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Under the illumination of intense off-resonant laser light, the electronic states of semiconductors are strongly
modified, or dressed, by the oscillating electric field. We present a framework using linear combination of
atomic orbital band theory to calculate the dressed band structure and optical absorption spectrum of covalent
semiconductors in an intense off-resonant laser field. The interaction with the laser field is taken into account
exactly from the beginning of the band calculation. It is shown that the irradiation of an intense infrared laser
gives rise to a blueshift of the absorption edge as well as the emergence of a new absorption band below the
edge, in agreement with recent experimental data for GaAs crystals.
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I. INTRODUCTION

Technical developments in laser physics in recent years
have made possible the production of high intensity mono-
chromatic light with a wide range of wavelengths compara-
tively easily. This has opened a new possibility in the use of
lasers as a tool to manipulate electronic wave functions of
atoms and molecules through coherent modulations. An elec-
tronic system under an intense and coherent electromagnetic
field is strongly modified and forms an intermixed state of
the electronic configuration and photons called a dressed
state.1 In atoms and molecules, this effect induces peculiar
optical properties such as the dynamic Stark effect,2 the Mol-
low triplet in light scattering,3 and electromagnetically in-
duced transparency.4 In solids, it is expected that the irradia-
tion of intense laser light will give rise to coherent
modification of the energy band structures and that the en-
ergy bands are intermingled with the radiation field to form
dressed bands, analogous to the case of atoms.

In regard to the solid case, Kono and co-workers5 have
recently performed a pump-probe experiment on semicon-
ductors using a high intensity off-resonant pump laser and
reported that an additional absorption band is observed be-
low the original band edge in the near infrared region only
when the pump and probe laser field temporally overlap each
other. In addition, detailed investigation6 revealed that the
band edge recedes to the high energy side under the pump
laser field. In this phenomenon, real excitations of carriers
and thermal effects do not play any essential role, because
the induced change of the absorption is observed only in the
presence of the pump pulse. The crucial point is the use of
intense midinfrared laser, which allows to minimize the in-
terband absorption and sample damage while maximizing the
ponderomotive energy Up given by

Up =
e2E0

2

4m�2 , �1�

where e is the magnitude of the electric charge, m is the mass
of the electron, and E0 is the intensity of the electric field
oscillating with frequency �.

From theory, a number of studies have been devoted to
the investigation of the modulation of the electronic states of
crystals by an intense electromagnetic field. For example,
Dunlap and Kenkre7 obtained a rigorous solution for the
model of an electron in a one-dimensional lattice under an
oscillating electric field and showed that the electron may be
localized around the initial state by applying the field with a
suitable ratio of the amplitude and frequency. This phenom-
enon is called dynamic localization. Holthaus et al.8,9 calcu-
lated quasi-energies of the superlattice under an intense laser
field by the Floquet theory10,11 and predicted the collapse of
quasi-energy minibands. These phenomena are closely re-
lated with the coherent destruction of tunneling in confined
systems.12

The effect of the interaction with an intense electromag-
netic field in semiconductors has been studied theoretically
in a series of early works.13–15 Here, the energy quantum of
the electromagnetic field has been assumed to be resonant,
i.e., larger than the band gap energy. It was predicted that an
extra gap would open in the quasi-energy spectrum due to
the strong mixing between the valence band and the conduc-
tion band.

For the interaction with an off-resonant field, the induced
change of the linear absorption spectrum at the absorption
edge due to an intense infrared laser field has been calculated
for bulk crystals16 and for mesoscopic systems.17 In both
cases, a two-band model with field-induced mixing due to
the Franz-Keldysh effect18,19 is assumed. On the other hand,
Miranda20 has shown that the effective band gap reduces
linearly with increasing intensity of the field within the
framework of nearly free electron model.

We would like to stress here that, in actual semiconduc-
tors, both the conduction and valence bands consist of the
same set of the atomic orbitals of the component atoms. In Si
or GaAs, for example, the ns and np states �n=3 for Si and
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n=4 for GaAs� of the outermost valence levels are hybrid-
ized to form sp3 orbitals. These orbitals at nearest neighbor-
ing atoms are then hybridized with each other to form cova-
lent bonds. The band gap of these materials corresponds
essentially to the energy difference between the bonding
state and the antibonding state. In order to investigate the
effect of an intense off-resonant radiation field on the band
structure of semiconductors quantitatively, it is necessary to
begin with the atomic orbital of the basis and treat quantum
mechanical hybridization and interaction with the intense
electromagnetic field on the same footing. In other words, a
new theoretical framework for the dressed-band calculations
of semiconductors, which are the band calculations for the
electronic system exactly including the interaction with the
electromagnetic field, should be developed.

Furthermore, because of the highly nonstationary charac-
ter of the electronic state under the intense electromagnetic
field, the traditional method to calculate the optical response
based on the perturbation theory from the equilibrium distri-
bution cannot be applied, and the linear response theory for
the probe light should be reformulated in order to analyze the
experimental data.

Since the coherent control of the electronic properties of
solids by external radiation fields may lead to a novel prin-
ciple of nonlinear optical devices, it is highly desirable to
establish a theoretical framework which enables us to ana-
lyze the phenomena quantitatively. In previous work,21 we
proposed a simplified one-dimensional model of semicon-
ductors as a prototype of covalent semiconductors under an
intense off-resonant electromagnetic field. We have calcu-
lated dressed band structure and reformulated the line shape
function of the absorption spectrum for the system. The cal-
culated absorption spectrum shows peculiar features with a
blue shift of the band edge and the emergence of an addi-
tional structure below the edge, in qualitative agreement with
the experimental data.6

In the present work, we propose a theory of dressed-band-
calculation based on the realistic three-dimensional model of
semiconductors under an intense off-resonant laser field. The
electronic system for zincblende crystal is described by an
linear combination of atomic orbital �LCAO� approximation
for a three-dimensional tight-binding Hamiltonian. The inter-
action with the intense pump laser is treated rigorously by
the Floquet formalism. The dressed band structures are cal-
culated by combined application of the Bloch theory and the
Floquet theory to the spatiotemporal periodic Hamiltonian.
The absorption spectrum for a weak probe field is reformu-
lated by the generating function method. The calculated
pump-probe signals in the band edge of GaAs crystals are in
good agreement with the experimental observation.

In the next section, the model is presented and the formu-
lation of the calculation of the optical responses is given. The
numerical results are shown in Sec. III together with discus-
sions. Concluding remarks are given in Sec. IV.

II. MODEL AND FORMULATION

We consider a model for the electronic states of semicon-
ductors under intense off-resonant laser field described by
the Hamiltonian in the Coulomb gauge

H�t� = HS + HI�t� , �2�

HS =
p2

2m
− e� , �3�

HI�t� = er · E�r,t� , �4�

where p is the momentum operator of an electron with the
electric charge −e��0� and the mass m, E�r , t� is the electric
field of the pump laser, and � is the Coulomb potential
which has the periodicity of the crystal. For the interaction
Hamiltonian with the weak probe light, we adopt simply,

H��t� =
e

m
A�r,t� · p , �5�

in which A�r , t� are the vector potential of the probe light
field. For later convenience, we have expressed the interac-
tion with the intense pump field in terms of the electric field,
while that with the weak probe field in terms of the vector
potential. Note that the interaction with the pump field is
exactly taken into account in HI�t�.22 The interaction with the
probe light is, on the other hand, is treated in H��t� to the first
order of A�r , t�, neglecting the quadratic term as usual.

A. Tight-binding Hamiltonian for the electronic system

The electronic system is treated within the tight binding
approximation. We assume a zinc blende structure crystal
that consists of two kind of atoms �atom 1 and atom 2� with
an s orbital and p orbitals of x, y, and z symmetry for each
atom. The spin-degree of freedom is neglected. These atoms
are located at

r1,l1,l2,l3
= l1a + l2b + l3c , �6�

r2,l1�,l2�,l3�
= �l1� +

1

4
�a + �l2� +

1

4
�b + �l3� +

1

4
�c , �7�

for the atom 1 and atom 2, respectively. In the above equa-
tions, a= �ix+ iy�a /2, b= �iy + iz�a /2, and c= �iz+ ix�a /2 are the
primitive basis vectors, where ix, iy, and iz are unit vectors in
the x, y, and z directions, respectively, and a is the lattice
constant. The atomic basis function at the atomic position
r j,l1,l2,l3

with the symmetry � ��=s, px, py, or pz, hereafter� is
denoted by �r j,l1,l2,l3

,��, and these functions make orthonor-
mal basis set for the LCAO calculation.

In the tight-binding picture, the system Hamiltonian is
written as

HS = H0 + H111 + H11̄1̄ + H1̄11̄ + H1̄1̄1, �8�

where H0 represents the diagonal energy of the s and p or-
bitals, �sj

and �pj
of each atom, and H111, H11̄1̄, H1̄11̄, and

H1̄1̄1 represent interatomic hopping between nearest neighbor
atoms for each directions. These Hamiltonians are explicitly
written as
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H0 = �
j=1

2

�
l1,l2,l3

��sj
�r j,l1,l2,l3

,s��r j,l1,l2,l3
,s� + �pj

�r j,l1,l2,l3
,px�

��r j,l1,l2,l3
,px� + �pj

�r j,l1,l2,l3
,py��r j,l1,l2,l3

,py�

+ �pj
�r j,l1,l2,l3

,pz��r j,l1,l2,l3
,pz�� , �9�

H111 = �
l1,l2,l3

�
�,��

t�,��
111 �r1,l1,l2,l3

,���r2,l1,l2,l3
,��� + �H.c.� ,

�10�

H11̄1̄ = �
l1,l2,l3

�
�,��

t�,��
11̄1̄ �r1,l1,l2,l3

,���r2,l1,l2−1,l3
,��� + �H.c.� ,

�11�

H1̄11̄ = �
l1,l2,l3

�
�,��

t�,��
1̄11̄ �r1,l1,l2,l3

,���r2,l1,l2,l3−1,��� + �H.c.� ,

�12�

H1̄1̄1 = �
l1,l2,l3

�
�,��

t�,��
1̄1̄1 �r1,l1,l2,l3

,���r2,l1−1,l2,l3
,��� + �H.c.� ,

�13�

where t���
d 	d= �111� , �11̄1̄� , �1̄11̄�, or �1̄1̄1�, hereafter
 is the

hopping integral between the � orbital of atom 1 and the ��
orbital of atom 2 in the d direction. All hopping integrals are
calculated by giving only the values �ss��, �sp��1,2, �sp��2,1,

�pp��, and �pp	�.23 The energy band structure of GaAs
calculated in the tight-binding model is shown in Fig. 1. The
parameter values for the energies of atomic orbitals are
�s,Ga=−10.48 eV, �p,Ga=−4.01 eV for Ga and �s,As
=−16.44 eV, �p,As=−7.02 eV for As, and the hopping inte-
grals between the nearest neighbor atoms are �ss��
=−1.547 eV, �sp��Ga,As=1.729 eV, �sp��As,Ga=2.184 eV,
�pp��=3.1304 eV, and �pp	�=−0.8099 eV, where
�sp��Ga,As represents the hopping between the s orbital of Ga
and p orbital of As. In order to fit the band gap Eg to experi-
mental results Eg=1.42 eV, the hopping integrals are modi-
fied by multiplying 0.91 to the parameters of Harrison.24 The
agreement of the near edge structure with more elaborate
band calculations24–26 is fairly good.

B. Interaction with the radiation fields

In accordance with the former works,7–9,16,17 we treat the
pump laser field as an oscillating electric field with a uniform
intensity. This is justified when the field intensity is high
enough and the photon energy is much less than the typical
energy scale of the system. The electric field is written as

E�t� = E0 cos��t�e
, �14�

where E0 and � are the amplitude and frequency of the field,
respectively, and e
=exix+eyiy +eziz ��e
�=1� is the polariza-
tion vector, in which 
 is the suffix of the direction. In order
to expand the interaction Hamiltonian with the tight-binding
basis, we decompose the dipole moment into two parts. The
one is the interatomic component which takes part in the os-
cillation of the relative energies of the atoms as a whole de-
pending on the atomic site. The other is the intra-atomic
component which induces the internal Stark effect within
each atom. Then the interaction Hamiltonian HI�t� is given
by

HI�t� = �
j=1

2

�
l1,l2,l3

�e
 · er j,l1,l2,l3
Ij,l1,l2,l3

− M�,j,l1,l2,l3
�

� E0 cos��t� , �15�

with

Ij,l1,l2,l3
= �r j,l1,l2,l3

,s��r j,l1,l2,l3
,s� + �r j,l1,l2,l3

,px��r j,l1,l2,l3
,px�

+ �r j,l1,l2,l3
,py��r j,l1,l2,l3

,py� + �r j,l1,l2,l3
,pz��r j,l1,l2,l3

,pz�

�16�

and

M
,j,l1,l2,l3
= − e� j�r j,l1,l2,l3

,s��r j,l1,l2,l3
,p
� + �H.c.� , �17�

where the first term represents the interatomic Stark effect
and the second term the intra-atomic Stark effect, respec-
tively. In the above equations,

� j = �r j,l1,l2,l3
,s�x�r j,l1,l2,l3

,px� �18�

=�r j,l1,l2,l3
,s�y�r j,l1,l2,l3

,py� �19�

=�r j,l1,l2,l3
,s�z�r j,l1,l2,l3

,pz� �20�

is the parameter of the intra-atomic Stark effect and
FIG. 1. Energy band structure of GaAs calculated by the tight-

binding model.
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�r j,l1,l2,l3
,p
� = ex�r j,l1,l2,l3

,px� + ey�r j,l1,l2,l3
,py� + ez�r j,l1,l2,l3

,pz�

�21�

represents the projection of the p orbital in the 
 direction.
The other terms vanish due to symmetry.

On the other hand, the vector potential of the probe laser
light is written in the photon picture as

A�t,� = A�be−it + b†eit�e
�, �22�

where b �b†� is the annihilation �creation� operator of the
photon of the probe laser light with the frequency . The
amplitude A is written as A=�� /2�0V for the system with
volume V and dielectric constant �0.

C. Formulation of the absorption spectrum

The optical susceptibility should have time-dependence
due to the oscillatory driving force. Experimentally observed
spectrum corresponds to the stationary component with the
oscillatory component averaged out. In order to treat such a
situation, we reformulate the expression of the absorption
spectrum as follows.27 Consider the pump and probe laser
field are switched on at the time t=0. By using Feynman’s
disentangling theorem and treating H��t ,� in the lowest
order perturbation, the density matrix of the system describ-
ing the time-evolution that, initially in the state �0= �i��i�, it is
in the excited state at time t after absorbing a probe photon,
is given by

��t,� =
1

�2�
0

t

dt1�
0

t

dt2F�t,t1�H��t1,�F�t1,0�

��0F†�t2,0�H�†�t2,�F†�t,t2� . �23�

In the above equation, F�tf , ti� is the operator for the time-
evolution from ti to tf driven by the unperturbed Hamiltonian
H�t�=HS+HI�t�, which is given by

F�ti,tf� = exp+−
i

�
�

ti

tf

H���d�� , �24�

with exp+ meaning the time-ordered exponential. The dia-
grammatic representation of the process is shown in Fig. 2.
In the consideration of the transition probability, the final
state �f� is also driven by the pump laser field, and evolves
into �f�t��=F�t ,0� � f� at time t.

Then, the probability of the transition to the final state is
given by

P�t,� = �f�t����t,��f�t�� �25�

=
1

�2�
0

t

dt1�
0

t

dt2�f �F†�t1�H��t1,�F�t1��i�

� �i�F†�t2�H�†�t2,�F�t2��f� , �26�

where F�t��F�t ,0�.
In the usual case of band calculations, Bloch’s theorem

plays a crucial role to exploit the translational symmetry of
the crystal. In the present case, the translational symmetry is

broken because of the presence of the external electric field.
This difficulty can be overcome by applying a gauge trans-
formation as follows. Define a unitary operator U�t� by

U�t� � exp−
i

�
�

0

t

HI���d�� �27�

=�
j=1

2

�
l1,l2,l3

exp i

�
eA1�t��e
 · r j,l1,l2,l3

��
� exp−

i

�
A1�t�M
,j,l1,l2,l3� , �28�

with A1�t�=−�E0 /��sin��t�, and transform the Hamiltonian

as H̃�t�=U†�t�HSU�t�. The transformed Hamiltonian is given
by

H̃�t� = U1
†�t�H0U1�t� + U2

†�t�H0U2�t�

+ �
d

�fd�t�U1
†�t�HdU2�t� + �H.c.�� , �29�

where

Uj�t� = �
l1,l2,l3

exp−
i

�
A1�t�M
,j,l1,l2,l3� �30�

and

f111�t� = exp i

�
eaA1�t��ex + ey + ez�/4� , �31�

f11̄1̄�t� = exp i

�
eaA1�t��ex − ey − ez�/4� , �32�

f 1̄11̄�t� = exp i

�
eaA1�t��− ex + ey − ez�/4� , �33�

f 1̄1̄1�t� = exp i

�
eaA1�t��− ex − ey + ez�/4� . �34�

Thus the translational symmetry is recovered in H̃�t�.
Introduce new basis vectors

��k,�� =
1

�N
�

l1,l2,l3

N

�r1,l1,l2,l2
,��eik·r1,l1,l2,l3, �35�

FIG. 2. Feynman diagram for the density matrix ��t ,�.
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��k,��� =
1

�N
�

l1,l2,l3

N

�r2,l1,l2,l2
,���eik·r2,l1,l2,l3, �36�

for the wave number vector k=kxix+kyiy +kziz �−	 /a
�kx ,ky ,kz�	 /a�, where N is the number of unit cells, and

decompose the Hamiltonian as H̃�t�=�kH̃k�t�. The time-
evolution operator is transformed into the form

F̃�t1,t0� = U†�t1�F�t1,t0�U�t0� �37�

=exp+−
i

�
�

t0

t1

H̃���d�� , �38�

which can be decomposed as F̃�t1 , t0�=�kF̃k�t , t0� with

F̃k�t,t0� = exp+−
i

�
�

t0

t1

H̃k���d�� . �39�

In order to apply the unitary transformation to H��t ,�, we
use the relation

p = i
m

�
	p2/2m,r
 , �40�

and rewrite the interaction Hamiltonian as

H��t,� = − i�	HS,M
�
be−it + �H.c.� , �41�

where �=A /�=1/�2�0V�, and M
� is the transition dipole
moment which causes the intra-atomic s→p
� transition,
given by

M
� = �
j=1

2

�
l1,l2,l3

M
�,j,l1,l2,l3
. �42�

We find that

U†�t�	HS,M
�
U�t� = �
k

	H̃k�t�,M
�k
 , �43�

where

M
�k = − e�1���k,s���k,p
�� + ��k,p
����k,s��

− e�2���k,s���k,p
�� + ��k,p
����k,s�� . �44�

Therefore, the probability of transition from �i��i�
=�k � ik��ik� to �f��f �=�k � fk��fk� is decomposed as P�t ,�
=�kPk�t ,�, where

Pk�t,� =
�2np

�2 �
0

t

dt1�
0

t

dt2�fk�F̃k
†�t1�	H̃k�t1�,M
�k
F̃k�t1��ik�

��ik�F̃k
†�t2�	M
�k,H̃k�t2�
F̃k�t2��fk�e−i�t1−t2�. �45�

In the above equation, np is the number of photon which
corresponds to the transition of the photon state from �np� to
�np−1� in the absorption process of the probe photon, and is
associated with the intensity of probe laser I0 as np
= I0V /�c. With the use of definition of time-ordered expo-
nential

i�
�

�t
F̃k�t� = H̃k�t�F̃k�t� , �46�

a part of representation in Eq. �45� is rewritten as

�fk�F̃k
†�t1�	H̃k�t1�,M
�k
F̃k�t1��ik�

= − i�
�

�t1
�fk�F̃k

†�t1�M
�kF̃k�t1��ik� . �47�

In order to calculate P�t ,�, we use the Floquet theory.10,11

Since H̃k�t� has a periodicity in time, we can write

�u�F̃k�t��v� = �
l=−�

�

��u,l�exp�− iHFkt/���v,0��eil�t, �48�

where �u� is a time-independent state, and �u , l�� is the cor-
responding Floquet state. The quasienergies form dressed
bands, and are given by solving the eigenvalue equation

HFk��k,j,l�� = ��k,j + l�����k,j,l�� , �49�

where j is the band index which runs over the same number
as the number of original bands. The index l corresponds to
the photon number measured from a very large average
number.10 With the use of Eq. �48� and the relation

��u,q��k,j,l�� = ��u,q − l���k,j,l−l��� , �50�

Eq. �45� is transformed into

Pk�t,� =
�2np

�2 �
j1,j2,j3,j4

�
0

t

dt1�
0

t

dt2 �
l1,l2,l3,l4

��fk,0��k,j1,l1
��

����k,j2,l2
�ik,0����ik,0��k,j3,l3

�����k,j4,l4
�fk,0��

� �
m1,m2

���k,j1
− �k,j2

� − �m1 − m2����

����k,j1,0�M
�,k,m1,m2
��k,j2,0��exp	i���k,j1

− �k,j2
�/�

− �m1 − m2���t1
 �
m3,m4

���k,j4
− �k,j3

�

− �m4 − m3�������k,j3,0�M
�,k,m3,m4
��k,j4,0��

� exp	− i���k,j4
− �k,j3

�/�

− �m4 − m3���t2
e−i�t1−t2�, �51�

where

M
�,k,m,m� = − e�1���k,s,m�����k,p
�,m�� + ��k,p
�,m��

����k,s,m��� − e�2���k,s,m�����k,p
�,m��

+ ��k,p
�,m�����k,s,m��� �52�

and

�uk,0�� = �
�

���k,�,0����k,�� + ��k,�,0����k,����uk� , �53�

in which �uk�= �ik� or �uk�= �fk�.
Introduce the relative and the center-of-mass time vari-

ables �= t1− t2 and T= �t1+ t2� /2, respectively. The time-
dependent part of P�t ,� is given by
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�
0

t

dt1�
0

t

dt2 exp	i���k,j1
− �k,j2

�/� − �m1 − m2���t1


� exp	− i���k,j4
− �k,j3

�/� − �m4 − m3���t2
e−i�t1−t2�

= ��
0

t/2

dT�
−2T

2T

d� + �
t/2

t

dT�
−2�t−T�

2�t−T�

d��ei1,kTei2,k�,

�54�

with 1,k= ��k,j1
−�k,j2

+�k,j3
−�k,j4

� /�− �m1−m2+m3−m4��
and 2,k= ���k,j1

−�k,j2
−�k,j3

+�k,j4
� /�− �m1−m2−m3

+m4��� /2−. Note that, in the integrand, the optical fre-
quency  appearers only in the relative-time component.
The T dependent terms of the integrand generally give rise to
the oscillatory contribution to P�t ,�.

The absorption spectrum W�� is given by the stationary
value of the rate of increase of P� , t� per unit time as27

W�� = lim
t→�

P�t,�/t . �55�

The above expression automatically eliminates the effect of
transient in the short time region and the effect of oscillation
in the long time region. It can be shown that W�� agrees
with the conventional form of the absorption spectrum in the
case of equilibrium initial state.27 In the calculation of W��,
the T-dependent term of the integrand of Eq. �54� dies away
in P�t ,� / t in the limit t→�. Therefore, only terms with
1,k=0 make finite contribution to the stationary response.
This implies the conditions m1−m2+m3−m4=0 and either
j1= j2 and j3= j4 or j1= j4 and j2= j3 should be satisfied. Car-
rying out the integral of Eq. �45�, and rearranging the terms,
we find

W�� = 2	
I0

2�0�2c�
k

�
n
��

j
�
k1

��fk,0��k,j,k1
���

m

���k,j,n�

�M
�,k,m,m��k,j,0���
k2

���k,j,k2
�ik,0���2

��n�� − ��

+ 2	
I0

2�0�2c�
k

�
n

�
j1�j2

��
k1

��fk,0��k,j1,k1
���2

���
m

���k,j1,n�M
�,k,m,m��k,j2,0���2

���
k2

���k,j2,k2
�ik,0���2

���kj1
− �kj2

�
+ n�� − �� .

�56�

The first term corresponds to the transition within the same
Floquet subbands and is called the intradressed band transi-
tion, while the second term represents the interdressed band
transitions. For the sake of completeness, we show explicit

forms of the matrix elements of H̃k�t� in Appendix A, and the
corresponding matrix elements of the Floquet Hamiltonian
HFk in Appendix B.

III. NUMERICAL RESULTS AND DISCUSSION

We have performed numerical calculations of the absorp-
tion spectrum for GaAs crystals in the off-resonant laser
field. Since we are concerned with the behavior of absorption
spectrum near the band edge region, we have adopted three
upper valence bands for the initial state and lowest conduc-
tion band for the final states. In actual calculations, we have
divided the Brillouin zone into 101 mesh points for one di-
rection, namely, 1013 mesh points for the whole Brillouin
zone, and the solved the eigenvalue problem for the Floquet
matrix numerically. The infinite series of the expansion by
the Floquet basis set is truncated at a large number of the
Floquet index. The absorption spectra are calculated by Eq.
�56�, and are convoluted with a Gaussian function. The
induced absorption coefficients are calculated by ���
= �� / I0n1V�W�� with the refractive index n1, and the in-
duced transmission rates are calculated by Itr��
=exp�−���h� with the sample width h. The parameter val-
ues are chosen in conformity with those for GaAs. The en-
ergies of the orbitals and the hopping integrals are the same
as those described above. The lattice constant is a=5.653
�10−1 nm, and the intra-atomic Stark parameters are calcu-
lated with the Cowan code �Ga=−6.718�10−2 /�3 nm and
�As=−6.201�10−2 /�3 nm �1/�3 originates from the angu-
lar integration�. The refractive index is n1=3.6. The sample
width is assumed to be h=3.5 �m in accordance with the
experiment.6 The polarization of the pump laser field is fixed
in the 	111
 direction in the numerical results shown in this
paper. It should be noted that, because of the cubic symme-
try, the pump-probe signal depends only on the relative angle
between the polarization vectors of the pump and the probe
light.

In Fig. 3, an example of the dressed-bands, namely, the
Floquet quasi energies, near the band gap are shown for the
electric field amplitude E0=0.5�109 V/m and the photon
energy ��=0.28 eV of the pump light. The other parameter
values are the same as Fig. 1. The original bands are plotted
by the dashed lines.

In Fig. 4�a�, the differential absorption coefficient, which
is the difference of absorption coefficient between those with
pump light and without pump light, near the band edge, and
its dependence on the pump light intensity are shown. The
photon energy of the pump light is fixed at ��=0.14 eV and
the electric field amplitude of the pump light is E0=1.0
�108 V/m �solid line�, E0=0.75�108 V/m �dashed line�,
E0=0.5�108 V/m �dash-dotted line�, and E0=0.25�108

V/m �dotted line�. The polarization of the probe light is in
the 	111
 direction. The corresponding differential transmis-
sion spectra, normalized by the transmission without pump
laser, are shown in Fig. 4�b�.

In Fig. 5�a�, dependence of differential absorption coeffi-
cient on the photon energy of the pump laser light is shown.
The electric field amplitude of the pump light is fixed at E0
=1.0�108 V/m, and the photon energy of pump light is
��=0.14 eV ���9 �m, solid line�, ��=0.21 eV ��
�6 �m, dashed line�, and ��=0.28 eV ���4.5 �m, dotted
line�. The polarization of the probe light is in the 	111
 di-
rection. The corresponding differential transmission spectra,
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normalized by the transmission without pump laser, are
shown in Fig. 5�b�.

The dependence of the differential absorption coefficient
on the relative angle of the polarization vector of the pump
and probe laser light is shown in Fig. 6. The electric field
amplitude and the photon energy of the pump light are fixed
at E0=1.0�108 V/m and ��=0.14 eV, respectively. The
polarization of the probe laser light is in the direction 	111

�0°, solid line�, 	201
 �45°, dashed line�, and 	11̄0
 �90°,
dotted line�, respectively. Note that the effect of the modifi-
cation of the band edge absorption spectrum is also observed
in the right-angle configuration of the pump and the probe
light, although it is most eminent in the parallel configura-
tion.

As shown in Figs. 4–6 the applied pump laser field in-
duced a drastic change in the transmission spectrum at the
band edge. As far as the intensity of the pump laser is not
extremely high, we can define the main dressed-band, which
are the dressed bands that tend to the original bands in the
limit of zero intensity of the applied field. Likewise, we can
assign the Floquet indices �j , l� to each dressed band, where
�j ,0� corresponds to the main dressed bands. Equation �56�
tells us that the optical absorption spectrum consists of the
transitions between pairs of dressed bands accompanying the
change of �j , l�. The dominant contribution comes from those
between the main dressed bands corresponding to the band-
to-band transitions of the unperturbed system. Therefore, the

dramatic increase of the transmission above the band edge
can be attributed to the virtual shrinkage of the width of the
valence bands and the conduction bands. This can be seen
more clearly in the previous results for a one-dimensional
model.21

The emergence of a new absorption band below the edge
is, on the other hand, due to the transitions between the
dressed bands with different index l. This may be understood
as the absorption of the probe photon assisted by the simul-
taneous absorption of the pump photons.

These field-induced modification becomes salient as the
intensity of the pump laser field becomes high and/or the
wave length of the pump laser becomes long, as can be seen
from Figs. 4 and 5. Figures 4 and 5 should be compared with
Fig. 3 in Ref. 6. The experimental features are well repro-
duced not only qualitatively but also quantitatively by the
theory, except for the oscillatory structure in the induced
absorption band. This is due to the effect of the multiple
reflection of light in the sample, which is not considered in
our model.

FIG. 3. Dressed bands for E0=0.5�109 V/m, ��=0.28 eV and
the polarization of the pump light in the 	111
 direction. The other
parameter values are the same as Fig. 1. The dashed lines corre-
spond to the original bands.

FIG. 4. �a� Dependence of the differential absorption coefficient
on the intensity of the pump laser light. The energy of the pump
light is ��=0.14 eV with the polarization in the 	111
 direction. the
other parameter values are the same as Fig. 1. The lines correspond
to the electric amplitude of the pump laser light E0=1.0
�108 V/m �solid line�, E0=0.75�108 V/m �dashed line�, E0

=0.5�108 V/m �dash-dotted line�, and E0=0.25�108 V/m �dot-
ted line�. Eg=1.42 corresponds to the unperturbed band gap energy.
�b� Differential transmission normalized by the transmission with-
out pump laser field. The width of the sample is 3.5 �m. The pa-
rameter values are the same as the corresponding lines of �a�.
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If one choose the sp3-hybridized orbital localized on each
atom for the basis functions of the band calculation, there
appear terms in the Hamiltonian describing the intra-atomic
hopping between these orbitals. The magnitude of the intra-
atomic hopping integral is equal to ��p,j −�s,j� /4 �j=Ga,As�.
The origin of the shrinkage of the band widths is mainly
attributed to the reduction of this hopping integral. As shown
in Appendix B, the intra-atomic hopping integral in the main
dressed bands is reduced by the zeroth order Bessel function
with arguments proportional to E0 /��. Therefore, the mag-
nitude of the blue shift of the absorption edge becomes large
when E0 becomes large and/or �� becomes small, as noted
above.

On the other hand, the magnitudes of the off-diagonal
matrix elements between the states with the difference of the
Floquet index l is proportional to l-th Bessel function. Thus,
the transition probability to the new absorption band below
the edge increases as E0 /�� becomes large.

IV. CONCLUDING REMARKS

In this work, we have presented a formalism to calculate
the dressed-band structures of semiconductors in the intense
off-resonant infrared laser field. We have carried out the cal-
culation of the dressed-bands for a realistic model of band
structures of GaAs crystals. Based on the tight-binding
model with s and p orbitals, the quasi energies in the oscil-
lating electric field have been obtained by applying the Bloch
theory and the Floquet theory. A generating function theory
of the linear absorption spectrum for the weak probe light
has been formulated.

It has been shown that the irradiation of an intense off-
resonant laser light results in the blueshift of the band edge
and the emergence of an induced absorption below the edge,
in agreement with the experimental observation, not only
qualitatively but also quantitatively. These results are quali-
tatively in agreement with the results by Johnsen and
Jauho,17 in which a phenomenological two-band model with
simple dispersion relations has been adopted for the descrip-
tion of the band structure. It should be noted that, in our
theory, essentially all of the parameter values can be fixed by
comparison with the band calculation for unperturbed sys-
tem. This enables us to assess the effect of an intense elec-
tromagnetic field on the modification of optical properties of
semiconductors quantitatively.

The formalism by the generating function, or the time-
dependent density matrix, is essentially equivalent to that
based on the nonequilibrium Green functions,13,17 but is
more appropriate for our purpose, because we need not start
from the picture of two bands, a valence band and a conduc-
tion band. The use of the Floquet formalism is, on the other
hand, is best suited for the dressed-band calculation. It is
naturally adapted to the usual techniques of the band calcu-
lation as shown here. Furthermore, the explicit visualization
of the dressed-bands will help the understanding the physical
processes in the matter under an intense laser field.21

FIG. 5. �a� Dependence of the differential absorption coefficient
on the photon energy of the pump laser light. The field intensity of
the pump laser light is E0=1.0�108 V/m with the polarization in
the 	111
 direction. The other parameter values are the same as Fig.
1. The lines correspond to the photon energy of the pump laser light
��=0.14 eV ���9 �m, solid line�, ��=0.21 eV ���6 �m,
dashed line�, ��=0.28 eV ���4.5 �m, dotted line�. �b� Differen-
tial transmission normalized by the transmission without pump laser
field. The width of the sample is 3.5 �m. The parameter values are
the same as the corresponding lines of �a�.

FIG. 6. Dependence of the differential absorption coefficient on
the polarization of the probe laser light. The parameter values are
E0=1.0�108 V/m, ��=0.14 eV, and the polarization of the pump
laser light is in the 	111
 direction. The other parameter values are
the same as Fig. 1. The lines correspond to the polarization of probe

laser light 	111
 �0°� �solid line�, 	201
 �45°� �dashed line�, 	11̄0

�90°� �dotted line�.
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In Miranda’s model in the nearly free electron picture, the
origin of the band gap is the existence of weak scatterers
distributed periodically in the free space. In an oscillating
electric field, the effective scattering amplitude is reduced by
a factor of zeroth order Bessel function with the argument
proportional to E0 /��. It is predicted, therefore, that the ap-
plication of an intense radiation field always reduces the
band gap, in contradiction with the present result and the
experimental observation.

We have investigated this problem by a one-dimensional
sp-hybridized model in detail, and found that, roughly speak-
ing, the effect of the oscillating electric field on the apparent
band gap depends on the ratio of the original band gap Eg to
��. When Eg /���1, the apparent band gap energy in-
creases, and when Eg /���1, it decreases. The actual ex-
perimental situation in GaAs crystal belongs to the former
case. Details will be presented elsewhere.28
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APPENDIX A

In Eq. �30�, Uj is expanded as

Uj�t� = 	cos�gj�t�� − 1
 �
l1,l2,l3

��r j,l1,l2,l3
,s��r j,l1,l2,l3

,s�

+ �r j,l1,l2,l3
,p
��r j,l1,l2,l3

,p
��

+ i sin�gj�t�� �
l1,l2,l3

��r j,l1,l2,l3
,s��r j,l1,l2,l3

,p
�

+ �r j,l1,l2,l3
,p
��r j,l1,l2,l3

,s�� + �
l1,l2,l3

Ij,l1,l2,l3
, �A1�

where gj�t�=−�eE0� j /���sin��t�. Then, the transformed

Hamiltonian in the k picture H̃k�t� is given as

��k,s�H̃k�t���k,s� = 	�s1
+ sin2�g1�t����p1

− �s1
�
 , �A2�

��k,s�H̃k�t���k,p�� = − i sin�g1�t��cos�g1�t����p1
− �s1

�e�,

�A3�

��k,p��H̃k�t���k,s� = i sin�g1�t��cos�g1�t����p1
− �s1

�e�,

�A4�

��k,p�1
�H̃k�t���k,p�2

� = − sin2�g1�t����p1
− �s1

�e�1
e�2

+ �p1
��1,�2

, �A5�

��k,s�H̃k�t���k,s� = 	�s2
+ sin2�g2�t����p2

− �s2
�
 , �A6�

��k,s�H̃k�t���k,p�� = − i sin�g2�t��cos�g2�t����p2
− �s2

�e�,

�A7�

��k,p��H̃k�t���k,s� = ��k,s�H̃k�t���k,p��†, �A8�

��k,p�1
�H̃k�t���k,p�2

� = − sin2�g2�t����p2
− �s2

�e�1
e�2

+ �p2
��1,�2

, �A9�

��k,s�H̃k�t���k,s�

= �
d
�cos�g1�t��cos�g2�t��tss

d

− i sin�g1�t��cos�g2�t���
�

tp�s
d e�

+ i cos�g1�t��sin�g2�t���
�

tsp�

d e�

+ sin�g1�t��sin�g2�t�� �
�1,�2

tp�1
p�2

d e�1
e�2� fd�t�e−ikda,

�A10�

��k,s�H̃k�t���k,p��

= �
d
�i cos�g1�t��sin�g2�t��tss

d e�

+ sin�g1�t��sin�g2�t���
�

tp�s
d e�e� + cos�g1�t��

�	cos�g2�t�� − 1
�
�

tsp�

d e�e� − i sin�g1�t��

�	cos�g2�t�� − 1
 �
�1,�2

tp�1
p�2

d e�1
e�2

e� + cos�g1�t��tsp�

d

− i sin�g1�t���
�

tp�p�

d e�� fd�t�e−ikda, �A11�

��k,p��H̃k�t���k,s�

= �
d
�− i sin�g1�t��cos�g2�t��tss

d e� + 	cos�g1�t�� − 1


�cos�g2�t���
�

tp�s
d e�e� + sin�g1�t��sin�g2�t��

��
�

tsp�

d e�e� + i	cos�g1�t�� − 1
sin�g2�t��

� �
�1,�2

tp�1
p�2

d e�1
e�2

e� + cos�g2�t��tp�s
d

+ i sin�g2�t���
�

tp�p�

d e�� fd�t�e−ikda, �A12�
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��k,p�1
�H̃k�t���k,p�2

� = �
d
�sin�g1�t��sin�g2�t��tss

d e�1
e�2

+ i	cos�g1�t�� − 1
sin�g2�t���
�

tp�s
d e�e�1

e�2
− i sin�g1�t��	cos�g2�t�� − 1


��
�

tsp�

d e�e�1
e�2

+ 	cos�g1�t�� − 1
	cos�g2�t�� − 1
 �
�1,�2

tp�1
p�2

d e�1
e�2

e�1
e�2

− i sin�g1�t��tsp�2

d e�1

+ 	cos�g1�t�� − 1
�
�

tp�p�2

d e�e�1
+ i sin�g2�t��tp�1

s
d e�2

+ 	cos�g2�t�� − 1
�
�

tp�1
p�

d e�e�2
+ tp�1

p�2

d � fd�t�e−ikda,

�A13�

where d=111,11̄1̄ , 1̄11̄ , 1̄1̄1 is the index of direction and

k111 = �kx + ky + kz�/4, �A14�

k11̄1̄ = �kx − ky − kz�/4, �A15�

k1̄11̄ = �− kx + ky − kz�/4, �A16�

k1̄1̄1 = �− kx − ky + kz�/4, �A17�

and a is the lattice constant. In the above representations, �,
�1, �2, �, �1, and �2 take x, y, or z.

APPENDIX B

The Floquet Hamiltonian is defined by

��u,q�HFk�v,q − l�� = q���u,v�l,0 +
�

2	
�

0

2	/�

�u�H̃k����v�e−il�,

�B1�

where �u� is a time-independent state, and �u ,q�� �−��q
��� is the corresponding Floquet state. Explicitly, they are
given by using lth order Bessel function Jl�x� as

���k,s,q�HFk��k,s,q − l�� = −
��p1

− �s1
�

4
�Jl�2A1� + J−l�2A1��

+  ��s1
+ �p1

�

2
+ q����l,0, �B2�

���k,s,q�HFk��k,p�,q − l��

= −
��p1

− �s1
�

4
�Jl�2A1� − J−l�2A1��e�, �B3�

���k,p�,q�HFk��k,s,q − l��

=
��p1

− �s1
�

4
�Jl�2A1� − J−l�2A1��e�, �B4�

���k,p�1
,q�HFk��k,p�2

,q − l��

=
��p1

− �s1
�

4
�Jl�2A1� + J−l�2A1��e�1

e�2

+ ��p1
+ q�����1,�2

−
��p1

− �s1
�

2
e�1

e�2
��l,0,

�B5�

���k,s,q�HFk��k,s,q − l�� = −
��p2

− �s2
�

4
�Jl�2A2� + J−l�2A2��

+  ��s2
+ �p2

�

2
+ q����l,0, �B6�

���k,s,q�HFk��k,p�,q − l��

= −
��p2

− �s2
�

4
�Jl�2A2� − J−l�2A2��e�, �B7�

���k,p�,q�HFk��k,s,q − l��

=
��p2

− �s2
�

4
�Jl�2A2� − J−l�2A2��e�, �B8�

���k,p�1
,q�HFk��k,p�2

,q − l��

=
��p2

− �s2
�

4
�Jl�2A2� + J−l�2A2��e�1

e�2

+ ��p2
+ q�����1,�2

−
��p2

− �s2
�

2
e�1

e�2
��l,0,

�B9�

���k,s,q�HFk��k,s,q − l�� = �
d

�
�1,�2

1

4�Jl�Bd + �1A1 + �2A2�tss
d − �1Jl�Bd + �1A1 + �2A2��

�

tp�s
d e�

+ �2Jl�Bd + �1A1 + �2A2��
�

tsp�

d e� − �1�2Jl�Bd + �1A1 + �2A2� �
�1,�2

tp�1
p�2

e�1
e�2�e−ikd, �B10�
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���k,s,q�HFk��k,p�,q − l�� = �
d

�
�1,�2

1

4��2Jl�Bd + �1A1 + �2A2�tss
d e� + �Jl�Bd + �1A1 + �2A2� − Jl�Bd + �1A1��

��
�

tsp�

d e�e� − �1�2Jl�Bd + �1A1 + �2A2��
�

tp�s
d e�e� − �1�Jl�Bd + �1A1 + �2A2�

− Jl�Bd + �1A1�� �
�1,�2

tp�1
p�2

d e�1
e�2

e� + Jl�Bd + �1A1�tsp�

d − �1Jl�Bd + �1A1��
�

tp�p�

d e��e−ikda,

�B11�

���k,p�,q�HFk��k,s,q − l�� = �
d

�
�1,�2

1

4�− �1Jl�Bd + �1A1 + �2A2�tss
d e� + �Jl�Bd + �1A1 + �2A2� − Jl�Bd + �2A2���

�

tp�s
d e�e�

− �1�2Jl�Bd + �1A1 + �2A2��
�

tsp�

d e�e� + �2�Jl�Bd + �1A1 + �2A2� − Jl�Bd + �2A2��

� �
�1,�2

tp�1
p�2

d e�1
e�2

e� + Jl�Bd + �2A2�tp�s
d + �2Jl�Bd + �2A2��

�

tp�p�

d e��e−ikda, �B12�

���k,p�1
,q�HFk��k,p�2

,q − l�� = �
d

�
�1,�2

1

4�− �1�2Jl�Bd + �1A1 + �2A2�tss
d e�1

e�2
− �1�Jl�Bd + �1A1 + �2A2� − Jl�Bd + �1A1��

��
�

tsp�

d e�e�1
e�2

+ �2�Jl�Bd + �1A1 + �2A2� − Jl�Bd + �2A2���
�

tp�s
d e�e�1

e�2

+ �Jl�Bd + �1A1 + �2A2� − Jl�Bd + �1A1� − Jl�Bd + �2A2� + Jl�Bd�� �
�1,�2

tp�1
p�2

d e�1
e�2

e�1
e�2

− �1Jl�Bd + �1A1�tsp�2

d e�1
+ �Jl�Bd + �1A1� − Jl�Bd���

�

tp�p�2

d e�e�1
+ �2Jl�Bd + �2A2�tp�1

s
d e�2

+ �Jl�Bd + �2A2� − Jl�Bd���
�

tp�1
p�

d e�e�2
+ Jl�Bd�tp�1

p�2

d �e−ikda, �B13�

where Aj =−� jeE0 /�� and B111=−�eE0 /����ex+ey +ez�a /4, B11̄1̄=−�eE0 /����ex−ey −ez�a /4, B1̄11̄=−�eE0 /����−ex+ey

−ez�a /4, B1̄1̄1=−�eE0 /����−ex−ey +ez�a /4. In the above representations, �, �1, �2, �, �1, and �2 take x, y, or z, and �1 and �2

take +1 or −1.

1 S. H. Cohen-Tannouji, Ann. Phys. �Paris� 7, 423 �1962�.
2 S. H. Autler and C. H. Townes, Phys. Rev. 100, 703 �1955�.
3 B. R. Mollow, Phys. Rev. 188, 1969 �1969�.
4 S. Harris, Phys. Today 50, 36 �1997�.
5 A. H. Chin, J. M. Bakker, and J. Kono, Phys. Rev. Lett. 85, 3293

�2000�.
6 A. Srivastava, R. Srivastava, J. Wang, and J. Kono, Phys. Rev.

Lett. 93, 157401 �2004�.
7 D. H. Dunlap and V. M. Kenkre, Phys. Rev. B 34, 3625 �1986�.
8 M. Holthaus, Phys. Rev. Lett. 69, 351 �1992�.
9 M. Holthaus and D. Hone, Phys. Rev. B 47, 6499 �1993�.

10 J. H. Shirley, Phys. Rev. 138, B979 �1965�.
11 H. Sambe, Phys. Rev. A 7, 2203 �1973�.
12 F. Grossmann, T. Dittrich, P. Jung, and P. Hänggi, Phys. Rev. Lett.

67, 516 �1991�.
13 V. F. Elesin, Fiz. Tverd. Tela �Leningrad� 11, 1820 �1969� 	Sov.

Phys. Solid State 11, 1470 �1970�
.
14 V. M. Galitskii, S. P. Goleslavskii, and V. F. Elesin, Zh. Eksp.

Teor. Fiz. 57, 207 �1969� 	Sov. Phys. JETP 30, 117, �1970�
.

15 Yu. I. Balkarei and E. M. Epstein, Fiz. Tverd. Tela �Leningrad�
17, 2312 �1975� 	Sov. Phys. Solid State 17, 1529 �1975�
.

16 Y. Yacoby, Phys. Rev. 169, 610 �1968�.
17 K. Johnsen and A. P. Jauho, Phys. Rev. B 57, 8860 �1998�.
18 W. Franz, Z. Naturforsch. A 13, 484 �1958�.
19 L. V. Keldysh, Sov. Phys. JETP 7, 788 �1958�.
20 M. C. M. Miranda, Solid State Commun. 45, 783 �1983�.
21 Y. Mizumoto and Y. Kayanuma, Phys. Rev. B 72, 115203 �2005�.
22 E. A. Power and S. Zienau, Philos. Trans. R. Soc. London 251,

54 �1959�.
23 J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 �1954�.
24 W. A. Harrison, Electronic Structure and the Properties of Solids:

The Physics of Chemical Bonds �Freeman, San Francisco, 1980�.
25 J. Chelikowsky, D. J. Chadi, and M. L. Cohen, Phys. Rev. B 8,

2786 �1973�.
26 S. T. Pantelides and W. A. Harrison, Phys. Rev. B 11, 3006

�1975�.
27 Y. Toyozawa, J. Phys. Soc. Jpn. 41, 400 �1976�.
28 Y. Mizumoto and Y. Kayanuma �unpublished�.

DRESSED-BAND THEORY FOR SEMICONDUCTORS IN A¼ PHYSICAL REVIEW B 74, 045216 �2006�

045216-11


