
Magnetoplasmon excitations in quasi-two-dimensional Rashba spintronic systems: Oscillations,
resonances, and energy gaps

Manvir S. Kushwaha
Institute of Physics, University of Puebla, P.O. Box J-45, Puebla 72570, Mexico

�Received 22 March 2006; published 11 July 2006�

We report on the theoretical investigation of plasmon excitations in a quasi-two-dimensional electron gas
�2DEG� in the presence of a perpendicular magnetic field and spin-orbit interaction induced by the Rashba
effect. We derive and discuss the dispersion relations for charge-density excitations within the framework of
Bohm-Pines’ random-phase approximation. The magnetoplasmons in a 2DEG are known to be characterized
by two important properties: �i� the oscillatory behavior of the dispersion curves in the short wavelength limit
�SWL� and �ii� the resonance splitting at the frequency �=n�c in the long wavelength limit �LWL�; n ��2�
being an integer and �c the cyclotron frequency. Here we study the effect of the Rashba spin-orbit interactions
�SOIs� on these characteristics in depth. We observe that the SOI modifies drastically both the oscillatory
behavior in the SWL and yields multiple resonance splittings �at �= �n±x0��c� in the LWL. Such resonance
splittings make the spintronic systems potential candidates for quantum-well-based new devices as spin filters.
We discuss the dependence of the magnetoplasmon energy on the propagation vector, the magnetic field, the
2D charge-density, and the Rashba parameter characterizing the SOI.
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I. INTRODUCTION

Semiconducting systems guarantee the zero-field spin de-
generacy only in the presence of spatial inversion symmetry.
Any inversion asymmetry in the system can lead to the spin
splitting even in the absence of an external magnetic field.
Two basic mechanisms that cause a zero-field spin-splitting
are directly related to the symmetry properties of the semi-
conducting heterostructures. They stem from the bulk inver-
sion asymmetry �BIA� predicted by Dresselhaus1 and the
structure inversion asymmetry �SIA� proposed by Rashba.2 It
has become known that the Dresselhaus �Rashba� mecha-
nism dominates in the wide-gap �narrow-gap� semiconduct-
ing systems. In the intermediate-gap systems, such as GaAs
quantum wells, both mechanisms are of comparable
magnitude.3

Recent years have seen a great deal of research interest in
the spin dynamics associated with the emerging field of
spintronics.4 Spintronics is based in part on manipulation of
the spin degree of freedom of the carriers to develop novel
features and functionalities for solid state devices. Basic de-
sign proposals for spintronic devices with wide range of ap-
plications, such as spin transistors,5 quantum computing,6

field-effect switches,7 spin filters,8 data storage,9 etc., rely on
the fact that electron waves with opposite spin acquire a
phase difference during their propagation in the presence of
the Rashba effect. This is a gate voltage induced spin-
splitting of band edge states in the absence of an applied
magnetic field.

The dramatic progress made on the miniaturization �of
size and dimensions� leading to such manmade systems as
quantum wells, wires, dots, and modulated systems,10 has in
recent years evolved into the study of the narrow-gap semi-
conductors, most notably InAs, and the important role they
play in the rapidly evolving field of spintronics. As a non-
magnetic element in hybrid devices, these semiconductor
materials are expected to help control the electron spin states

just as the electron charge is controlled in the conventional
electronic devices. One key idea of such devices is that the
spin-orbit interaction �SOI� in narrow-gap semiconductors
causes the spins of the carriers to precess. This was con-
ceived by Datta and Das in a seminal paper,5 which describes
how the external gate electrode can be used to manipulate
the SOI provided that the latter depends on the interface
electric field, the so-called Rashba effect. The experimental
results4 reveal that, in InAs- and InGaAs-based two-
dimensional electron gas �2DEG� systems, the zero-field
spin-splitting11,12 is mainly caused by Rashba effect, which
can be enhanced further by increasing the gate voltage ap-
plied.

In the present paper, we investigate the electron spin dy-
namics in In1−xGaxAs/In1−xAlxAs quantum wells within the
lowest occupied �electric� subband in the presence of an ap-
plied perpendicular magnetic field in the framework of
Bohm-Pines’ random-phase approximation �RPA�.13 The role
of an applied magnetic field to probe the treasure of conven-
tional solids has been appreciated long before the advent of
the nonconventional solids.14 This is because the effect of the
magnetic field on the band structure is more striking and is
easily observed in the experiments. A number of interesting
phenomena originate from the alteration in the band structure
due to the magnetic field, such as the Bloch states yielding
metallic conductivity,15 the Landau diamagnetism,16 the
Subhnikov–de Haas effect,17 the de Haas–van Alphen
effect,18 cyclotron resonance,19 appealing Hofstadter butter-
fly spectrum,20 2D extended states below the localized Fermi
energy responsible for the quantum Hall effect,21 to name a
few. These have been investigated and serve as the diagnos-
tic tools for characterizing the materials. As to the excite-
ment in the spintronics, the recent discovery of spin-Hall
effect in 2DEG,22–25 within different physical contexts, is
known to have added new dimensions to the spintronic re-
search.

A two-dimensional electron gas in the presence of an ap-
plied perpendicular magnetic field is well known for mani-
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festing numerous interesting basic properties. These are, for
instance, the quantization of Landau levels and the resulting
gaps in the density of states, and the Fermi energy oscillating
as a function of the magnetic field. The latter entails the
oscillations in the total energy, the magnetization, the ther-
moelectric power, and the specific heat as a function of an
applied magnetic field.10 As regards the orientation of the
magnetic field, there are, in principle, several possible geom-
etries, such as Faraday, Voigt, perpendicular, and �in general�
tilted configurations.10 But the perpendicular geometry, when
the quantizing magnetic field is parallel to the confining elec-
tric field, is very special, particularly in the 2D electron sys-
tems. This is because only in the perpendicular geometry
does the system attain the state of complete quantization and
thus provides an ideal tool for studying quantum transport
phenomena.

Our aim here is specifically to explore systematically the
role of Rashba SOI on the magnetoplasmons in a 2DEG. The
magnetoplasmons in a 2DEG �without SOI� are since long
known10,26 to possess the following interesting properties: �i�
the oscillatory behavior of the dispersion curves in the short
wavelength limit �SWL� and �ii� the resonance splitting at
the frequency �=n�c in the long wavelength limit �LWL�.
Here n ��2� is an integer and �c=eB /m*c the cyclotron fre-
quency, with e as the electronic charge, B the intensity of the
magnetic field, m* the effective mass of the charge carriers,
and c the speed of light in vacuum. The presence of the
Rashba SOI is observed to modify the magnetoplasmon dis-
persion in the following ways: �i� the nearest resonances are
seen to appear at �= �n±x0��c, where x is a noninteger, �ii�
the major next-nearest resonances are seen to occur at �
= �n+y0��c, where y0��x0��0, �iii� the energy gaps increase
with increasing magnetic field, �iv� the energy gaps decrease
with increasing 2D charge density, �v� the resonant modes
move farther apart with increasing � �the Rashba parameter
that defines the SOI strength� and the energy gaps feel sig-
nificant variations in their magnitude, �vi� for a given propa-
gation vector, the magnetoplasmon dispersion is sensitive
and significant only at the higher �lower� values of ��B�, etc.

The rest of the paper is organized as follows. Section II is
the principal part of the paper which is devoted to the solu-
tion of the problem and to the analysis of the results obtained
within the RPA. There we present our mathematical formal-
ism for the quasi-two-dimensional electron gas �Q2DEG� in
the presence of an applied magnetic field and the SOI due to
Rashba mechanism and derive the required nonlocal, dy-
namic dielectric function. Section III is devoted to discuss
several illustrative examples on the magnetoplasmon excita-
tions for various case studies. We conclude our finding with
specific remarks in Sec. IV.

II. MATHEMATICAL FORMALISM

For a typical 2DEG in the x-y plane with a magnetic field
applied along the z direction in the Landau gauge �A=
�−By ,0 ,0�� in narrow-gap semiconductors, such as
In1−xGaxAs/In1−xAlxAs quantum wells, the single-particle �of
charge −e, with e�0� Hamiltonian including the lowest or-
der of the spin-orbit interactions can be expressed as

H =
1

2m*�p̂ +
e

c
Â�2

+
�

�
��̂ � �p̂ +

e

c
Â��

z

+
1

2
g*	BB�z + Vc�z� , �1�

where � is the Rashba parameter, which describes the
strength of the SOI, �̂	��x ,�y ,�z� stands for vector of the
Pauli spin matrices, p̂ is the momentum operator, g* is the
electron g factor, 	B=e� / �2m0c� is the Bohr magneton, and
the rest of the symbols have their usual meanings. We as-
sume the electrons to be confined in the x-y plane due to a
relatively stronger confinement potential Vc�z�. The first, sec-
ond, and third terms in Eq. �1� represent, respectively, the
orbital, Rashba, and Zeeman Hamiltonians. Such a system is
characterized by the eigenfunctions


nl
+ �kx� =

1

LxAl

eikxx���l−1�y − yc�
�l�y − yc�

��n�z� �2�

and


nl
− �kx� =

1

LxAl

eikxx��l−1�y − yc�
��l�y − yc�

��n�z� �3�

and the eigenenergies

nl
± = l��c ± �0

2 + 2l��

lc
�2�1/2

+ n. �4�

In Eqs. �2� and �3�, the function �l�x�, with x= �y−yc�, is the
Hermite function defined as

�l�x� = Nle
−x2/2lc

2
Hl�x/lc� , �5�

where Nl=1/

�2ll!lc is the standard normalization con-
stant. Other symbols used in Eqs. �2�–�5� are defined as fol-
lows:

� = − iDl,

Al = 1 + Dl
2,

Dl =

2l��/lc�

0 + 
0
2 + 2l��/lc�2

,

0 =
1

2
���c − g	BB� ,

lc = 
�/m*�c,

�c =
eB

m*c
,

yc = kxlc
2. �6�

Here Lx, l, lc, �c, and yc are, respectively, the normalization
length, the Landau level index, the magnetic length, the cy-
clotron frequency, and the center of the cyclotron orbit. In
Eq. �4�, n is the energy of the nth �electric� subband and
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�n�z� the corresponding wave function due to the confine-
ment along the z direction.

Let us focus on the eigenenergies given by Eq. �4�. In Fig.
1, we have plotted the dimensionless energy l

± /��c as a
function of magnetic field B, for a given value of �. The
important characteristic of this dispersion relation is that the
spin splitting is larger at the lower values of B; specifically,
the spin-up �spin-down� eigenenergy decreases �increases�
nonlinearly with increasing values of B, for a given Landau
level l. At the higher values of the magnetic field �B�3 T�,
both spin-up and spin-down energies tend to become nondis-
persive and the spin-splitting is virtually defined by an effec-
tive Zeeman energy ����l��c±0��. This is because at the
higher values of B, the second term inside the square bracket
starts diminishing and finally becomes negligible as com-
pared to the first. This description is valid for nonzero values
of l. For l=0, the spin-splitting is always constant �i.e., non-
dispersive� and is simply given by ±0. This is clearly dem-
onstrated in Fig. 1.

In the absence of any SOI and the Zeeman energy, the
eigenfunction and the eigenenergy take the following well-
known forms:


nl�kx� =
1


Lx

ekxx�l�y − yc��n�z� �7�

and

nl = �l +
1

2
���c + n. �8�

We start with a general expression for the single-particle
density-density response function �DDRF� �0�¯� given by10

�0�r,r�;�� = �
���

����
�
*�r��
���r��
��

* �r�
��r� , �9�

where r	�x ,y ,z�, �	i ,��, with i	kx ,n , l� and �	 ±1,
and the �general� polarizability function ���� is defined as

��,�� 	 �ij
��� 	 �

nn�
ll�

���
=

f�nl
� � − f�n�l�

�� �

nl
� − n�l�

�� + ��*
, �10�

where f�x� is the well-known Fermi distribution function.
�*=w+ i� and small but nonzero � represents the adiabatic
switching of the Coulomb interactions in the remote past.
For the sake of simplicity, we rewrite Eqs. �2� and �3� sym-
bolically as follows:


��r� = �kx
�x���l�y − yc��n�z� , �11�

where

�kx
�x� =

1

LxAl

eikxx �12�

and

��l�y − yc� = ��
��l−1�y − yc�

�l�y − yc�
� 	 �l

+�y − yc� , � = + 1,

��l−1�y − yc�
��l�y − yc�

� 	 �l
−�y − yc� , � = − 1. �

�13�

We will revive the original indices later. As such Eq. �9� can
be cast in the following form:

�0�r,r�;�� =
1

Lx
2 �

kxkx�
�
ll�

�
���

�
nn�

�
nn�
ll�

���
eiqx�x�−x�

���l
* �y� − yc����l��y� − yc��

����l�
* �y − yc����l�y − yc�

� �n
*�z���n��z���n�

* �z��n�z� , �14�

where yc�=kx�lc
2, qx=kx�−kx is the 1D momentum transfer, and

�
nn�
ll�

���
=

1

AlAl�
�

nn�
ll�

���
. �15�

Since the translational invariance persists in the x direction,
we can Fourier transform this equation with respect to x. For
this purpose, we multiply both sides of this equation by

e−iqx��x�−x� and integrate over x�. The result, after a few
straightforward mathematical steps, is

FIG. 1. The dimensionless eigenenergies l
± /��c as a function

of magnetic field B, for a given value of �=1.6�10−11 and Landau
level l. Notice the spin-up ��� and the spin-down ��� energy varia-
tion for a given value of Landau level l. The solid lines stand for
l=0.
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�0�y,z;y�,z�;�� =
1

Lx
�
kx

�
ll�

�
���

�
nn�

�
nn�
ll�

���

����l
* �y� − yc����l��y� − yc�����l�

* �y − yc��

���l�y − yc��kx�=kx+qx
� �n

*�z���n��z��

��n�
* �z��n�z� . �16�

Though the specification kx�=kx+qx will be kept in mind, it
will be omitted henceforth for the sake of brevity. Next, we
recall that the induced particle density, employing Kubo’s
correlation function, is defined by10

nin�y,z;qx,�� =� dy��0�y,z;y�,z�;qx,��V�y�,z�;qx,�� ,

�17�

where V=Vex+Vin is the total potential �energy�, with Vex
�Vin� as the external �induced� potential. Before we proceed
further, it is important to note that while the system does
observe a �physically� 2D translational invariance, the same
is not true with the mathematical algorithm. As such, we are
bound to make use of the so-called single-Fourier-transform
components of V�y ,z ;qx ,�� with respect to y to write

V�y,z;qx,�� =
1

Ly
eiqyyV�z;q,�� , �18�

where q= �q� �, with q� 	�qx ,qy�, and we introduce Ly just for
the sake of keeping balance of the dimensions of the quan-
tities involved in the problem. Now we seek the Fourier
transform of Eq. �17� with respect to y. For this purpose, we
multiply both sides of Eq. �17� by e−iqyy and integrate over y.
As such, we write, with the aid of Eqs. �17� and �18�,

nin�z;q,�� =
1

Ly
� dy� dy�e−iqyye−qyy�

�� dz��0�y,z;y�,z�;qx,��V�z�;q,�� ,

�19�

Eq. �19�, with the aid of Eq. �16�, assumes the following
form:

nin�z;q,�� =
1

A
�
kx

�
ll�

�
���

�
nn�

�
nn�
ll�

���

�� dye−iqyy���l�
* �y − yc����l�y − yc�

�� dy�eiqyy���l
* �y� − yc����l��y� − yc��

��n�V�z�;q,���n���n�
* �z��n�z� , �20�

where A=LxLy stands for the area of the x-y plane. Next,
induced potential in terms of induced particle density is
given by

Vin�z;q,�� =� dz�Vee�q,z − z��nin�z�;q,�� , �21�

where Vee�q ,z−z�� is the Fourier transform of the binary
Coulombic interactions and is given by

Vee�q,z − z�� =
2�e2

bq
e−q�z−z��, �22�

where b is the background dielectric constant of the medium
in which the Q2DEG is embedded. Making use of Eqs. �20�
and �22� in Eq. �21� yields

Vin�z;q,�� =
1

A
Vq�

kx

�
ll�

�
���

�
nn�

�
nn�
ll�

���

�� dye−iqyy���l�
* �y − yc����l�y − yc�

�� dy�eiqyy���l
* �y� − yc����l��y� − yc��

��n�V�z�;q,���n��

�� dz�e−q�z−z���n�
* �z���n�z�� , �23�

where Vq=2�e2 / �bq�. Let us once and for all bring in an
important issue regarding the sum over kx. It may sound
surprising but simple substitutions and mathematical ma-
nipulations can prove it to be true that the integrals in the
second and third lines of Eq. �23� are complex conjugates of
each other and that finally nothing depends on kx in the right-
hand side of this equation. Thus one can simplify this sum
over kx before proceeding further. Of utmost concern is the
fact that the values of kx are restricted to the range

−
Ly

2lc
2 � kx � +

Ly

2lc
2 �24�

or, equivalently,

−
Lx

2
� x � +

Lx

2
�25�

in order to ensure that the center of gyration lies within the
box of length Lx. This means the sum over kx simplifies such
that

�
kx

=
Lx

2�
�

−Ly/2lc
2

+Ly/2lc
2

dkx =
LxLy

2�lc
2 =

A

2�lc
2 . �26�

Therefore, Eq. �23� assumes the following form:

Vin�z;q,�� =
Vq

2�lc
2�

ll�
�
���

�
nn�

�
nn�
ll�

���

�� dye−iqyy���l�
* �y − yc����l�y − yc�

�� dy�eiqyy���l
* �y� − yc����l��y� − yc��
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��n�V�z�;q,���n��

�� dz�e−q�z−z���n�
* �z���n�z�� . �27�

Now take the matrix elements of Vin between the states �m�
and �m�� to write

�m�Vin�z��m�� =
Vq

2�lc
2�

ll�
�
���

�
nn�

�
nn�
ll�

���

�� dye−iqyy���l�
* �y − yc����l�y − yc�

�� dy�eiqyy���l
* �y� − yc����l��y� − yc��

� �n�V�z���n��Fmm�nn��q� , �28�

where

Fmm�nn��q� =� dz� dz��m
* �z��m��z�e−q�z−z���n�

* �z���n�z�� .

�29�

Equation �28� can be cast in the following form:

�m�Vex�m�� = �
nn�
��mn�m�n� − C�

ll�
�
���

�
nn�
ll�

���

�� dye−iqyy���l�
* �y − yc����l�y − yc�

�� dy�eiqyy���l
* �y� − yc����l��y� − yc��

� Fmm�nn��q���n�V�n�� , �30�

where C=Vq / �2�lc
2�=e2 / �bqlc

2�. Now, since Vex and V are
related through

Vex�z� =� dz��z,z��V�z�� , �31�

we can deduce from Eq. �30� the elements of the nonlocal,
dynamic dielectric function expressed as follows:

mm�nn� = �mn�m�n� − C�
ll�

�
���

�
nn�
ll�

���

�� dye−iqyy���l�
* �y − yc����l�y − yc�

�� dy�eiqyy���l
* �y� − yc����l��y� − yc��

�Fmm�nn��q� . �32�

Now it is important to specify that in this work we are
strictly concerned with the case of a narrow quantum well
where only the lowest �electric� subband is occupied and we
ignore any excited subband. It is expected to be quite a rea-

sonable approximation for low electron densities �n2d� and at
low temperatures where most of the experiments are per-
formed in these systems. That means that we are virtually
interested in a purely 2DEG at very low temperature. This
would then imply that the subband index m=m�=n=n�=0
and hence the z coordinate drops out of consideration and
thence the factor Fmm�nn��q�=1. In addition, we should then
take n=0 in Eq. �4� �as well as in Eq. �8��. Thus the gener-
alized nonlocal, dynamic dielectric function for a 2DEG in
the presence of an applied perpendicular magnetic field and
the Rashba spin-orbit interactions takes, from Eq. �32�, the
following form:

�q,�� = 1 − C�
ll�

�
���

�ll�
���� dye−iqyy���l�

* �y − yc����l�y − yc�

�� dy�eiqyy���l
* �y� − yc����l��y� − yc�� , �33�

where ��l�y−yc�¯ are as defined in Eq. �13� and �ll�
��� as

specified in Eqs. �10� and �15�, but with the subband indices
�n ,n�� ignored. The next step is to diagnose carefully the
sum over � and �� and solve the relevant integrals in Eq.
�33�. The details of this mathematical procedure are rel-
egated to Appendix A for the sake of continuity. The result is
that Eq. �33� can be written in a compact and convenient
form as follows:

�q,�� = 1 − C�
ll�

��ll�
++Mll�

++ + �ll�
+−Mll�

+− + �ll�
−+Mll�

−+ + �ll�
−−Mll�

−−� .

�34�

The explicit expressions of �ll�
��� and Mll�

��� are given in Ap-
pendix A. Thus for a 2DEG -—in the presence of an applied
perpendicular magnetic field and the Rashba spin-orbit
interactions—the magnetoplasmon excitations are furnished
by searching the zeros of the nonlocal, dynamic dielectric
function �q ,�� in Eq. �34�. It should be pointed out that the
present problem of a Q2DEG with a finite magnetic field
turns out to be a nonmatrix formulation, unlike the zero-field
cases of quasi-2DEG27 and quasi-1DEG.28 A few other re-
cent works on the zero-field case of intrasubband charge-
density excitations29 and intersubband spin-density
excitations30 in 2D systems with SOI are also noteworthy. In
what follows, we will diagnose Eq. �34� and discuss some of
its special limits for a few physical case studies.

A. Special limit of zero SOI (or �=0)

In the special limit of �=0, we have Dl=0Þ�=0, Al
=Al�=1, and the eigenfunction and eigenenergy are given by
Eqs. �7� and �8�. Equation �7� also means that, in the defini-

tions of Mll�
��� �see Appendix A�, we should retain only the

terms such as Il,l��q� , . . .. This then implies that Mll�
+−=0

=Mll�
−+, the term Mll�

−− does not contribute either, M++

= �Ill��q��2, and
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�ll�
++ 	 �ll�

0 =
f�l� − f�l��

l − l� + ��* , �35�

in Eq. �34�. Thus Eq. �34� now simplifies to the form

�q,�� = 1 −
e2

bqlc
2�

ll�

�ll�
0 �Ill��q��2. �36�

Note that Eq. �36� is exactly identical to Eq. �1� of Das
Sarma32 for �his� structure factor �that accounts for the peri-
odicity of the system� S=1. Moreover, if we further impose
the limit of zero magnetic field in Eq. �36�, the simple math-
ematical analysis leads us to obtain a standard relation for
the 2D plasmon dispersion given by �=�p, where �p

=
2�n2De2q / �bm*� is the 2D screened plasmon frequency
�with ��
q�.

B. Diagnosis of Eq. (36) at zero temperature

In the zero temperature limit, when the Fermi distribution
function can be replaced by a Heaviside step function, a
simple mathematical analysis leads us to write Eq. �36� in the
form

�q,�� = 1 −
2�e2q

bm*

1

2�lc
2

1

x
�

l

m�−l

m

�2 − �m�c�2 �Il,l+m�q��2,

�37�

where x=q2lc
2 /2. Now before we proceed further it should be

pointed out how the 2D charge density shows up in such
magnetized systems as 2DEG, with or without the Rashba
SOI. For a particular subband, the density of states in the
absence of a magnetic field �i.e., B=0� is a step function due
to the two dimensionality. This continuous function splits, in
a finite magnetic field �B�0�, into a series of �-function-like
spikes separated from each other by ��c. The states thus
condense into sharp Landau levels. Because no states are
lost, as many states must be contained in such a
�-function-like Landau level as were originally on the sur-
face between two Landau levels at B=0. The degree of de-
generacy nL of a Landau level is therefore given by nl
=D0��c, where D0=m* / ���2� is the density of the subbands
at B=0. However, this density must take into account the
lifting of the spin degeneracy in the presence of a magnetic
field and hence we should now have D0

*=m* / �2��2�. The
degeneracy of a Landau level is therefore given by nl
=D0

*��c=1/ �2�lc
2�.

If the Landau state lies at an energy below the Fermi
level, then at sufficiently low temperature it is occupied by
exactly nL electrons. A variation of an applied magnetic field
then alters both the energy splitting and the degree of degen-
eracy of each level. To conclude with, in the present physical
situation �of zero temperature� the 2D charge density is rea-
sonably defined by n2d=nL=1/ �2�lc

2�. As such, Eq. �37� as-
sumes the following form:

�q,�� = 1 −
�p

2

x
�

l

m�−l

m

�2 − �m�c�2 �Il,l+m�q��2. �38�

In the lowest-order approximation �i.e., y=qlc�1, see Eq.
�B5� in Appendix B�, Eq. �38� can be found to have the
following solutions:

�2 = �MP
2 = �p

2 + �c
2 �39�

and

� = �B = j�c, j = 2,3,4, . . . , �40�

where �MP is the usual magnetoplasmon mode and �B is the
well-known Bernstein mode that carries negligible spectral
weight.10

C. Diagnosis of Eq. (34) at zero temperature

Equation �34� is the generalized nonlocal, dynamic dielec-
tric function to include not only the applied magnetic field
but also the Rashba spin-orbit interaction. The complexity of
the analytical expression prevents us to diagnose this equa-
tion unlike the zero-SOI case discussed in Sec. II B. How-
ever, a thoughtful look at the single-particle energies �Eq.
�4�� appearing in the denominator of each term in Eq. �34�
leads us to deduce semi-empirical rules which turn out to be
unfailingly true and substantiate exactly all the resonant �or
Bernstein� modes in the magnetoplasmon spectrum in the
presence of the Rashba SOI. Since we decide to work in
terms of normalized frequency �=� /�c, we introduce an
integer n=Int���, which refers to the cutoff �or maximum�
value of � taken in the computation. We define a dimension-
less frequency

��n� = �� 0

��c
�2

+ 2n� �

��clc
�2�1/2

. �41�

Now let us define another integer m, which stands for the
cyclotron harmonics �i.e., �=m�c�. The semiempirical rules
substantiate any resonant mode in the vicinity of a given m.
We find that there are four such rules and a given Bernstein
mode in the spectrum is dictated by one and only one of
them. These rules are as follows:

t++ = m + ��n� − ��n − m� , �42�

t−− = m − ��n� + ��n − m� , �43�

t+− = �m + 1� − ��n� − ��n − m − 1� , �44�

t−+ = �m − 1� + ��n� + ��n − m + 1� . �45�

It is evident from these equations that the resonant �or Bern-
stein� modes in the presence of Rashba SOI take place at the
noninteger values, unlike the zero-SOI case. In addition, the
quantities t+−

¯ are observed to strictly obey the relationship
given by t+−� t−−� t++� t−+. Here t++ �t−−� defines the near-
est upper �lower� resonant mode in the vicinity of m and both
are equidistant from m. In other words, the nearest resonant
modes are shifted �from m�� by
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��m� =
1

2
�t++ − t−−� = ± ���n� − ��n − m�� . �46�

For �=0, these rules reproduce the resonant modes occurring
at the cyclotron harmonics, just as expected. For example,
t++= t+−= t−+= t−−=m and ��m�=0, for �=0, where ��n�=�0

=1/2. We will recall these rules while discussing our illus-
trative numerical examples on the magnetoplasmon disper-
sion in the following section.

D. On the variation of n2D and B

In Sec. II B we have discussed how the 2D charge density
is related to the strength of an applied magnetic field. Here
we bring up the issue of the variation of the field strength B.
With increasing field strength, the Landau states move to a
higher energy, finally rising above the Fermi level F. They
are thereby emptied, and the excess electrons find a place in
the next lower Landau level �possible because of the in-
creased density of states�. At sufficiently low temperature the
Fermi level is very sharp, and the system then has its lowest
free energy if a Landau level has just crossed the Fermi level.
With still increasing B field, the free energy rises until the
next Landau level is emptied. This leads to oscillations of the
free energy as a function of an applied magnetic field. A
variety of the oscillatory effects �see, for instance, Sec. I�
result from this.

The aforesaid picture is particularly relevant to the study
of the magnetotransport in the 2DEG, both with and without
the Rashba SOI. As to the study of the magnetoplasmons in
such a system, we assume that the moderate variation of the
B field �n2D� keeping the n2D �B field� fixed does not alter the
system drastically and provides us with the relevant informa-
tion on the magnetoplasmon energy. In view of this, we will
study the influence of the variation of the magnetic field B,
the 2D charge density n2D, and the Rashba parameter � on
the oscillatory behavior and the resonance splittings of the
magnetoplasmons in the system at hand.

III. ILLUSTRATIVE EXAMPLES ON MAGNETOPLASMON
EXCITATIONS

This section is devoted to discuss our illustrative numeri-
cal examples on the magnetoplasmon excitations in a 2DEG
in the presence of the Rashba spin-orbit interactions, com-
puted at T=0 K. We do so by examining the influence of
several parameters involved in the analytical results. These
are, for instance, the Rashba parameter �, the 2D charge
density n2D, and the magnetic field B. The material param-
eters used are: effective mass m*=0.042m0, electron g factor
g=2.0, Bohr magneton 	B=0.9273�10−20 erg/Gauss, back-
ground dielectric constant b=13.9, Rashba parameter �
=1.6�10−11 eV m, and the 2D charge density n2D=1.0
�1011 cm−2 as appropriate for In1−xGaxAs, until and unless
stated otherwise. For the sake of comparison, we will also
present the numerical results without the Rashba SOI �i.e.,
with �=0�.

A. Magnetoplasmon dispersion without SOI (i.e., �=0)

Figure 2 illustrates the dielectric function �q ,�� as a
function of the reduced frequency � /�c, for the given values

of n2D, B, x, and �. This figure clearly demonstrates that, in
the absence of an SOI, the resonant frequencies occur exactly
at the cyclotron harmonics �i.e., �=m�c� and the dielectric
function observes an isolated singularity at each and every
value of m �with m=1,2 ,3 , . . .�. Physically speaking, this
figure tells us something more than just the cyclotron har-
monics: the arrows indicate where the real dielectric function
becomes zero. These values are given by � /�c=1.102,
2.232, 3.697, and 4.904. To be succinct, these should be the
actual magnetoplasmon frequencies for the corresponding
parameters. We will recall these frequencies and their mean-
ing in the discussion of Fig. 4 and see that this really is the
case.

Figure 3 depicts the dielectric function �q ,�� as a func-
tion of the reduced wave vector y=qlc, for the given values
of n2D, B, �, and � /�c. The solid and dashed curves refer-
ring, respectively, to � /�c=1.9 and 1.5 cross the zero only
for the two values of y, whereas the dotted curve for � /�c
=1.1 becomes zero for several values of y in the whole
range. That means that the dielectric function with the lowest
frequency should provide us with several magnetoplasmon
frequencies for the corresponding set of parameters. This
will also be reaffirmed while discussing the results in Fig. 4.
It should be pointed out here that the observed oscillations in
the dielectric function are an outright consequence of the
Laguerre polynomial involved in the analytical results �see,
for instance, Appendix B�. Note how the amplitude of the
oscillations diminishes with increasing y. We have noticed
that such simple characteristics of the dielectric function as
shown in Figs. 2 and 3 help us understand the magnetoplas-
mon dispersion to be discussed in what follows.

FIG. 2. Dielectric function �q ,�� as a function of the reduced
frequency � /�c, for the given values of n2D, B, �, and x. Here we
take �=0 in order to exclude the Rashba SOI. The parameters are
as given inside the picture.
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Figure 4 shows the magnetoplasmon dispersion for the
2DEG without the Rashba spin-orbit interaction. The plot is
rendered in terms of the dimensionless energy �=� /�c and
the wave vector y=qlc. Just as dictated by Fig. 2, the reso-
nant �or Bernstein� modes occur at the exact cyclotron har-
monics defined by �=m�c. This figure also affirms the os-
cillatory behavior of the magnetoplasmon dispersion as a
function of y in the short wavelength limit. The magnetoplas-
mon dispersion, for any value of the magnetic field, is clearly
describable as follows. As the wave vector y increases, the
frequency � increases until it reaches its maximum value
�slightly below the next higher harmonics� and then de-
creases gradually. As y becomes sufficiently large, � comes
closer to the next lower harmonics and oscillates. The ampli-
tude of the oscillations diminishes with increasing y, just as
it is expected. As the magnetic field is increased, the ampli-
tude of the magnetoplasmon oscillation decreases. This is a
standard textbook notion: the higher the magnetic field, the
lower the radius of the cyclotron orbits. At the higher energy,
the amplitude �period� of the oscillations becomes smaller
�larger� and the center of the oscillations gradually shifts
towards the higher values of y. This seems to be an artifact of
the cyclotron energy playing a lesser role at the higher en-
ergy. It is observed that at a very large value of y, the mag-
netoplasmon mode becomes asymptotic to the resonant mode
at the respective harmonics. Also observed is the fact that if
we draw a vertical line at y=
2 �i.e., x=1�, then this line
crosses the curve for B=1 T at exactly the frequencies indi-
cated by the arrows in Fig. 2. Similarly, if we draw a hori-
zontal line at �=1.1, we see that it cuts the curve for B

=1 T at exactly the values of y indicated by the arrows in
Fig. 3. This confirms the strategy that the �analytic� zeros of
the dielectric function stands for the magnetoplasmon fre-
quencies for the respective set of parameters.

Figure 5 illustrates the magnetoplasmon resonance split-
tings in the long wavelength limit in the vicinity of the sec-
ond harmonics �with m=2�. The resonance splittings are seen
to give rise to a gap in the magnetoplasmon spectrum. We
measure the gap between the bottom of the upper curve and
the top of the lower curve. One can see that the magnitude of
the gap becomes larger with increasing magnetic field. Here
the gap is defined by �=0.0303, 0.4738, and 1.917 meV,
respectively, for B=1, 2, and 3 T. It should be pointed out
that the lower �upper� curves of Fig. 4, with reference to �
=2�c, and the lower �upper� curves of Fig. 5 are the two
limits of the same respective curves. With increasing mag-
netic field, the bottom �top� of the upper �lower� curves shifts
towards higher values of y because we have normalized the
propagation vector q by multiplying with the magnetic
length lc. It should be emphasized that such splittings are
found only for m�2 and no splitting is found for m=1. We
expect that such long wavelength energy gaps in the magne-
toplasmon dispersion as shown here must have some impor-
tant consequences on the magnetotransport in the 2DEG.

B. Magnetoplasmon dispersion with SOI (i.e., �Å0)

Figure 6 illustrates the dielectric function �q ,�� as a
function of the reduced frequency � /�c, for the given values

FIG. 3. Dielectric function �q ,�� as a function of the reduced
wave vector y=qlc, for the given values of n2D, B, �, and �
=� /�c. Here we take �=0 in order to exclude the Rashba SOI. The
solid, dashed, and dotted curves refer, respectively, to � /�c=1.9,
1.5, and 1.1. The parameters are as given inside the picture.

FIG. 4. Magnetoplasmon dispersion plotted as reduced fre-
quency �=� /�c versus reduced wave vector y=qlc, for the given
values of n2D, B, and �. We take �=0 in order to exclude the
Rashba SOI. The solid, dashed, and dotted curves stand, respec-
tively, for the magnetic field B=1, 2, and 3 T. The parameters are as
given inside the picture.
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of n2D, B, � and x. This figure clearly demonstrates that, in
the presence of the Rashba SOI, the resonant frequencies do not occur at the cyclotron harmonics and the dielectric func-

tion observes the isolated singularities at noninteger values
��= �m±x0��c, with m=1,2 ,3 ,¼�. This figure speaks much
different from Fig. 2 in that the nearest resonant modes �in-
dicated by the arrows� are equidistant from any and every
value of m. In addition, there are also next-nearest resonant
modes which occur at �= �m+y0��c, with y0��x0��0. That
this really is the case will be confirmed through the compu-
tation of the magnetoplasmon dispersion as a function of the
propagation vector in Fig. 8 �see below�. However, as re-
gards the actual magnetoplasmon frequencies, these are �and
should, in principle, be� still given by the analytic zeros of
the real dielectric function.

Figure 7 depicts the dielectric function �q ,�� as a func-
tion of the reduced wave vector y=qlc, for the given values
of n2D, B, �, and �. The solid curve referring to �=1.9
barely touches the zero of the dielectric function and the
dashed curve for �=1.5 crosses the zero only for the two
values of y. The dotted curve for �=1.1 becomes zero for
several values of y in the whole range. That means that the
dielectric function with the lowest frequency should provide
us with several magnetoplasmon frequencies for the corre-
sponding set of parameters. Again, the observed oscillations
in the dielectric function are an outright consequence of the
associated Laguerre polynomial involved in the analytical
results �see, for instance, Appendix B�. Just as in Fig. 3, the
amplitude of the oscillations diminishes with increasing y.
The values of y indicated by the arrows, for �=1.1, read y
=1.0907, 1.4845, 2.0996, 2.7693, and 3.0651. We will see in
the magnetoplasmon dispersion �see Fig. 8� how these values

FIG. 5. The same as in Fig. 4, but showing the magnetoplasmon
resonance splittings at the second cyclotron harmonics ��=2�c� in
the long wavelength limit. The parameters are as given inside the
picture.

FIG. 6. Dielectric function �q ,�� as a function of the reduced
frequency �=� /�c, for the given values of n2D, B, �, and x. Con-
trary to Fig. 2, here we take ��0 in order to include the Rashba
SOI. The parameters are as given inside the picture.

FIG. 7. Dielectric function �q ,�� as a function of the reduced
wave vector y=qlc, for the given values of n2D, B, �, and � /�c.
Here we take ��0 in order to include the Rashba SOI. The solid,
dashed, and dotted curves refer, respectively, to �=1.9, 1.5, and
1.1. The parameters are as given inside the picture.
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of y correspond exactly to the frequency � /�c=1.1.
Figure 8 shows the magnetoplasmon dispersion for the

2DEG with the Rashba spin-orbit interaction included. The
plot is rendered in terms of the dimensionless energy �
=� /�c and the propagation vector y=qlc. Just as dictated by
Fig. 7, the resonant �or Bernstein� modes occur at the non-
integer values defined by �= �m±x0��c and �= �m+y0��c,
with y0�0. The former �latter� stands for the nearest �next-
nearest� resonant modes. There are numerous interesting fea-
tures this figure reveals about the effect of the Rashba SOI
on the magnetoplasmon excitations in the 2DEG. For in-
stance, �1� the oscillatory behavior of the magnetoplasmons
in the SWL, �2� the existence of the resonant modes at the
noninteger values, unlike the zero SOI case, �3� the reso-
nance splittings may occur not only in the LWL, but also in
the SWL �see, e.g., the splittings at y=1.353, 1.979, and
2.918 all taking place slightly below the resonant modes
marked as �� above m=2, 3, and 4�, �4� some narrow but
finite resonance splittings can also exist around m=1, par-
ticularly in the SWL, unlike the zero SOI case, �5� all the
magnetoplasmons start and propagate just above a certain
resonant mode¼ . It is noticed that at very large value of y,
every magnetoplasmon mode becomes asymptotic to the re-
spective resonant mode. As the magnetic field is increased,
the amplitude of the magnetoplasmon oscillations decreases,
just as before in the zero SOI case. As y becomes sufficiently

large, the magnetoplasmon modes come closer to the next
lower resonant modes and oscillate. Again, the amplitude of
the oscillations diminishes with increasing y, just as in the
zero SOI case �see Fig. 4�. The rest of the discussion related
to the propagation characteristics of the magnetoplasmons in
the LWL related with Fig. 4 is still valid. It is observed that
if we draw a horizontal line at �=1.1, it cuts the magneto-
plasmon mode at exactly the values of y indicated by the
arrows in Fig. 7.

Figure 9 illustrates the magnetoplasmon resonance split-
tings in the long wavelength limit in the vicinity of the sec-
ond harmonics �with m=2� in the presence of Rashba SOI,
with different values of the magnetic field B. We have shown
the resonance splittings just below the nearest resonant
modes ��� and ��, see Fig. 8�. It is observed that the ��
���� resonant modes are shifted towards lower �higher� en-
ergy with increasing magnetic field. On the other hand, the
magnetoplasmon modes move towards lower energy �below
both the nearest resonant modes� with increasing magnetic
field. These resonance splittings give rise to the gaps in the
magnetoplasmon spectrum. For the set of parameters used,
the measured gaps below the �� resonant modes are de-
fined by �=0.193, 0.413, and 0.619 meV, respectively, for
B=2.0, 2.5, and 3.0 T. With the same token, the magnitude
of the gaps below the �� resonant modes are given by �
=0.226, 0.379, and 0.793 meV, respectively, for B=2.0, 2.5,
and 3.0 T. In general, the magnitude of the gaps becomes
larger with increasing magnetic field. Some other resonance
splittings of smaller magnitude at higher energy, which cor-
respond to the highest ���� resonant mode �associated with
m=2� in Fig. 8, are also noteworthy.

Figure 10 illustrates the magnetoplasmon resonance split-
tings in the long wavelength limit in the vicinity of the sec-
ond harmonics �with m=2� in the presence of Rashba SOI,
with different values of the 2D charge density n2D. Again, the
resonance splittings are shown just below the nearest reso-
nant modes ��� and ��, see Fig. 8�. It is observed that no
resonant mode is shifted in energy because of the variation of
the charge density. This is simply because the 2D charge
density does not appear in the single-particle energies �see,
e.g., Eq. �4��; it is only implicitly involved in the numerator
outside the sum in the second term of the generalized dielec-
tric function in Eq. �34�. As such, it is not difficult to under-
stand that the variation in n2D should affect only the collec-
tive �magnetoplasmon� modes in the system. With
decreasing charge density, the magnetoplasmon modes �be-
low both �� and �� resonant modes� are shifted towards
lower energies thereby increasing the magnitude of the ex-
isting gaps in the excitation spectrum. For the set of param-
eters used, the measured gaps below the �� resonant modes
are defined by �=0.149, 0.209, and 0.281 meV, respectively,
for n2D=1.2�1011 cm−2, 1.0�1011 cm−2, and 0.8
�1011 cm−2. Similarly, the magnitude of the gaps below the
�� resonant modes are given by �=0.094, 0.111, and
0.187 meV, respectively, for n2D=1.2�1011, 1.0�1011, and
0.8�1011 cm−2. In general, the size of the gaps becomes
larger with decreasing 2D charge density. Other resonance
splittings of lesser magnitude seen at higher energy are those
which correspond to the highest ���� resonant mode �asso-
ciated with m=2 in Fig. 8�.

FIG. 8. Magnetoplasmon dispersion displayed as reduced fre-
quency �=� /�c versus reduced wave vector y=qlc, for the given
values of n2D, B, and �. We take ��0 in order to include the
Rashba SOI. To let the picture speak clearly, we plot the dispersion
only for a single value of B=2 T. The curves labeled as ��¯ refer
to the dimensionless frequencies represented by t+−

¯ �see Eqs.
�42�–�45��. The parameters are as given inside the picture.
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Figure 11 illustrates the magnetoplasmon resonance split-
tings in the long wavelength limit in the vicinity of the sec-
ond harmonics �with m=2� in the presence of Rashba SOI,
with different values of the Rashba parameter �. The reso-
nance splittings are only shown just below the nearest reso-
nant modes ��� and ��, see Fig. 8�. It is observed that the
�� ���� resonant modes are shifted towards higher �lower�
energy with increasing �. On the other hand, the magneto-
plasmon modes above �below� the �� resonant modes are,
in general, seen to be shifted towards higher �lower� energy
with increasing �. For the set of parameters used, the mea-
sured gaps below the �� resonant modes are defined by �
=0.182, 0.198, and 0.204 meV, respectively, for �=1.0
�10−11, 1.3�10−11, and 1.6�10−11 eV m. Similarly, the
magnitude of the gaps below the �� resonant modes are
found to be �=0.204, 0.165, and 0.101 meV, respectively,
for �=1.0�10−11, 1.3�10−11, and 1.6�10−11 eV m. In gen-
eral, the gap becomes larger �smaller� below the �� ����
resonant mode with increasing Rashba parameter. Other
weaker resonance splittings seen at higher energy are those
which correspond to the highest ���� resonant mode for the
respective value of �.

C. Inverse dielectric function �−1
„q ,�…

The literature is a live example that spintronics is richer in
semiconductors than in metals because doping, gating, and
heterojunction formation can be exploited to tailor the key

FIG. 9. �Color� Magnetoplasmon resonance splittings shown as
reduced frequency �=� /�c versus reduced wave vector y=qlc in
the LWL, for the given values of B. We call attention to the effect of
varying the magnetic field on the resonance splittings. The other
parameters are as given inside the picture.

FIG. 10. �Color� Magnetoplasmon resonance splittings shown as
reduced frequency �=� /�c versus reduced wave vector y=qlc in
the LWL, for the given values of charge density n2D. We call atten-
tion to the effect of varying the 2D charge density on the resonance
splittings. The other parameters are as given inside the picture.

FIG. 11. �Color� Magnetoplasmon resonance splittings shown as
reduced frequency �=� /�c versus reduced wave vector y=qlc in
the LWL, for the given values of the Rashba parameter �. We call
attention to the effect of varying the Rashba parameter on the reso-
nance splittings. The other parameters are as given inside the
picture.
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material properties and because of the intimate relationship
between optical and transport properties in semiconductors.
In view of this, we also studied briefly the inverse �nonlocal,
dynamic� dielectric function �−1�q ,���, which is closely re-
lated to the longitudinal and transverse �Hall� resistance in
such 2D electron systems. For instance, the longitudinal
�Hall� resistance �xx ��xy� is determined by the imaginary
�real� part of the inverse dielectric function. Such an inves-
tigation is worthwhile because it would allow us to use the
transport measurements to probe the reactive �real� part of
the inverse dielectric function.

Figure 12 illustrates the inverse dielectric function
−1�q ,�� as a function of the reduced wave vector y=qlc, for
the given values of the Rashba parameter �. It should be
pointed out that the quantity that directly affects the transport
is the spectral weight Im�−1�q ,���, which contains both the
single-particle contribution at large q and the collective
�magnetoplasmon� contribution at small q. It is clearly ob-
served that the sharp peaks at the reduced wave vector y
=0.178 and 1.456 stand for the magnetoplasmon modes for
the given frequency �=2.2 �see, e.g., Fig. 8� and the broader
peak at y�2.429 refers to the single-particle excitations
�when the magnetoplasmons almost merge with the resonant
modes�. Clearly, these peaks are a result of the existing poles
of the inverse dielectric function at the corresponding values
of � and q. Due to Rashba spin splitting, there are four
different momentum transfers for a given frequency �: two
intra ��� and ��� and two inter ��� and ��� spin-

channel transitions. This gives rise to the fine structures in
both the real and imaginary parts of −1�q ,��. These fine
structures are, however, vividly resolved only when the
Rashba parameter � characterizing the SOI is sufficiently
large. In the present situation such structures are seen, for
instance, for �=1.7�10−11 and 1.9�10−11 eV m.

We believe that such fine structures should also be mim-
icked in the plots of the longitudinal ��xx� and transverse
��xy� resistances plotted as a function of frequency. It is note-
worthy that the quantity Im�−1�q ,��� also implicitly pro-
vides the details of the Raman �or electron� scattering cross-
section S�q� in the system.13 Thus �xx can also be understood
as a weighted sum of the scattering cross section. As such,
we expect that the main effect of the Rashba spin-splitting is
to redistribute the scattering probability at different q but not
to significantly change the total cross section summed over
all q. Extensive details of the study of �xx and �xy are de-
ferred to a future publication.

IV. CONCLUDING REMARKS

In summary, we have investigated extensively the magne-
toplasmons in a 2DEG in the presence of the Rashba spin-
orbit interactions in the framework of random-phase approxi-
mation. This includes the dielectric function versus the
frequency and the propagation vector, magnetoplasmon ex-
citation spectra, the resulting resonance splittings, both with
and without the Rashba SOI. In particular, we have paid
more attention to study the magnetoplasmon propagation in
the presence of the Rashba SOI. The extensive study of the
effects of the variation of the magnetic field B, 2D charge
density n2D, and the Rashba parameter � on the excitation
spectrum leads us to draw the following conclusions. In the
absence of the Rashba SOI, the magnetoplasmons oscillate
just above the resonant �or Bernstein� modes specified by
integer cyclotron harmonics ��=m�c� in the SWL and the
resonance splittings occur in the LWL. The magnitude of
these splittings increase with increasing magnetic field B. In
the presence of the Rashba SOI, the spin-splitting gives rise
to four resonant modes in the vicinity of every harmonic m.
These resonant modes have been specified by unfailingly
true semiempirical rules. The magnetoplasmon modes now
appear and oscillate above all the noninteger resonant modes
in the SWL and the �most widely existing� nearest resonant
splittings in the LWL have been analyzed. As such, the mag-
netoplasmon spectrum in the presence of the Rashba SOI
happen to be complex and richer as compared to that with
the zero SOI.

The nearest resonance splittings in the presence of the
Rashba SOI are observed to obey the following tendencies.
Both energy gaps due to the resonance splitting increase with
the increasing magnetic field and decrease with increasing
2D charge density. While the upper nearest energy gap re-
mains moderately invariant, the lower one decreases with
increasing �. In the presence of the Rashba SOI, there are
additional �weaker� resonance splittings occurring in the
SWL. Plotting the full spectrum as a function of B and �
separately, keeping the propagation vector fixed, reveals that
the magnetoplasmon dispersion is sensitive and significant at

FIG. 12. �Color� Inverse dielectric function −1�q ,�� versus re-
duced wave vector y=qlc, for the given values of the Rashba pa-
rameter �. The symbol R �I� refers to real �imaginary� part of the
dielectric function. Here �1=0.5�10−11 eV m, �2=1.0
�10−11 eV m, �3=1.5�10−11 eV m, �4=1.7�10−11 eV m, and
�5=1.9�10−11 eV m. The other parameters are as given inside the
picture.
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the higher �lower� values of � �B�. This is understandable
simply by having a careful look at the single-particle energy,
Eq �4�, which dictates the larger effect of the SOI at higher
�lower� value of � �B�.

Depending upon the set of parameters, the existing gaps
in the magnetoplasmon spectrum due to the resonance split-
tings can be on the order of a few meV. This suggests the
application of the Rashba spintronic systems as frequency
modulators and/or filters that would prohibit the magneto-
plasma waves at certain frequency while allow free propaga-
tion at others.

A brief study of the inverse dielectric function leads us to
substantiate the magnetoplasmon modes searched with the
zeros of the dielectric function. This is what we should ex-
pect because searching the zeros of the dielectric function
and the poles of the inverse dielectric function must produce
exactly identical results. In addition, studying the inverse
dielectric function for the given values of � provides us with
important and relevant information on the effect of the
Rashba SOI on the longitudinal and Hall resistances. The
imaginary part of the inverse dielectric function also pro-
vides us with significant estimates of the Raman �or electron�
scattering cross section.

Finally, we believe that the present investigation of the
magnetoplasmon excitation spectrum in a 2DEG in the pres-
ence of the Rashba spin-orbit interaction will prove to be
useful for the scientific community involved in and excited
with the emerging field of semiconductor spintronics. We
hope that such behavior characteristics of the magnetoplas-
mons as studied and predicted here can be verified by, for
example, the Raman �or inelastic light� scattering experi-
ments. Currently, we have been studying the effect of the
Rashba SOI on the charge-density excitations in a quasi-
1DEG in the presence of a perpendicular magnetic field and
the results will be reported shortly.
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APPENDIX A: THE DETAILS OF THE FACTORS OF Mll�
���

IN EQ. (34)

First of all we revive the original indices �see Eq. �13��,
perform carefully the multiplication of bra and ket type vec-

tors, and integrate to evaluate various factors Mll�
��� involved

in Eq. �34� as follows:

Mll�
++ = ��*����*�Il−1,l�−1�q��2 + ���*Il−1,l�−1�q�Il,l�

* �q�

+ �*��Il,l��q�Il−1,l�−1
* �q� + �Il,l��q��2, �A1�

Mll�
+− = ��*�Il−1,l�−1�q��2 + ���Il−1,l�−1�q�Il,l�

* �q�

+ �*��*Il,l��q�Il−1,l�−1
* �q� + ����*�Il,l��q��2, �A2�

Mll�
−+ = ����*�Il−1,l�−1�q��2 + �*��*Il−1,l�−1�q�Il,l�

* �q�

+ ���Il,l��q�Il−1,l�−1
* �q� + ��*�Il,l��q��2, �A3�

Mll�
−− = �Il−1,l�−1�q��2 + �*��Il−1,l�−1�q�Il,l�

* �q�

+ ���*Il,l��q�Il−1,l�−1
* �q� + ��*����*�Il,l��q��2,

�A4�

where ��=−iDl� and the asterisk refers to the complex con-
jugate of the respective quantity. Furthermore, the simplified

factors of the polarizabilty functions �ll�
��� involved in Eq.

�34� �see Eqs. �10� and �15�� are defined as follows:

�ll�
++ =

1

AlAl�

f�l
+� − f�l�

+ �

l
+ − l�

+ + ��*
, �A5�

�ll�
+− =

1

AlAl�

f�l
+� − f�l�

− �

l
+ − l�

− + ��*
, �A6�

�ll�
−+ =

1

AlAl�

f�l
−� − f�l�

+ �

l
− − l�

+ + ��*
, �A7�

�ll�
−− =

1

AlAl�

f�l
−� − f�l�

− �

l
− − l�

− + ��*
. �A8�

APPENDIX B: FOR INTEGRALS OF THE TYPE Ill�„q…
¯IN APPENDIX A

The integrals of the type Ill��q� ¯in Appendix A are sim-
plified to yield

Il,l��q� = � l!

l�!
�1/2

e−x/2e−iqykxlc
2
e−iqyqxlc

2/2

��−
lc


2
�qx + iqy��l�−l

Ll
l�−l�x� , �B1�

Il,l�
* �q� = � l!

l�!
�1/2

e−x/2e+iqykxlc
2
e+iqyqxlc

2/2

��−
lc


2
�qx − iqy��l�−l

Ll
l�−l�x� , �B2�

Il−1,l�−1�q� = � �l − 1�!
�l� − 1�!�

1/2

e−x/2e−iqykxlc
2
e−iqyqxlc

2/2

��−
lc


2
�qx + iqy��l�−l

Ll−1
l�−l�x� , �B3�
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Il−1,l�−1
* �q� = � �l − 1�!

�l� − 1�!�
1/2

e−x/2e+iqykxlc
2
e+iqyqxlc

2/2

��−
lc


2
�qx − iqy��l�−l

Ll−1
l�−l�x� , �B4�

where x=q2lc
2 /2 and Ln

m�x� is an associated Laguerre
polynomial31 defined by

Ln
m�x� =

1

n!
exx−m dn

dxn �e−xxn+m� .

Thus the integrals involved in Eqs. �A1�–�A4� take the fol-
lowing forms �with l� l��:

�Il,l��q��2 =
l!

l�!
e−xxl�−l�Ll

l�−l�x��2, �B5�

�Il−1,l�−1�q��2 = � l�

l
� l!

l�!
e−xxl�−l�Ll−1

l�−l�x��2, �B6�

Il−1,l�−1�q�Il,l�
* �q� = � l�

l
�1/2 l!

l�!
e−xxl�−lLl−1

l�−l�x�Ll
l�−l�x� ,

�B7�

Il,l��q�Il−1,l�−1
* �q� = � l�

l
�1/2 l!

l�!
e−xxl�−lLl

l�−l�x�Ll−1
l�−l�x� .

�B8�

Note that the right-hand sides of Eqs. �B5�–�B8� are all ab-
solutely real quantities. We remind that Eqs. �B5�–�B8� con-
firm the statement made in the text following Eq. �23�.

1 G. Dresselhaus, Phys. Rev. 100, 580 �1955�.
2 E. I. Rashba, Sov. Phys. Solid State 2, 1109 �1960�; Yu. A. By-

chkov and E. I. Rashba, JETP Lett. 39, 78 �1984�; E. I. Rashba
and Al. L. Efros, Phys. Rev. Lett. 91, 126405 �2003�.

3 R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional
Electron and Hole Systems �Springer, New York, 2003�.

4 For a recent review of the field of spintronics, see I. Zutic, J.
Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 �2004�.

5 S. Datta and B. Das, Appl. Phys. Lett. 56, 665 �1990�.
6 B. E. Kane, Nature �London� 393, 133 �1998�.
7 J. Nitta, F. E. Meijer, and H. Takayanagi, Appl. Phys. Lett. 75,

695 �1999�.
8 T. Koga, J. Nitta, H. Takayanagi, and S. Datta, Phys. Rev. Lett.

88, 126601 �2002�.
9 B. A. Gurney, in Ultrathin Magnetic Structures IV, edited by B.

Heinrich and J. A. C. Bland �Springer, Berlin, 2005�, p. 149.
10 For an extensive review of electronic, optical, and transport prop-

erties of systems of reduced dimensions, such as quantum wells,
wires, dots, and modulated 2D systems, see M. S. Kushwaha,
Surf. Sci. Rep. 41, 1 �2001�.

11 G. Lomer, F. Malcher, and U. Rossler, Phys. Rev. Lett. 60, 728
�1988�.

12 J. Luo, H. Munekata, F. F. Fang, and P. J. Stiles, Phys. Rev. B 41,
7685 �1990�.

13 D. Pines and P. Nozieres, The Theory of Quantum Liquids �Ben-
jamin, New York, 1966�; A. L. Fetter and J. D. Walecka, Quan-
tum Theory of Many-Particle Systems �McGraw-Hill, New York,
1971�; G. D. Mahan, Many Particle Physics �Plenum, New
York, 1981�.

14 V. Fock, Z. Phys. 47, 446 �1928�; C. G. Darwin, Proc. Cambridge
Philos. Soc. 27, 86 �1930�.

15 F. Bloch, Z. Phys. 52, 555 �1928�.

16 L. D. Landau, Z. Phys. 64, 269 �1930�.
17 L. W. Shubnikov and W. J. de Haas, Leiden Commun. 207, 210

�1930�.
18 W. J. de Haas and P. M. van Alphen, Leiden Commun. 212, 215

�1930�.
19 R. B. Dingle, Proc. R. Soc. London, Ser. A 211, 517 �1952�; M.

Ya. Azbel’ and E. A. Kaner, Sov. Phys. JETP 3, 772 �1956�.
20 D. Hofstadter, Phys. Rev. B 14, 2239 �1976�; D. Langbein, Phys.

Rev. 180, 633 �1969�; P. G. Harper, Proc. R. Soc. London, Ser.
A 68, 879 �1955�.

21 K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45,
494 �1980�; D. C. Tsui, H. L. Stormer, and A. C. Gossard, ibid.
48, 1559 �1982�.

22 S. Murakami, N. Nagaosa, and S. C. Zhang, Science 301, 1348
�2003�.

23 J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A.
H. MacDonald, Phys. Rev. Lett. 92, 126603 �2004�.

24 J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, Phys.
Rev. Lett. 94, 047204 �2005�.

25 W. K Tse and S. Das Sarma, Phys. Rev. Lett. 96, 056601 �2006�.
26 K. W. Chiu and J. J. Quinn, Phys. Rev. B 9, 4724 �1974�.
27 M. S. Kushwaha and S. E. Ulloa, Phys. Rev. B 73, 205306

�2006�.
28 M. S. Kushwaha and S. E. Ulloa, Phys. Rev. B 73, 045335

�2006�.
29 X. F. Wang, Phys. Rev. B 72, 085317 �2005�; G. Gumbs, ibid.

72, 165351 �2005�.
30 C. A. Ullrich and M. E. Flatte, Phys. Rev. B 66, 205305 �2002�.
31 I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and

Products �Academic, New York, 1994�.
32 S. Das Sarma, Phys. Rev. B 28, 2240 �1984�.

MANVIR S. KUSHWAHA PHYSICAL REVIEW B 74, 045304 �2006�

045304-14


