which can mask the effect
under consideration in real systems. Investigations in the
presence of magnetic field are much more informative from
this point of view.

In a magnetic field the conductivity tensor can be written

�xx =
en�

1 + �2B2 + ��xx
d + ��xx

b , �4�

�xy =
en�2B

1 + �2B2 + ��xy
b , �5�

where ��xx
d and ��xx

b are the diffusion and ballistic parts of
the interaction correction. It is important to mention here that
the diffusion part of the electron-electron interaction contrib-
utes to �xx only and does not affect �xy.

12 This is a key
feature of the diffusion correction, which allows one to de-
termine its value experimentally. The diffusion correction
��xx

d logarithmically depends on the temperature and does
not depend on the magnetic field �the latter is true if the
Zeeman splitting is less than T�. It is usually written �Refs.
12–14�

��xx
d �T�
G0

= Kee ln T� 
 − �1 + 3�1 −
ln�1 + F0

��
F0

� �	ln
1

T�
,

�6�

where the first term in square brackets is the exchange or the
Fock contribution while the second one is the Hartree con-
tribution �the triplet channel�. Comparing Eq. �3� with Eq.
�6� one can see that the arguments in logarithms in these
expressions differ by a factor EF�=kFl /2, where kF is the

Fermi quasimomentum, l is the mean free path. Thus, the
question whether the argument in the logarithm in Eq. �6� is
EF /T or 1/ �T�� remains open.

As for the ballistic contributions, the situation is more
complicated. The ballistics contribute both to �xx and to �xy,
and, in the general case, ��xx

b and ��xy
b depend both on the

magnetic field and on the temperature. For the low magnetic
field, B�1/�, and white-noise disorder, the corrections to
the conductivity tensor components were calculated in Refs.
1 and 10, while for the high magnetic field and smooth or
mixed disorder it was done in Ref. 3. Although the results are
different for these cases, the analysis shows that in the lim-
iting case T��1 the interaction correction universally re-
duces to a renormalization of the transport relaxation time. It
is physically understandable because the interaction correc-
tion in this regime can be considered as a result of elastic
scattering of an electron by the temperature-dependent self-
consistent potential created by all the other electrons.1 It is
reasonable to generalize this result and to assume that the
ballistic correction reduces in the most part to the renormal-
ization of the transport relaxation time, i.e., to the renormal-
ization of the mobility for any values of the T�-parameter.
Then, Eqs. �4� and �5� can be rewritten as follows:

�xx �
en��

1 + ��2B2 + ��xx
d , �7�

�xy �
en��2B

1 + ��2B2 , �8�

where ��=�+�� is the mobility renormalized by the ballis-
tics. Such an assumption is in accordance with the results for
different limiting cases obtained in the papers referred to
above. In particular, within these frameworks one obtains the
logarithmic behavior of ��B=0�, �xx, and the Hall coefficient
at low temperatures, T�1/�, and the vanishing of the inter-
action correction to the Hall coefficient at T�→�.1,3

In what follows we will show that such a model well
describes the experimental data at low and intermediate tem-
peratures up to T��1. We will refer to the part of the inter-
action correction, which contributes to �xx but does not to
�xy, as “diffusion correction” because the e-e correction of-
fers just the same properties in the diffusive regime. The part
of the correction, which renormalizes the mobility, will be
termed “ballistic correction.”

III. EXPERIMENT

We study the interaction correction to the conductivity in
heterostructures of two types. The first one is the
AlxGa1−xAs/GaAs/AlxGa1−xAs quantum well heterostructure
grown by molecular beam epitaxy. It consists of a
250 nm-thick undoped GaAs buffer layer grown on semi-
insulator GaAs, a 50 nm Al0.3Ga0.7As barrier, Si � layer, a
6 nm spacer of undoped Al0.3Ga0.7As, a 8 nm GaAs well, a
6 nm spacer of undoped Al0.3Ga0.7As, a Si � layer, a 50 nm
Al0.3Ga0.7As barrier, and 200 nm cap layer of undoped
GaAs. This structure will be referred to as T1520. The sec-
ond structure, 3510, is a GaAs/ InxGa1−xAs/GaAs structure

MINKOV et al. PHYSICAL REVIEW B 74, 045314 �2006�

045314-2



grown by metal-organic vapor-phase epitaxy. It consists of a
200 nm-thick undoped GaAs buffer layer, Si � layer, a 9 nm
spacer of undoped GaAs, a 8 nm In0.2Ga0.8As well, a 9 nm
spacer of undoped GaAs, a Si � layer, and 200 nm cap layer
of undoped GaAs. The samples were mesa etched into stan-
dard Hall bars and then an Al gate electrode was deposited
by thermal evaporation onto the cap layer of the first struc-
ture through a mask. Varying the gate voltage Vg from 1 V to
−4 V we decreased the electron density in the quantum well
from 1.7
1012 cm−2 to 7
1011 cm−2. The electron density
in the second structure was controlled through the illumina-
tion due to the persistent photoconductivity effect. The mea-
surements were performed after the illumination of the dif-
ferent intensity and duration that allowed us to change the
electron density within the range from 4.3
1011 cm−2 to 7

1011 cm−2. Analysis of the Shubnikov-de Haas oscillations
in the structure T1520 shows that the second subband starts
to be occupied at Vg�0. In order to prevent the multiband
effects we will analyze the results obtained for Vg
−1 V,
when the excited subbands lay far above the Fermi level and
are practically empty for the actual temperature range.

We measured carefully the low and high magnetic field
longitudinal ��xx� and transverse ��xy� magnetoresistance in a
magnetic field up to 5 T within the temperature range from
1.4 to 30 K. The magnetic field was measured by the Hall
sensor set near the sample. The detailed measurements were
performed for three gate voltages for the first structure and
after three illumination flux for the second one. The values of
�xx and �xy were obtained from the experimentally measured
values of �xx and �xy in the ordinary way: �xx=�xx / ��xx

2

+�xy
2 � and �xy =�xy / ��xx

2 +�xy
2 �. The main parameters of the

structures are given in Table I. The electron density and mo-
bility have been found from the fit of �xy vs B plots, the
value of � given in the table relates to T=0 and is obtained
by a linear extrapolation of the experimental temperature de-
pendence �see the text below�. Designation Btr stands for the
transport magnetic field which is characteristic for the mag-
netoresistance caused by suppression of the weak localiza-
tion. It is actually defined as the field in which 2	Bl2=�0,
where �0=	� /e is the elementary flux quantum, i.e., Btr
= � / �2el2�. It is the magnetic field which separates two mag-
netic field ranges. In the low field, B�Btr, the closed paths
with many collisions are important and the magnetoresis-
tance may be treated within the diffusion approximation.15

To elucidate the role of the ballistic contribution of the
e-e interaction we will consider in parallel the experimental

data obtained for the structure T1520 for two limiting gate
voltages; Vg=−3.7 V, when the diffusion contribution is
dominant, and Vg=−1 V, when the ballistics become impor-
tant.

Figure 1 shows the magnetic field dependences of �xx and
�xy measured at different temperatures. One can see from
Figs. 1�a� and 1�c� that following the sharp magnetoresis-
tance in low magnetic field �evident at B�0.05 T in Fig.
1�a� and at B�0.02 T in Fig. 1�c��, which results from the
suppression of the interference quantum correction,16 the
paraboliclike negative magnetoresistance against the back-
ground of the Shubnikov-de Haas oscillations is observed.

TABLE I. The parameters of structures investigated.

Structure Vg �V� n �1012 cm−2� � �cm2/V s� Btr �mT�

T1520 −1.0 1.303 14470 4.43

GaAs-QW −2.5 0.967 8950 15.6

−3.7 0.715 4925 69.8

3510a 0.7 19300 4.64

InGaAs-QW 0.56 16000 8.44

0.44 10400 25.4

aThe electron density in this structure is changed via the illumination.

FIG. 1. The magnetic field dependences of �xx �a�, �c� and �xy

�b�, �d� measured for different temperatures and Vg=−3.7 V �a�, �b�
and −1 V �c�, �d�. Structure T1520. The temperature for curves are:
1.4, 2.0, 2.5, 3.0, 4.2, 6.2, 9.0, 13.0, 16.5, 20.0, 26.5 K �a�, �b� and
1.4, 2.0, 2.5, 3.0, 4.2, 6.0, 8.5, 11.0, 16.0, 19.5 K �c�, �d�.
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The paraboliclike behavior of �xx weakens with the increas-
ing temperature transforming to a nonmonotonic one at T
�20 K. The transverse magnetoresistance �xy slightly de-
pends on the temperature �see Figs. 1�b� and 1�d�� demon-
strating nonmonotonic behavior, which is better seen when
considering the Hall coefficient, RH=�xy /B �see Figs. 2�a�
and 2�b��. On the first sight the behavior of the resistivity
tensor components is identical for both gate voltages. How-
ever, some quantitative difference occurs as will be shown
below.

Let us begin our analysis with the temperature depen-
dence of the Hall coefficient. Its value has been found from a
linear interpolation of the �xy vs B dependence made in the
magnetic field range −1/�¯1/�.26 The results are pre-
sented as 1/ �eRH� vs T plots in Figs. 2�a� and 2�b� by the
solid symbols. One can see that the quantity 1 / �eRH� in-
creases logarithmically with the increasing temperature,
while the temperature remains less than 8–10 K. Namely
such a behavior is predicted by the theories for the interac-
tion correction in the diffusion regime �see Sec. II�. How-
ever, at higher temperature the value of 1 / �eRH� surprisingly
starts to fall. Note that the electron gas in the structures in-
vestigated remains strongly degenerated up to the highest
temperature �EF /T�13 at T=26.5 K for Vg=−3.7 V �.
Therefore, the mechanism proposed in Ref. 17 for qualitative
explanation of the results from Refs. 18 and 19 cannot be
responsible for the temperature dependence of RH observed
in our case.

To understand, whether the high-temperature behavior of
1 / �eRH� results from the lowering of the electron density
with T increase or it is a peculiarity of the e-e interaction, the
Shubnikov-de Haas oscillations have been analyzed. It turns
out unfortunately that it is impossible to find the electron
density from the period of the oscillations at high tempera-
ture with the accuracy required �as seen from Figs. 2�a� and
2�b� the fall does not exceed 1–2% in magnitude in our tem-
perature range�.

Another way to find the electron density is the analysis of
the magnetic field dependence of �xy because it is unaffected
by the e-e interaction in the diffusion regime. The fit of the
experimental data by Eq. �8� with n and �� as the fitting
parameters gives a very reproducible result. Figure 3 shows
the result of such a fit made for magnetic field range from 20
Btr to B=1.5/�. A nice coincidence with the experimental
�xy plots is evident. The value of n obtained for different
temperatures by this way is presented in Figs. 2�a� and 2�b�
by open symbols. As seen it is constant at low temperature
and decreases at T�10 K, coinciding practically with
1/ �eRH� value at T�15 K. Note, such a behavior of 1 / �eRH�
and n with temperature holds when the wider fitting interval
of the magnetic field is used. Thus, we believe that the fall of
1 / �eRH� and n evident at T�10 K most likely points to the
fact that the electron density decreases at these temperatures.
The possible reason for the decreasing is the transition of
some part of electrons from the well to the states of residual
donors in the buffer layer, to the states at the heterointerface,
to states near the substrate/buffer boundary or near the sur-
face. The decreasing of 1/ �eRH� with the temperature in-
crease is observed for all the electron density in both struc-
tures investigated. The explicit reason for the downturn of
1 / �eRH� remains unknown therefore we restrict our analysis
to the low temperature, T�9–10 K.

FIG. 2. The temperature dependences of 1 /eRH ���, n ��� �a�,
�b� and � �c�, �d� for structure T1520, measured for Vg=−1 V �a�,
�c� and −3.7 V �b�, �d�. Symbols are the experimental data. The
values of n and � shown by open symbols have been obtained from
the fitting of �xy vs B experimental plots. The solid symbols for �
are obtained from the fit of �xx vs B curves. Lines in �a� and �b� are
provided as a guide for the eye. Straight lines in �c� and �d� are
drawn through the experimental points and show the extrapolation
to T=0.

FIG. 3. The magnetic field dependences of �xy measured for
different temperatures for Vg=−3.7 V �a�, �b� and Vg=−1 V �c�, �d�,
structure T1520. Symbols are the experimental data, solid curves
are the fit by Eq. �8� with n and �� as fitting parameters. Curves
labeled as �
10 �a�, �b� and �
20 �c�, �d� are the difference be-
tween experimental and fitting curves multiplied by a factor 10 or
20, respectively.
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The behavior of the second fitting parameter, which is ��,
is shown in Figs. 2�c� and 2�d�. As seen, it increases with the
temperature increase for both cases; this increasing is close
to the linear one. The physical reason for such behavior will
be discussed below.

Now we are in a position to consider the role of the e-e
interaction. There are different ways to extract experimen-
tally the e-e contribution. They follow from Eqs. �7� and �8�
for the conductivity tensor components, and can be outlined
as follows: �i� the direct analysis of the magnetic field de-
pendence of �xx and �xy; �ii� the analysis of the paraboliclike
negative magnetoresistance �see Eq. �9� below�; �iii� the
analysis of the temperature dependences of �xx and �xy in
high magnetic field, B�Btr, when the WL correction is
strongly suppressed; �iv� the analysis of the temperature de-
pendence of the Hall coefficient �see Eq. �10� below�; �v� the
analysis of the temperature dependence of the conductivity at
B=0.

Of course, if one firmly believes that the e-e interaction is
the sole mechanism, which determines the temperature and
magnetic field dependences of the conductivity, all the meth-
ods are not independent and duplicate each other. However,
if there are any additional mechanisms, for instance,
temperature-dependent disorder, classical magnetoresistance,
etc., the comparison of the results of different methods gives
a possibility to estimate the role of “additional” mechanisms
and is necessary to elucidate the contribution of the e-e in-
teraction more reliably. Let us apply all listed methods in
turn for analysis of our experimental results.

The first way of finding the e-e correction follows from
Eqs. �7� and �8�. One can fit the experimental �xx vs B plot
by Eq. �7� using ��xx

d and �� as the fitting parameters, and n,
found from the fit of the experimental �xy vs B curve �see
Figs. 2�a� and 2�b��. Figures 4�a�–4�d� show the result of the
fitting procedure carried out in the magnetic field range from
B=20 Btr to B=1.5/�. As seen, an agreement is excellent for

all gate voltages and temperatures. The values of the diffu-
sion correction found by this way are presented in Fig. 5�a�
as a ��xx

d vs T� plot �the � value is calculated as �=�m /e
with m=0.067m0 and m=0.06m0 for structures T1520 and
3510, respectively�. It is seen that the temperature depen-
dence of ��xx

d at T��0.4 is close to logarithmic ��xx
d

=KeeG0 ln�T�� with Kee�0.5 and �0.4 for Vg=−3.7 V and
−1 V, respectively.

Note that ��xx
d is obtained by this way as the difference

between two large quantities known with some error. The
first one is the experimental quantity �xx. The second one is
the quantity en�� / �1+��2B2� �see Eq. �7��, in which n is
also experimental. To estimate the corresponding error we
have fitted the data within different magnetic field ranges.
The equally good agreement between experimental and cal-
culated curves is observed in all the cases. What is more
important, the value of ��xx

d only slightly depends on the
fitting interval. It is within the error shown in Fig. 5�a� even
in the case when the magnetic field interval is twice as wide
as mentioned above and spans the range of the Shubnikov-de
Haas oscillations.

The value of the second fitting parameter �� found in this
procedure is presented in Figs. 2�c� and 2�d� in which the ��
values found from the �xy vs B dependence were shown. One
can see that the fit of both �xx and �xy components gives the
�� values, which coincide with the accuracy of about
�1–2�%.

What is the mechanism of the temperature dependence of
��? The degeneracy of the electron gas within the actual
temperature range, T�10 K, remains strong: EF /T�30 for
Vg=−3.7 V and EF /T�55 for Vg=−1 V. Therefore, the
scattering by ionized impurities or roughnesses of the QW
interfaces cannot lead to the temperature variation of the mo-
bility. Obviously, the phonon scattering is also not respon-
sible for such an effect, because it has to lead to the mobility
decreasing with the temperature increase, which is opposite
to that observed experimentally for ��. So, we believe that
the temperature dependence of �� results from the ballistic
part of the electron-electron interaction, which really reduces
to the renormalization of the mobility as we supposed writ-
ing Eqs. �7� and �8� out. The temperature dependence of the
ballistic part defined as ��ee

b �T�=en���T� with ���T�
=���T�−���0� is presented in Fig. 5�b�. One can see that

FIG. 4. �a�–�d� The magnetic field dependences of �xx for dif-
ferent temperatures and Vg=−3.7 V �a�, �b� and Vg=−1 V �c�, �d�,
structure T1520. Symbols are the experimental data, solid curves
are the fit by Eq. �7�. Curves labeled as �
10 �a�, �b� and �
20
�c�, �d� are the difference between experimental and fitting curves
multiplied by a factor 10 or 20, respectively.

FIG. 5. The temperature dependences of the diffusion �a� and
ballistic �b� corrections. Symbols are the data for Vg=−3.7 V ���
and −1 V ��� obtained by the first way. Solid lines in �a� are the
improved expression, Eq. �13�, for the diffusion correction.
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��ee
b linearly increases with temperature and all the experi-

mental points lie on the same straight line ��ee
b �T� /G0

�2.5T� for both gate voltages. It is important for the follow-
ing to note that the variation of ��ee

b in our temperature range
is larger for Vg=−1 V than that for Vg=−3.7 V. It is the
sequence of the higher value of the transport relaxation time
� �or, what is the same, the mobility �� in the first case �see
Table I�.

It should be mentioned that the discrepancy between the
experimental �xx vs B curves and calculated ones at low
magnetic field, resulting from the WL correction, continues
up to the relatively high magnetic field, �15–20�Btr �see
Figs. 4�a�–4�d��. Therefore, if one uses the range of the mag-
netic field including the lower fields in the fitting procedure,
we can obtain the wrong value of the interaction correction.

Before turning to the second way we would like to note
the following. A more straightforward way would be to use
�� and n found from the fit of �xy and find ��xx

d from fitting
�xx. Such a procedure gives the result similar to that de-
scribed above. However, doing so we thereby hardly believe
that the �� dependence of both �xx and �xy are given by
exact Eqs. �7� and �8�. In reality we suppose that these
equalities are approximate. The ballistic correction renormal-
izes � in the most part rather than exactly. On the � language
this means that �� entering into �xx and �xy can be in prin-
ciple slightly different in contrast to the electron density n.
Therefore, we have chosen the way described just above and
shown that values of �� in �xx and �xy are very close to each
other.

The second way is based on the analysis of the parabolic-
like negative magnetoresistance. It directly follows from
Eqs. �7� and �8� that the transverse magnetoresistance �xx
should have the form

�xx�B,T� �
1

en��
−

1

�en���2 �1 − ��2B2���xx
d �T� . �9�

Thus, fitting the experimental �xx vs B curve for a given
temperature by Eq. �9� one can find both the diffusion and
ballistic corrections. This method is free of disadvantage of
the previous one because ��xx

d is obtained not as a difference
between two large values. As Figs. 6�a� and 6�b� show, Eq.
�9� excellently describes the data. The temperature depen-
dence of ��xx

d and ��ee
b =en�� found from the fit are pre-

sented in Figs. 6�c� and 6�d�. Comparison with the results
presented in Figs. 5�a� and 5�b� shows a good agreement
with the data obtained by the first way.

The third way is the analysis of the temperature depen-
dence of the Hall coefficient, RH=�xy / �B��xy

2 +�xx
2 ��. It fol-

lows from Eqs. �7� and �8� that the diffusion interaction cor-
rection should be equal to

��xx
d �T� �

�RH�T� − �en�−1�en��

2RH�T�
. �10�

To find ��xx
d �T�, we use the values of n and �� obtained from

analysis of �xy vs B dependences and the temperature depen-
dence of RH presented in Figs. 2�a� and 2�b�. The results of
such data processing are plotted in Fig. 6�c� by crosses. One
can see that the value of the interaction correction and its

temperature dependence are very close to ones obtained with
the use of the previous methods. It should be stressed that the
analysis of the Hall coefficient gives the diffusion correction
only.

The fourth way is the analysis of the temperature depen-
dence of �xx and �xy at high enough magnetic field where
WL is suppressed. Strictly for the diffusion regime the �xx
component should logarithmically depend on the tempera-
ture while �xy should be temperature independent �see Eqs.
�4� and �5��. In Fig. 7 we have plotted the variation of �xx
and �xy with the temperature at different magnetic fields �ref-
erence temperature is T=1.4 K�.

It is clearly seen that ��xx for Vg=−3.7 V does not prac-
tically depend on the magnetic field. At T��0.1 the tempera-
ture dependence of ��xx is logarithmic. The slope is approxi-
mately equal to 0.45 and that is very close to that obtained
with the help of the above methods. The temperature depen-
dence of ��xy is significantly weaker and, as will be shown
below, results from the ballistic contribution via the mobility
renormalization.

The significantly different behavior is demonstrated by
the data obtained at Vg=−1 V. First of all, both the ��xx vs
T and ��xy vs T plots taken at different B represent fan
charts. Second, the variation of �xy with the temperature is
comparable in magnitude with that for �xx. Obviously, both
facts are a sequence of the temperature dependence of the
ballistic contribution, which is larger in magnitude for this
gate voltage due to higher value of T�. Nevertheless, the
diffusion contribution can be easily extracted in this case as
well. In the framework of the model used, which reduces the

FIG. 6. �a� and �b� The paraboliclike magnetoresistance for dif-
ferent temperatures for Vg=−3.7 V and −1 V, respectively, struc-
ture T1520. Solid curves are the experimental data. Dashed curves
are the fit by Eq. �9�. �c� and �d� The temperature dependences of
the diffusion and ballistic corrections, respectively. Symbols are the
experimental data for Vg=−3.7 V �� , + � and −1 V �� , 
 � ob-
tained by the second ��, �� and third �+, 
 � ways. Solid lines in
�c� are the improved formula for the diffusion e-e correction, Eq.
�13�.
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ballistics to the mobility renormalization, the temperature de-
pendence of �xx at B=1/� is wholly determined by the dif-
fusion correction if the variation of the mobility with the
temperature is small so that ��xx��xx. Under this condition
we have from Eq. �7�

��xx �
��xx

��

��

�T
�T + ���xx

d =
1 − �2B2

�1 + �2B2�2

��

�T
�T + ���xx

d .

�11�

As seen, the first term vanishes at B=1/� and ��xx is really
equal to ���xx

d . Inspection of Fig. 7�c� shows that the tem-
perature dependence of �xx at B=1/�=0.69 T is actually
close to logarithmic up to T��0.25 with the slope 0.4, which
coincides with that found before �see Figs. 5�a� and 6�c��.

Let us inspect how the model used describes the tempera-
ture dependences of ��xx and ��xy at �B�1. In Fig. 7 we
plot the curves calculated from Eqs. �7� and �8� with ���T�
presented in Figs. 2�c� and 2�d�, and ��xx

d �T� given by Eq. �6�
with Kee=0.45 and 0.4 for Vg=−3.7 V and −1 V, respec-
tively. One can see that our model perfectly describes the
data for ��xy �see Figs. 7�b� and 7�d��. As for the tempera-
ture dependence of ��xx, there is satisfactory agreement be-
tween the data and calculated results up to T��0.3 only
�dashed lines in Figs. 7�a� and 7�c��. At higher T� values a

discrepancy between calculated curves is evident, the stron-
ger the magnetic field, the more pronounced the discrepancy
is. In Sec. IV we propose an improvement of Eq. �6� for the
diffusion contribution, which gives much better accordance
over the whole T� range.

Up to now we determined the interaction correction in the
presence of a magnetic field. Let us now turn to the last
method and consider the correction at B=0. The experimen-
tal temperature dependences of the conductivity at B=0 are
presented in Fig. 8 by solid circles. Since this dependence is
determined by both the WL and interaction correction, one
should exclude the WL contribution to obtain the interaction
contribution.

To find the WL correction we have measured the low-field
magnetoconductance ���B�=�xx

−1�B�−�xx
−1�0� �Figs. 9�a� and

9�b�� caused by suppression of the weak localization. An
analysis shows that at low magnetic field, B�0.3Btr, the
���B� vs B data can be well described by the known expres-
sion �Refs. 15 and 20�

FIG. 7. The temperature dependence of ��xx �a�, �c� and ��xy

�b�, �d� for different magnetic fields in the vicinity of B=1/� for
Vg=−3.7 V �a�, �b� and Vg=−1 V �c�, �d�. Symbols are the experi-
mental results for B=1.6 ���, 1.8 ���, 2.0 ���, and 2.4 T ��� �a�,
�b�, and B=0.3 ���, 0.5 ���, 0.69 ���, and 1.0 T ��� �c�, �d�.
Dashed lines are Eqs. �7� and �8� with ���T� presented in Figs. 2�c�
and 2�d� and ��xx

d �T� given by Eq. �6� with Kee=0.45 for Vg=
−3.7 V, and Kee=0.4 for Vg=−1 V. Solid lines are obtained analo-
gously to the dashed ones, but ��xx

d �T� is calculated from the im-
proved formula, Eq. �13�. Solid lines in panels �b� and �d� coincide
with the dashed ones because ��xx

d �T� does not contribute to �xy.

FIG. 8. The temperature dependences of the conductivity at B
=0. Solid symbols are for the conductivity measured experimen-
tally. Open symbols are the same data after subtraction of the inter-
ference quantum correction. Lines are drawn as described in the
text.

FIG. 9. �a�, �b� The magnetoconductivity caused by suppression
of the interference quantum correction measured at two tempera-
tures for Vg=−1 V �a� and −3.7 V �b�. Symbols are the experimen-
tal data. Curves are the best fit by Eq. �12� with �� presented for
different temperatures in panel �c� made within the interval from
−0.3Btr to 0.3Btr. Lines in �c� are T−1 law.
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���B� = �G0���1

2
+

�

��

Btr

B
� − ��1

2
+

Btr

B
� − ln� �

��
�
 ,

�12�

if one uses the parameters � and �� as the fitting ones. In Eq.
�12�, ��x� is a digamma function. For the strictly diffusion
regime ��� /��1 and B /Btr�1� the prefactor � has to be
equal to unity. Actually, the prefactor is somewhat less than
unity, that is more pronounced at a relatively high tempera-
ture and caused by unrigorous fulfillment of the condition
�� /��1.21 Nevertheless as shown in Ref. 21, the use of Eq.
�12� for the fit of experimental data at �� /�� �15–20� gives
a value of �� very close to the true one. The temperature
dependence of �� found from the fit is shown in Fig. 9�c� and
as seen well described by the T−1 law in line with theoretical
prediction.12

Once the phase breaking time has been found, the WL
quantum correction ��WL is calculated according to Eq. �2�.
Finally, subtracting ��WL from the experimental values of
conductivity at B=0, we obtain the conductivity, which tem-
perature dependence is caused only by the interaction correc-
tions �shown by open symbols in Fig. 8�. To compare these
data with the results obtained above, we have calculated
T dependences of en��0�+��ee

d +��ee
b using ��0� from

Table I, ��ee
b =2.5G0T�, and ��ee

d �T�=0.45G0 ln�T��, and
0.4G0 ln�T�� for Vg=−3.7 V, and −1 V, respectively. The re-
sults are shown in Fig. 8 by dashed lines. It is seen that the
lines almost pass through the open circles, although some
discrepancy at low temperature is evident. So, the parameters
obtained in the presence of magnetic field well describe the
temperature dependence of the conductivity at zero magnetic
field.

Thus, we have found the diffusion and ballistic contribu-
tions of the interaction correction to the conductivity by the
different ways. The fact that all these methods give close
results shows that other “parasitic” mechanisms, which could
contribute to the temperature and magnetic field depen-
dences, are negligible. We turn now to the discussion.

IV. DISCUSSION

First of all, let us consider the absolute value of the dif-
fusion part of the interaction correction. As noted in Sec. II,
the authors of Ref. 1 “have chosen the argument of the loga-
rithm in Eq. �3� to be EF /T instead of the usual 1 /T� to
emphasize that contrary to the naive expectations, the loga-
rithmic term persists up to temperatures much larger than
1/�.” It means that the logarithmic part of the correction can
be written as −KeeG0�ln�kFl /2�−ln�T���. The question is:
does the temperature independent term −KeeG0 ln�kFl /2�
contribute to ��xx

d or not? To clarify we have plotted in Fig.
10 both theoretical T� dependences �Eq. �6� and logarithmic
part of Eq. �3��, using Kee=0.4 found above and the param-
eters from Table I corresponding to Vg=−1 V, when the
Drude conductivity is maximal in magnitude. The experi-
mental data are presented in the figure as well. Obviously it
is not needed to involve the −KeeG0 ln�kFl /2� term to de-
scribe the experiment. Any temperature independent contri-

bution that might exist in reality in �xx
d is lower than

�0.1–0.2�G0.
Thus, two parts of the logarithmic correction are different.

In the presence of a magnetic field, the first one,
KeeG0 ln�T��, contributes only to �xx but does not to �xy. Just
this term we figure out experimentally. The second term,
−KeeG0 ln�kFl /2�, contributes both to �xx and to �xy and, in
fact, reduces to the renormalization of the transport relax-
ation time, i.e., of the mobility.

The next issue, which should be pointed out is the para-
boliclike negative magnetoresistance in the high magnetic
field. Figures 6�a� and 6�b� show that at low T� value such a
behavior is observed against a background of the
Shubnikov-de Haas oscillations far exceeding the magnetic
field B=1/�. However, at large T� value the monotonic part
of the experimental curve runs noticeably steeper at B
�2/� �see lower curves in Fig. 6�b��. From our point of
view, it can result from the e-e interaction as well. As shown
in Ref. 3 in the presence of the long-range potential, the
ballistic contribution is suppressed at B=0 and restores at
high magnetic field. Because in our structures the ballistic
correction is positive, it is equivalent to the mobility increase
that, in its turn, leads to additional decreasing of �xx with B
increase at B�1/�. This effect is proportional to the ballis-
tic contribution and therefore reveals itself at Vg=−1 V when
the value of T� is larger. The analogous deviation of �xx from
parabola was observed in Ref. 9. The interpretation was also
based on the magnetic field dependence of the ballistic part
of the e-e interaction correction.

Let us discuss the diffusion correction at large T� values.
As seen from Figs. 5�a� and 6�c� at T��0.2–0.3, its tem-
perature dependence is close to the logarithmic one. How-
ever, the systematic deviation down is evident at larger T�

FIG. 10. The T� dependence of ��ee
d for Vg=−1 V. Symbols are

the experimental results. Dotted and dashed lines are dependences
KeeG0 ln T� and KeeG0�ln T�−ln�kFl /2��, respectively. Solid line is
the dependence −KeeG0 ln�1/ �T��+1�, Eq. �13�. In all the cases,
Kee=0.4.
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values. The same is true for the temperature dependence of
�xx. The higher the magnetic field, the stronger the deviation
�see Figs. 7�a� and 7�c��. We have empirically found that the
agreement can be improved if one replaces the argument
1 / �T�� in logarithm in Eq. �6� by 1/ �T��+1 that removes the
divergence of the diffusion contribution with a T� increase:

��xx
d �T�
G0

= − �1 + 3�1 −
ln�1 + F0

��
F0

� �	ln� 1

T�
+ 1�


 − Kee ln� 1

T�
+ 1� . �13�

As seen from Figs. 5–8 the agreement with the experimental
data becomes much better after such a modification, and it
can be considered as excellent in Figs. 5�a� and 7�c�. It
should be mentioned that Eq. �13� in combination with Eqs.
�7� and �8� reproduces the 1/T temperature dependence of
ballistic asymptotics of ��xx�T� /B2 and �RH�T� /B, in a quali-
tative agreement with Refs. 3 and 10, respectively. The nu-
merical coefficients in front of these asymptotics depend on
details of disorder and were calculated in Refs. 3 and 10 only
for the case of a purely white-noise disorder and thus should
not necessarily be reproduced in experiments on realistic
structures.

Analogous measurements were performed for the struc-
ture 3510, where the electron density and mobility were con-
trolled by illumination due to persistent photoconductivity
�see Table I�. The parameter T� for this structure laid within
the interval from 0.07 to 0.7. All five ways of determination
of the interaction correction described above give consistent
results also. It turns out that the values and the temperature
dependences both of the diffusion and ballistic corrections
are very close to that for structure T1520.

In the framework of theory,1 the interaction corrections
are governed by the Fermi-liquid parameter F0

� for the diffu-

sion correction and by F̃0
� for the ballistic one �see Eq. �3��;

these parameters depend on rs only. The values of F0
� and F̃0

�

obtained for both structures investigated in this paper and F0
�

found in our previous papers22,23 are shown in Fig. 11.27 One
can see that all the data correlate well. The rs dependences of

both F0
� and F̃0

� are close to theoretical ones, though the
experimental points for F0

� fall systematically below the cor-
responding theoretical curve.

Let us compare our results with that obtained by other
authors for the analogous 2D electron systems. Recently, the
paper by Renard et al.,24 devoted to an experimental study of
very-low-mobility GaAs quantum wells in a temperature
range 1.5–110 K, has been released. The value of the param-
eter T� in these systems was less than 0.3 even at the highest
temperature. So, only the beginning of the crossover from
the diffusive to the ballistic regime is spanned in this paper.
The gas parameter rs in samples investigated was equal to
0.3–0.35. The authors were able to describe the longitudinal
conductivity and the Hall effect within framework of the

theories1,10 using the theoretical values of F0
� and F̃0

� from
Ref. 1 �shown by � and � in Fig. 11�. Some difference in
the interpretation of the data in Ref. 24 with respect to our
analysis is a result of the fact that the range of the magnetic

field in this paper was limited by the value of about 8Btr.
Figures 4�a�–4�d� show that the interference correction under
this condition is not completely suppressed. We suppose that
neglect of this fact gives some error in the determination of
the value of the e-e correction.

The e-e interaction correction in GaAs 2D systems of
high quality with extremely low electron density was sys-
tematically studied in Ref. 25. It has been shown that the
theory1 consistently describes the temperature dependences
of the conductivity in zero-magnetic field and of the Hall
resistivity in different magnetic fields. The parameters F0

�

extracted from ��T� and �xy�T� are close to each other. As
seen from Fig. 11 the data from this paper correlate well with
our results despite the large rs value.

The role of the interaction correction within a wide T�
range was studied also in the papers by Galaktionov et al.6

and Li et al.9 They investigated GaAs heterostructures with
the relatively high electron mobility at T��0.03–0.3. The
authors presumed that the scattering was governed by the
long-range potential and, therefore, applied the theory by
Gornyi and Mirlin.2,3 The values of the Fermi-liquid param-
eter obtained in this paper �indicated in Fig. 11 by a dashed
box� strongly differ from our and all other results. It should
be noted that the authors restricted themselves by consider-
ation of �xx�B� and have not analyzed other effects. If one
reinterprets these data supposing that the white-noise disor-
der is the main scattering potential, the paraboliclike nega-
tive magnetoresistance within the framework of our model
should be determined by the diffusion correction only. Re-
trieving the data presented in Fig. 1 from Ref. 9 for two

FIG. 11. The rs dependence of the Fermi-liquid constants F0
�

and F̃0
�. Lines are calculated according to Ref. 1. Symbols are the

experimental results for structures T1520 �� , � � and 3510 �	 , 
 �,
for the samples with kFl�5 from Ref. 22 ���, for structures from
Refs. 23 ���, 24 �� , � �, and 25 ���. Dashed box indicates an
approximate range of rs and F0

� for the structures from Refs. 6 and
9. ��� The F0

� values for two samples from Ref. 9 obtained in our
interpretation �see the text for details�. Open and solid symbols are

for F0
� and F̃0

�, respectively.
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samples with n=6.8
1010 and 9
1010 cm−2 in such a man-
ner, we obtain the values of F0

� �diamonds in Fig. 11�, which
accord well with the other results.

Thus, we have shown that only the comprehensive analy-
sis of the low- and high-magnetic field dependences of the
resistivity and conductivity components as well as its tem-
perature dependences allows us to obtain the reliable data for
the ballistic contribution. It seems that such a detailed analy-
sis is needed to show whether the ballistics is responsible for
the metalliclike behavior of resistivity at high rs as it is sup-
posed, e.g., in Refs. 4–6.

V. CONCLUSION

We have experimentally studied the electron-electron in-
teraction correction to the conductivity of two-dimensional
electron gas in AlxGa1−xAs/GaAs/AlxGa1−xAs and
GaAs/ InxGa1−xAs/GaAs single-quantum-well heterostruc-
tures in a wide range of T� parameter, T�=0.03–0.8, cover-
ing the diffusion and ballistic regimes. We have shown that
the correction is separated into two parts, which are distin-
guished by the manner of how they modify the conductivity
tensor in the presence of a magnetic field. The first part, or
the diffusion correction, contributes to �xx only. The contri-
bution to �xy is equal to zero. The experimental value of the

diffusion correction is described by the law
−KeeG0 ln�1/ �T��+1�. We have shown that the diffusion part
does not include the temperature independent term
−KeeG0 ln�EF��. The second part of the interaction correc-
tion, the ballistic part, is reduced to the renormalization of
the transport relaxation time �, that results in the appearance
of the temperature dependence of the mobility. The ballistic
correction linearly increases with the temperature increase.
This model allows us to describe consistently the behavior of
the components both of the resistivity and of the conductivity
tensors with magnetic field and temperature as well as the
temperature dependence of the conductivity without mag-
netic field. We have experimentally determined the values of

the Fermi-liquid parameters F0
� andF̃0

� and found them to be
close to those predicted theoretically.
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