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Momentum and doping dependence of the static charge susceptibility ��q� in the t-t�-J model is investi-
gated. Correlations lead to a strongly momentum-dependent renormalization of ��q�. The charge susceptibility
near the �� ,�� region of the Brillouin zone is strongly suppressed as the hole density � is decreased. However,
contrary to naive expectations, ��q� around q= �� ,0� and �0,�� remains large and practically unchanged at
��0.1–0.5. This effect is consistent with a tendency towards low-energy charge fluctuations with the wave
vectors along the �-X direction, reported in earlier studies. Our main finding is that the above trends are
amplified by J-driven pairing effects, indicating that the pseudogap formation may promote the charge inho-
mogeneity. The next-nearest hopping t� leads to weakening of the above momentum-selective renormalizations
of ��q�. We analyze the effects of long-range Coulomb interaction, taking into account a layered structure of
cuprates. As an application, the results are discussed in the context of bond-stretching phonon softening in
hole-doped cuprates. In particular, a peculiar doping and momentum dependence of the electron-phonon
coupling constant is found.
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I. INTRODUCTION

Low-energy charge fluctuations and charge ordering be-
comes a hot topic in cuprates. Spatial modulation of the elec-
tronic states related to the local charge and/or bond ordering
has been reported �see Ref. 1 and references therein�. Indi-
rect evidence for the low-energy charge dynamics is obtained
from phonon anomalies induced by hole doping in
cuprates.2–4 These experiments motivate a theoretical study
of the charge susceptibility in correlated models. In general,
one expects an overall suppression of the electronic density
fluctuations, hence the related charge susceptibility, as one
approaches the Mott insulating limit by removing the doped
holes. On the other hand, it is also known that correlations
may promote low-energy charge instabilities—e.g, so-called
stripe physics in cuprates and other oxide materials. These
seemingly opposite trends indicate that the renormalization
of the charge susceptibility by strong correlations is a quite
subtle process.

Previous work on a charge response in the t-J �Refs. 5–7�
and Hubbard models8 focused mostly on finite frequency
charge response, ���� ,q�, and on its frequency-integrated
value, i.e., a structure factor N�q�. These quantities provide
important information on electron-density fluctuation spec-
trum. In particular, Ref. 7 presented detailed calculations of
���� ,q� within a slave-boson framework. A nontrivial mo-
mentum structure of low-energy excitations has been found.
Dressing of the doped holes by underlying spin
excitations—a phenomenon well known in the context of a
magnetically ordered phase of t-J model—has also been cap-
tured within the 1/N expansion method for spin-disordered
state. The results of Ref. 7 are in very good agreement with
numerical data.9,10

Surprisingly, a static charge susceptibility �q=����
=0,q� has escaped attention. To our knowledge, no detailed
discussion of the momentum and doping dependence of �q in
the t-J model has thus far been reported. Meanwhile, this

quantity which corresponds to the finite momentum com-
pressibility contains important information, e.g, about poten-
tial charge instabilities. The aim of this paper is to fill this
gap.

Specifically, we calculate ��q� in the t-t�-J model and
discuss the doping and spin-pairing effects on ��q�. Consis-
tent with known results, we observe that correlations may
drive phase separation at small doping, which is, however,
eliminated by long-range Coulomb forces. Thus the charge
instabilities, if any, are expected at intermediate or large
wave vectors. For large momenta, we find that the correla-
tion effects are highly anisotropic in a momentum space.
While ��q� is suppressed by a “hole-dilution” effect at cer-
tain parts of the Brillouin zone, it could even be enhanced for
q along the �-X direction �from q=0 to �� ,0� or �0,���. As
a result, a featureless charge susceptibility ��0��q��const of
noninteracting electrons obtains a strong momentum depen-
dence. Physically, these observations originate from a non-
trivial momentum structure of low-energy charge excitations
found in Refs. 7, 9, and 10.

The main focus of the paper is to investigate how the
above features in ��q� are affected by the J term which in-
duces a pseudogap in the fermionic dispersion. Formally, this
is done by considering fluctuations in the density channel
taking into account also the pairing fluctuations due to J
interaction. We find that the pairing effects cooperate with a
Gutzwiller constraint and enhance its momentum-selective
renormalization of ��q�. Another issue, raised in our study, is
the influence of the next-to-nearest neighbor hopping t�,
which is shown to somewhat weaken the above anomalies in
��q�. We also address a question of how the momentum
dependence of the compressibility is changed by the Cou-
lomb interaction. We provide a realistic treatment of the
Coulomb potential accounting both for its long-range char-
acter and for the layered lattice structure of cuprates.

There have been a number of discussions in literature
on how the correlations renormalize electron-phonon
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coupling.11–18 In Holstein-Hubbard type models �relevant to
the problem of oxygen vibrations coupled to the electron-
density� it was found that a peculiar “forward-scattering fea-
ture” may develop due to correlations. We will discuss a
connection between this observation and our findings for the
charge susceptibility ��q�. Related to this issue is the bond-
stretching phonon anomalies in cuprates, which are dis-
cussed in the last part of this paper. This part extends the
previous study19,20 of the phonon-softening problem by in-
cluding the pairing and t� effects.

The rest of the paper is organized as follows. Section II
describes the formalism and discusses ��q� in the t-only
model. Sections III and IV focus on the effects of J and t�
terms, correspondingly. In Sec. V, we derive a momentum
dependence of Coulomb potential in the layered lattice struc-
ture, and calculate ��q� at the presence of these interactions.
The last section, Sec. VI, discusses renormalization of the
electron-phonon coupling by correlations.

II. MODEL AND FORMALISM

The t-J Hamiltonian is

H = − �
ij

tijc̃i�
† c̃j� − 	�

i

ni + J�
�ij�

	sis j −
1

4
ninj
 + �

�ij�
Vijninj .

�1�

One of the useful approaches in treating the local con-
straint on the fermion occupation number, ��ci�

† ci�
1, is the
slave-boson representation c̃i�= f i�bi

†. The above inequality
is then replaced by the constraint bi

†bi+��f i�
† f i�=N /2, with

the physical case of N=2. It is convenient also to consider
the limit of the large number of spin indices �flavors�, N
�1, since calculations are simplified this way �see, e.g., Ref.
5 and references therein�.

Formally, the slave-boson approach implements the con-
straint of no double occupancy at the operator level. In the
large-N limit, the mean number of bosons �bi

†bi� is large and
bosonic amplitude contains a large c-number component, a
bosonic condensate. It was noted however, that the phase of
each slave boson is a gauge degree of freedom, which is
eliminated from the action by promoting the local Lagrange
multipliers into time-dependent fields. The remaining degree
of freedom for slave bosons is their real-valued amplitude,
bj =rje

i�j→rj and one can formulate the “radial-gauge” rep-
resentation for slave bosons.

Below we show how the leading-order results obtained
for the charge susceptibility in the large-N slave-boson
approach5,7 can be reproduced in a simple manner. To clarify
our approach, we let J=0 first, so that only a hopping term is
present. We represent the constrained fermions as

c̃i�
† = ci�

† �1 − ni, �2�

with ni the fermion occupation number, ni=��ci�
† ci�.

We are interested in the charge susceptibility of the sys-
tem, therefore we consider small fluctuations of the fermi-
onic density ni around its uniform equilibrium value n̄. We
expand the hopping term up to the second order in

i � �ni/2 = �ni − n̄�/2,

with the factor 2 introduced for later convenience;

Ht = − �
ij

tijci�
† �1 − n̄� − �i +  j� −

�i −  j�2

2�1 − n̄� �cj�. �3�

In the Fourier representation, the first term above becomes a
fermionic dispersion with the renormalized amplitude; the
second term describes the scattering of the fermions on the
fluctuations of density. The third term has a more compli-
cated structure; for our purposes it is enough to consider its
part, which is diagonal in fermionic momenta, �ck1,�

† ck2,�
with k1=k2. Then we write

Ht � �
k�

�kck�
† ck� + �

k,q,�
�tk + tk+q�ck�

† ck+q,�q

+ �
kq�

tk − tk+q

1 − n̄
ck�

† ck�q−q �4�

with

�k = − �1 − n̄�tk + 	 , �5�

tk = 2t�cos kx + cos ky� − 4t� cos kx cos ky , �6�

henceforth we set t=1. The constraint for ni to be a number
of on-site electrons leads to the appearance of the local
Lagrange multipliers in the action

− 	q	2−q − �
k,�

ck�
† ck+q,�
 ,

so that the scattering term takes the form

�
k,q

Ukqck�
† ck+q,�, �7�

with Ukq�q�tk+ tk+q�+	q. The average number of fermions
is defined by n̄=2�knF��k� with nF�x� the Fermi factor. One
can integrate out the fermions now, and obtain the effective
low-energy action,

Ft � �
q

�q−q��q − �2� − 2q	−q��1 + 1� − 	q	−q�0� ,

�8�

�q = 2�
k

tk − tk+q

1 − n̄
nF��k� , �9�

�n = �
k

�tk + tk+q�n

�k+q − �k
�nF��k� − nF��k+q�� . �10�

Requiring the zero variation, �Ft /�	q=0, we determine the
values of Lagrange multipliers

	q = − q�1 + �1�/�0. �11�

Inserting these values into Eq. �8�, and recalling that q
=nq /2 at q�0, we find
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Ft � �
q

nqn−q

4
�q − �2 +

�1 + �1�2

�0
� . �12�

The above equation for the free energy in the harmonic ap-
proximation should be compared to the general expression
F=�q�2�q�−1nqn−q+¯ with the static charge susceptibility
�q. The value of �q as determined from Eq. �12� coincides
with the result of Ref. 7 in the limit of �=0 �however, a
so-called polaron correction due to the higher 1 /N term7 is
absent in Eq. �12��.

Let us first qualitatively analyze the above formula for the
charge susceptibility. We introduce the doping level, or the
concentration of holes,

� � 1 − n̄ ,

and extract this factor from the dispersion �q and the chemi-
cal potential 	,

�q = �− tk + 	̃�� = �q
�0�� . �13�

Note that 	̃ is positive and proportional to the doping level at
t�=0.

After some straightforward rearrangements of Eq. �12�,
the expression for ��q� can be represented in the following
form:

�q = �q
�0� �

�� − �q�2 + 2�	̃� + �q��q
�0� . �14�

Bare quantities �q
�0�, �q, and �q are given in terms of the

“noninteracting” dispersion �k
�0� as follows:

�q
�0� = 2�

k

1

�k+q
�0� − �k

�0� �nF��k
�0�� − nF��k+q

�0� �� , �15�

corresponding to the bare susceptibility, and

�q = �
k

�k+q
�0� + �k

�0�

�k+q
�0� − �k

�0� �nF��k
�0�� − nF��k+q

�0� �� , �16�

�q = − �
k

�k+q
�0� �k

�0�

�k+q
�0� − �k

�0� �nF��k
�0�� − nF��k+q

�0� �� . �17�

One can show that the function �q in Eq. �17� is positive.
Equation �14� should be understood as a renormalization of
the charge susceptibility by correlation effects �q /�q

�0�

=Gq��� where a function Gq��� is given by a fraction in Eq.
�14�. This momentum and doping dependent factor results
from the action of the Gutzwiller constraint in the density
channel. Whereas a noninteracting susceptibility �q

�0� is a fea-
tureless function in the absence of nesting �at �=0, t�=0�,
the correlation effects bring a pronounced momentum struc-
ture in �q via the function Gq���.

At large doping levels, Gq��� eventually approaches unity.
The action of this factor at small doping is highly
momentum-selective. Inspecting Eqs. �14�–�17� at t�=0, one
finds that Gq����� for q��� ,�� �with omitted logarithmic
corrections�. This is simply understood as a reduction of den-
sity fluctuations due to a removal of the holes. �Alternatively,
one may say, that the checkerboard structure in positions of

small amount of doped holes is the least energetically favor-
able.� At small momenta, however, the effect is opposite and
one has Gq����1/�. This means a divergent compressibility
as one approaches the Mott limit, in accordance with previ-
ous studies of Hubbard21 and t-J models,22–24 and reflects a
well-known tendency towards phase separation.25–27 Compe-
tition between these two effects—a hole dilution and phase
separation—leads to a nontrivial momentum structure. It is
interesting to note that this structure is complementary to that
in the spin sector, where correlations enhance the spin sus-
ceptibility at q��� ,��,26,28 but not at small momenta.

These qualitative observations are further illustrated by
the numerical calculations. In Fig. 1, we show the momen-
tum dependence of �q along the symmetry lines in the Bril-
louin zone. The above behavior of �q with doping is clearly
visible at the symmetry points. In order to emphasize this
nontrivial momentum dependence induced by the Gutzwiller
constraint, we plot �q /�q

�0�=Gq��� in Fig. 2 for several dop-
ings ���0.1,0.2,0.3,0.5�. To see the doping dependence in
more detail, we show �q in Fig. 3 as a function of doping at
three symmetry points q=0, �� ,0�, and �� ,��. One observes
that the curves for �q�0 eventually turn down at small dop-
ing �. Remarkably, the value of �q at �� ,0� upon decreasing
� is somewhat enhanced before the downward turn, which
shows the competition between two trends: phase separation
and hole dilution.

FIG. 1. The inverse nonuniform compressibility calculated for
the tight-binding spectrum.

FIG. 2. Renormalization of the susceptibility due to the
Gutzwiller constraint.

CHARGE SUSCEPTIBILITY IN THE t-J MODEL PHYSICAL REVIEW B 74, 045124 �2006�

045124-3



Small momentum anomalies are eliminated in reality by
Coulomb repulsion. A detailed study of this problem is pre-
sented in Sec. V. We show there that a pronounced momen-
tum structure of ��q� with very different doping dependence
at �� ,�� and �� ,0� regions still remains at the presence of
Coulomb interactions.

III. J TERM: PSEUDOGAP EFFECTS

We consider now how the above observations change at
the presence of pseudogap effects induced by the J term in
the Hamiltonian. In the spirit of large-N slave-boson theo-
ries, we refer to pseudogap as a fermionic gap arising from
mean-field decoupling of the superexchange interaction in
the pairing channel. A question addressed here is that of how
such a gap and fluctuations of the pairing field around a
uniform mean-field solution will affect the charge suscepti-
bility.

The four-fermion J term can be represented in the form

HJ = −
1

2 �
k1,k2,k3

ck1,↑
† ck2,↓

† ck3,↓ck4,↑�Jk4−k1
+ Jk3−k1

� �18�

with k4=k1+k2−k3 and the nearest-neighbor interaction Jk
=2J�cos kx+cos ky�. Introducing the quantity

�q
± = �

k

ck+q/2,↓c−k+q/2,↑�k
±, �19�

with

�k
± = �cos kx ± cos ky�/2, �20�

we represent the J term as

HJ = − 4J �
q,�=±

��q
��†�q

�. �21�

This expression can be decoupled by the Hubbard-
Stratonovich transformation as follows:

HJ = �
q,±
�dq

±�q
± + H.c.� +

�dq
±�2

4J
� . �22�

Here dq
− and dq

+ stand for the amplitudes of the d-wave and
extended s-wave pairing, respectively, in the channel with
nonzero total momentum, q. The total Hamiltonian is then
quadratic in fermions, which interact with the fluctuations
q, 	q, and dq

±.
We assume that the d-wave pairing sets in, which corre-

sponds to the nonzero value of the order parameter d0
−��.

The spectrum is given by �k
2=�k

2+�k
2, where �k=d0

−�k
−. The

self-consistency gap equation in the small-coupling limit
reads

1 = 2J�
k

��k
−�2

�k
tanh

�k

2T
. �23�

Restricting our consideration by the quadratic terms in the
above nonuniform fluctuations, we would like to obtain an
expression similar to Eq. �12�, but in the presence of the
pairing. After some standard analysis, we arrive at the
bosonic-type action of the form

Ft−J = �
q

�q
†Mq�q, �24�

�q
† = �q,	q,dq

+,dq
−� , �25�

with the matrix

Mq =�
�q − �2 − 1 − �1 A1

+ A1
−

− 1 − �1 − �0 A0
+ A0

−

A1
+ A0

+ �4J�−1 − Dss − Dsd

A1
− A0

− − Dsd �4J�−1 − Ddd

� .

�26�

Here in the low-temperature limit

�q = �
k

tk − tk+q

1 − n̄

�k − �k

�k
,

�n = �
k

�t+ + t−�n�+�− − �+�− + �+�−

2�+�−��+ + �−�
, �27�

	An
+

An
− 
 = �

k

�t+ + t−�n �+�− + �+�−

2�+�−��+ + �−�	�k
+

�k
− 
 , �28�

and

�Dss

Dsd

Ddd
� = �

k

�+�− − �+�−+

2�+�−��+ + �−����k
+�2

�k
−�k

+

��k
−�2� , �29�

and we used the shorthand notation �±=�k±q/2, �±=�k±q/2, etc.

FIG. 3. Doping dependence of the charge susceptibility �upper
panel� and its inverse value �lower panel� at the symmetry points.
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We are interested in the charge susceptibility, which
should basically be determined by integrating out the pairing
fluctuations in Eq. �25� and setting the Lagrange multipliers
	q to their saddle-point values. Both steps are essentially the
same for the quadratic action, so that the needed compress-
ibility is given by the upper left element of the inverse matrix
Mq, namely,

�q = 2�Mq
−1�11. �30�

Let us briefly discuss here how the intersite Coulomb in-
teraction Vij is included in our formalism. We write it in the
form ��ij�Vij�ni− n̄��nj − n̄�= 1

2�qVqnqn−q=2�qVqq−q, and
see that this interaction modifies the only matrix element in
Eq. �26�, so that

�Mq�11 → �q − �2 + 2Vq. �31�

The last equation shows that we treat the interaction Vq
within the random-phase approximation �RPA� scheme. It
can also be shown that

�V,q
−1 = �V=0,q

−1 + Vq, �32�

i.e., one can calculate �q at Vq=0, and include Vq�0 after-
wards. At the same time, the inclusion of Vq�0 should be
done from the beginning for the calculation of d-wave sus-
ceptibility �dd�q� �see below�.

It is also worth noting that in the absence of pairing, �k
�0, the coefficients D�� in Eq. �26� remain finite, and An

±

vanish. It means that in the harmonic approximation the
superconducting-type fluctuations affect the charge suscepti-
bility only at finite �. At the same time, in more general
treatment, the superconducting fluctuations d± affect the den-
sity fluctuations in the higher orders even at �k�0. Consid-
ering multitail fermionic loops, one obtains, e.g., the terms in
the bosonic action of the form

A1
−−k1

dk2

− dk3

−* + B−−k1
k2

dk3

− dk4

−*,

etc., where the coefficients A1
−−, B−− are defined by the Feyn-

man diagrams shown schematically in Figs. 4�a�–4�c�, re-
spectively. One can notice that the diagram in Fig. 4�b� cor-
responds to an analog of Maki-Thompson contribution to
paraconductivity and the diagram in Fig. 4�c� reflects the

“density of states correction,” see Ref. 29. The contribution
of the diagram in Fig. 4�a� is zero at �k�0. However, in the
presence of the pairing condensate, one external bosonic
field d− sets to a constant, contributing in the lowest order to
the term A1

− in Eq. �26�, etc. The calculation of such fluctua-
tion corrections to the charge susceptibility is clearly beyond
the scope of the present study.

In our numerical calculations we set J=0.3, and deter-
mined � from the self-consistency equation �23� at T=0.
One should note, that at T=0, Eq. �23� has a solution ��0
for any doping, although � can be exponentially small. In
our calculation, we ruled out the solutions with ����10−3t,
thus implicitly setting the temperature to be very small but
finite, T�10−3t. The matrix M is then found from Eqs.
�27�–�29�, and �q from Eq. �30�.

The obtained results are shown in Fig. 5. Comparing the
upper panel in Fig. 5 with the previous Fig. 1, we observe
that �q is still rather flat in the whole Brillouin zone at large
dopings. At smaller dopings the above momentum-selective
features are enhanced by the pseudogap appearance, with
somewhat increase of �q

−1 at q= �� ,�� and a new qualitative
change at small wave vectors. Namely, the compressibility
attains negative values at finite ��0.15, which means that
the Gaussian action ��q

−1��nq�2 is unstable in a rather ex-
tended range of dopings and the analysis of the next orders in
�nq is needed. This instability is accompanied by the diver-
gence in the d-wave susceptibility �dd defined as the
1
2 �Mq

−1�44, as is seen in the lower panel in Fig. 5. We remind
the reader that the latter quantity is always positive �dd

−1

FIG. 4. Multitail fermionic Feynman diagrams, leading to
higher-order terms in the bosonic action. Fermionic Green functions
are shown by lines with arrows; bosonic fields  ,d− stand in the
vertices. For simplicity we do not show the internal momenta.

FIG. 5. Behavior of inverse charge �upper panel� and d-wave
pair �lower panel� susceptibilities at J=0.3.
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��2 / t in the absence of feedback from density fluctuations
to the superconducting ones, i.e., when An

±�0. The unstable
pairing part of the action ��q�dd

−1�q��dq
−�2 particularly means

that the uniformly paired ground state determined by the gap
equation �23� is no longer justified.

Our finding that J-pairing fluctuations and charge fluctua-
tions grow up concomitantly could be understood as a dy-
manical modulation of pairing amplitude consistent with the
results by Vojta et al.30,31 It is also noticed that a dramatic
enhancement of the charge susceptibility at small momenta
due to the J term is consistent with previous reports �see,
e.g., Fig. 3 of Ref. 26� that the superexchange interaction
increases a tendency towards phase separation. Close to such
instabilities, the higher-order terms �beyond the Gaussian ac-
tion� should be included in the theory, which problem de-
serves a separate study.

IV. NEXT-NEAREST HOPPING

We discuss now the effects of next-to-nearest neighbor
hopping t� which is present in cuprates and has in fact been
suggested to be a key empirical parameter for
superconductivity.32 Effects of t� on physical quantities such
as spin and fermionic excitations in the t-J model has been
found to be substantial, see, e.g., Ref. 33. Concerning the
charge compressibility, several studies found that t� hopping
reduces a tendency towards phase separation.26,34,35

Consider first the qualitative effect of t��0 in the absence
of the J term. Using Eq. �14�, one can still show that the
renormalization factor Gq����� at q= �� ,��. At the same
time, for t��0 the chemical potential 	̃ does not vanish
when �→0 and we have finite Gq����1/ 	̃ at small mo-
menta. It means that finite �positive� t� reduces the tendency
to the phase separation at small doping, consistent with pre-
vious work. It is interesting to note that the negative t� has an
opposite effect. Indeed, in this case the chemical potential 	̃
is also negative. By inspecting Eq. �14� one observes that
this may lead to negative values of the susceptibility at small
momenta and doping, indicating an instability of the uniform
state for the t��0 case at small dopings.

We showed in the previous section that the inclusion of
the J term drives the system closer to the instability point for
charge fluctuations at t�=0, and the same thing should hap-
pen when next-to-nearest neighbor hopping is present. To
verify it, we recalculated �q for t�=0.3, J=0.3 for the same
values of doping � as above. The results are shown in Fig. 6.
Comparing it to Fig. 5, one confirms that the finite next-
nearest hopping t��0 somewhat stabilizes the charge fluc-
tuations. The comparison to Fig. 1 shows, however, that the
effect of the J term is still dominant and �q is �nearly� diver-
gent at �=0.1.

We should emphasize that the above statements on the
role of t� and J terms do not explicitly rely on the one-
particle properties of the spectrum, such as van Hove singu-
larities and flat parts of dispersion around �0,�� points. Our
discussion includes two-particle Green’s functions, both
particle-hole and particle-particle fermionic loops, and the
eventual integration over bosons in the effective action, i.e.,
obtaining Eq. �30� from Eq. �24�, corresponds to the simul-

taneous resumming of the RPA series in both Gutzwiller and
J-term channels.

Summarizing here, the static susceptibility shows no
structure in the Brillouin zone at a large value of the hole
doping, ��0.5. This could be expected for a system without
strong correlations and with a large Fermi surface, since in
the 2D Fermi gas, �q=const at q�2kF. The flat shape of �q
at large � is rather insensitive to the values of the second
hopping and pairing. At smaller dopings, �q demonstrates a
pronounced structure in q-space; the tendency to long-scale
phase separation is somewhat weakened by finite values of
the second hopping, but the pairing fluctuations, induced by
the J term, dominate and eventually make the system un-
stable both in charge and pairing channels.

V. LONG-RANGE COULOMB INTERACTION

Charge susceptibility is strongly influenced by a nonlocal
repulsion between the holes. Quite often �in numerical stud-
ies in particular� these interactions are approximated by a
nearest-neighbor potential V1, which is already sufficient to
observe the suppression of phase separation effects discussed
above. We are, however, interested in a more detailed mo-
mentum dependence of �q. For this purpose, one has to use
more realistic, i.e., long-range form of the Coulomb poten-
tial. We consider first its momentum dependence in a layered
cuprate structure, taking into account a discrete nature of the
lattice within the planes as well.

At small momenta, where no lattice structure is relevant, a
continuum limit applies;

VC�Q� =
4�e2

�abq2 + �cqz
2 . �33�

Here, �ab and �c are zero-frequency dielectric constants de-
termined usually from optical data, and q2=qx

2+qy
2. �a and b

directions are assumed to have the same �.� We use a nota-
tion Q= �q ,qz�, with in-plane and out-of-plane components,
q and qz, respectively. For qz=0, the above equation gives
V�q�=4�e2 /�abq2, a conventional three-dimensional �3D�
potential. We recall that in two-dimensional �2D� �the case of
infinitely separated planes� V�q��1/q, and we discuss the
crossover between these two regimes below.

FIG. 6. Inverse charge susceptibility at t�=0.3 and J=0.3.
Anomalies at small momenta seen in Fig. 5 are suppressed.
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We argue here that for our analysis it is possible to neglect
a momentum dependence of the dielectric constants, because
at low energy they are mostly contributed by �dispersionless�
optical phonons and nearly localized, high-energy electronic
processes. In this case the real space representation of Eq.
�33�, valid up to interatomic distances, reads as follows:

VC�R� =
e2

��ab�c

1

���ab/�c�z2 + r2�1/2 . �34�

Here, r is a distance within the ab plane, and R2=r2+z2. In
the isotropic case �ab=�c, a familiar expression e2 /�R fol-
lows from this equation.

Let us consider now a lattice with periodicity a within the
planes and d along the c axis �in the La2CuO4 structure, d is
a half of the c axis lattice parameter, i.e., d=c /2�. We deter-
mine the Coulomb repulsion Vij between the electrons, refer-
ring to the sites i and j. In our tight-binding situation the
electronic wave functions are almost localized around the ith
ion and their amplitude squared gives the density around this
ion. We denote this density, or charge distribution function,
by f�R−Ri�, and write

Vij =� dR�dR�f�R� − Ri�f�R� − R j�VC�R� − R��

=� dQ

�2��3 �f�Q��2VC�Q�eiQ�Ri−Rj�, �35�

where the integration is over the whole continuum and VC is
given by Eqs. �33� and �34� in a momentum and real spaces,
respectively. The Fourier transform of Vij then reads as

V�Q� = �
j�i

Vije
iQ�Ri−Rj�

=
1

a2d
�
G3

�f�Q + G3��2VC�Q + G3� − Vii �36�

with G3 the 3D wave vector of reciprocal lattice.
On the physical grounds, one expects that a doped hole

�the Zhang-Rice singlet� is a rather extended object in the ab
plane and nearly localized in this plane. A reasonable choice
for a hole-shape function is

f�R� = ��2/2��e−�r��z� ,

which decays at distances 1/� in the plane. Physically, the
size of the Zhang-Rice singlet should at least be about Cu-O
distance, so ��2/a might be a representative value. A mo-
mentum counterpart of the latter function

f�Q� = �1 + q2/�2�−3/2 �37�

should then be understood as a form-factor of the Zhang-
Rice singlet.

Given that the form-factor f�Q� is independent of the qz

component, the summation over Gz=2�n /d �n
=0, ±1, ±2, . . . � in Eq. �37� is easily performed for any qz.
The result for our primary case of interest qz=0 is

Vq � V�q,0� = �
G2

�f�q + G2��2V�0��q + G2� − Vii, �38�

where G2=2��n ,m� /a is the reciprocal wave vector for a
square lattice and

V�0��q� =
V

qa tanh�q/q0�
, �39�

V =
2�e2

a��ab�c

, �40�

q0 � 2/d̃ = �2/d���c/�ab. �41�

Here d̃ is an effective interlayer distance. The potential �39�
interpolates between 3D Vq0 /q2a and 2D V /qa limits at
small q�q0 and large q�q0 momenta, respectively. This
crossover at q0 reflects the fact that the planes are indepen-
dent at large momenta. For an La2CuO4 compound where
�c /�ab�1/2,36 the value of crossover momentum is esti-
mated as q0�0.8/a.

The function �38� is explicitly periodic in q space. In the
particular model for the form-factor, Eq. �37�, the subtracted
term Vii is evaluated as Vii=3�aV /32. In general, Vq is a
sign-reversal function in the Brillouin zone, as it should be in
view of �QV�Q�=V�R=0�=0. In the case of a continuum
limit for the planes37 �instead of the tight-binding model used
here�, the Coulomb potential would be given solely by Eq.
�39�, the result formally obtained from Eq. �38� by setting
Vii=0, f�q�=1 and taking the G2=0 term alone. Finally, we
note for completeness that V�q ,qz� for arbitrary qz is again
given by Eq. �38� but the potential V�0��q� for a contimuum
limit in Eq. �39� must be replaced by V�0��q ,qz�=V�0��q� /

�1+Fz
2�, where Fz=sin�qzd /2� / sinh�qd̃ /2�.37

At moderate ��1 and small momenta q�� �or, alterna-
tively, at distances exceeding the size of Zhang-Rice singlet�,
only the G2=0 term in Eq. �38� contributes and Vq
�V�0��q�. The rapid decay of �f�q��2 �see Eq. �37��, cuts off
the values of Vq at larger momenta q��.

The opposite limit �a�1 corresponds to the point-charge
approximation and the sum in Eq. �38� formally diverges
with �. This divergence is canceled by the above on-site term
Vii��. In the Appendix, we provide another representation
for Vq in the point-charge limit; it works increasingly well
for �a�3.

Figure 7 shows q dependence of the Coulomb potential,
Eq. �38�, as a function of parameter � at fixed q0=0.8/a.
Vq /V evolves from the point-charge limit with visible sign-
reversal character to nearly positive curves as � decreases.
For comparison, we also show a frequently used simple
short-range repulsion model

Vq = 2V1�cos qx + cos qy� + 4V2 cos qx cos qy

with V1=V /2�, V2=V1 /�2 �dashed-dotted line�, and the re-
sult that would be obtained when the lattice structure is dis-
carded within the planes �dotted line�. The latter is always
positive as should be for the charges in a continuum.
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Let us turn now to the charge susceptibility and consider
how it is influenced by long-range Coulomb interactions.
First, we estimate the energy scale V in Eq. �40�. Using a
representative value ��ab�c�30,36 one finds V�0.8 eV,
which is about 2 in units of t.38 Second, we should in prin-
ciple complement the Coulomb potential with short-range
interactions between the holes, stemming from local physics.
One such contribution is that of a well-known “missing J
link,” which gives NN attraction of the scale of J�sis j
−1/4��−�0.1÷0.2�t. Yet another local interaction is medi-
ated by the bond-stretching vibration of an oxygen shared by
the two NN holes. This contribution is repulsive at a low-
energy limit because of the coupling geometry �see, for de-
tails, Sec. VI�, and is given by a half of the polaron binding
energy Eb /2� t /4 �estimated below from the phonon shift
induced by doping�. Altogether, these two local NN contri-
butions of different sign tend to cancel each other and their
small net result could be neglected. Hence, we focus on the
Coulomb repulsion.

Figure 8 shows a momentum dependence of the charge
susceptibility at the presence of Coulomb interactions. The
parameters used were q0=0.8/a and V=2. Compared with a
pure t-J model result in Fig. 4, one observes that Vq elimi-
nates phase separation effects. We find also that small mo-
mentum divergences of the pairing fluctuations are sup-
pressed also. However, Coulomb interaction effects are not
significant at larger momenta. All the local correlation ef-
fects, which lead to a pronounced anisotropy of the charge
susceptibility and its nontrivial doping dependence along the
�-X direction, remain intact. As expected, the main effect of
Coulomb interactions is to move potential charge instabilities
to a finite momenta, as seen in Fig. 8. The divergence of �q

−1

at q→0 corresponds to ��q=0�=0, a well-known screening
phenomenon in the presence of long-range Coulomb repul-
sion.

VI. APPLICATION: PHONON SOFTENING IN CUPRATES

Density fluctuations determine-doping induced phonon
renormalization, as discussed earlier in a framework of

slave-boson method,19,20 and also by an exact diagonaliza-
tion of small clusters.40 In particular, a broad and anomalous
line shape of the bond-streching phonons with momentum at
�� ,0� direction has been found,19 while no such anomalies
were present for �� ,��. The effect is strongly doping
dependent.20 We consider now how the phonon renormaliza-
tion effects are modified when the pairing �pseudogap forma-
tion� is included. Specifically, we address here a phonon soft-
ening problem and discuss the results in the context of
experimental reports.2–4

A doped hole couples to the bond-stretching vibrations of
its four oxygen neighbors19

H = g�
i

ni�ux
i − u−x

i + uy
i − u−y

i � . �42�

In a momentum space this reads as

H = i�Eb�0 �
�,q

sin�q�a/2��a�,−q + a�,q
† �nq. �43�

Here, �=x and y denotes the polarization of the oxygen dis-
placement, and �0=�K /m is the phonon frequency deter-
mined by spring constant K and the oxygen mass m.
Electron-phonon coupling strength is conveniently quantified
by a binding energy

Eb = 2g2/K , �44�

which would be gained in case of a static hole. By fitting a
slave-boson theory to the experimental data on phonon soft-
ening and linewidth in cuprates, an estimation Eb� t /2 was
obtained in Ref. 19.

We assume that the energies of density fluctuations are
higher than the phonon energy—it should be valid not too
close to charge instability. Within this assumption, we can
use our static �q to estimate phonon softening, ��q=�0
−�q���, which is obtained as follows:

��q

�0
= 1 − �1 − 2Eb�q�1 − �q� � Eb�q�1 − �q� , �45�

where �q= �cos qx+cos qy� /2 and �q includes the Coulomb
repulsion. Note also, that without correlations the product

FIG. 7. �Color online� Coulomb potential Vq /V for different
values of �. A crossover momentum q0=0.8/a. For comparison, a
dashed-dotted line shows a simple model which includes nearest-
neighbor �NN� and next-nearest-neighbor �NNN� repulsion only.
The dotted line is calculated from Eq. �39� neglecting the lattice
structure within the planes.

FIG. 8. Behavior of inverse charge susceptibility at J=0.3, t�
=0. Coulomb repulsion with V=2, �=2/a, and q0=0.8/a is in-
cluded. Compare with Fig. 5.
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Eb�q
�0��Eb /4t. One can therefore introduce a dimensionless

quantity ��0�=Eb /4t, which could be regarded as a “bare”
coupling constant in the problem. According to Ref. 19,
��0��1/8, justifying a perturbative treatment. Equation �45�
reads now as

��q/�0 = �q = ��0�4t�q�1 − �q� . �46�

Factor �q in Eq. �46�, which stems from the coupling
geometry, would suggest a strongest softening for the full-
breathing mode, that is, at q= �� ,��. However, strong corre-
lations change a momentum dependence of �q dramatically
by suppressing it at �� ,�� and enhancing around �� ,0�
points. One may say that correlations lead to the redistribu-
tion of the effective electron-phonon coupling in a momen-
tum space. As a result, softening becomes strongest at �� ,0�,
consistent with experiment. This explanation of Ref. 19 is
further supported by the present calculation, including the
pseudogap and t� effects.

Figure 9 shows a general form of the renormalization fac-
tor �q /��0� along particular directions in the Brillouin zone.
This figure is in obvious correspondence with the above find-
ings, and particularly, with Fig. 8.

Figure 10 presents more detailed doping dependence of
�q /��0� at q= �� ,�� and q= �� ,0�. When multiplied by a
bare constant ��0�, these curves correspond to the phonon
softening ��q /�0. As the latter is about 15–20% for �� ,0�
phonon in optimally doped cuprates,2,3 a bare constant ��0� of
the order of 0.15–0.20 is required to fit the observed data.41

A striking similarity with the observed doping dependence2,3

is worth pointing out here: both in experiment and in our
theory, phonon softening along the �� ,0� direction is almost
independent on doping in a wide region above ��0.12.
While such a trend was already found earlier,20 J-pseudogap
effects dramatically enhance the charge susceptibility along
�� ,0� at small �, hence it obtains nearly flat doping depen-
dence rather unexpected in view of hole-dilution physics.

For further comparison of our theory with the available
experimental data, we plot a momentum dependence of
�q /��0� along the �-X direction for several values of doping
in Fig. 11. One finds that visible deviations from a simple

cosine curve increase at smaller dopings, in general agree-
ment with experiment.3,4

While present calculations do capture the most anomalous
experimental findings—stronger and nonlinear doping ef-
fects along the �� ,0� direction—a quantitative comparison is
much less satisfactory. In particular, a rather sharp kinklike
change in doping dependence is observed in experiment at
about ��0.12,2,3 while it is found in our theory at lower
doping. One obvious reason for this discrepancy is that,
strickly speaking, we cannot quantitatively address the pho-
non softening problem by using our static charge suscepti-
bility. This is because the charge fluctuations for momenta
along the �� ,0� direction extend to low energies �compa-
rable to phonon ones�, as shown both in a slave-boson
theory7 and in the numerical work.9,10 A dynamical suscep-
tibility is therefore required, which is, however, beyond the
scope of present work. Yet another reason is that, focusing
mainly on the pairing effects, we did not include an effective
hopping contribution stemming from “Fock” decoupling of
the J interaction. This contribution, which is a fraction of
J / t,5,7 will stabilize a Gutzwiller band-narrowing effect at
doping levels ��0.2–0.3�J / t below which a linear doping

FIG. 9. Momentum dependence of the effective coupling con-
stant �in units of the bare coupling ��0�� which determines the renor-
malization of the bond-stretching phonons. The parameters used
were t�=0.3, J=0.3, V=2, and �=2/a.

FIG. 10. Renormalization of phonons �in units of the bare cou-
pling constant ��0�� at the symmetry points as a function of doping.
The parameters used are as in Fig. 9.

FIG. 11. �Color online� Renormalization of phonons along the
�0,�� direction �in units of ��0��. The parameters used were t�
=0.3, J=0.3, V=2, �=2/a, and q0=0.8/a. A simple cosine curve is
shown for comparison by the dotted line.
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dependence �q��� due to a hole-dilution effect sets in. This is
expected to shift a kink feature to higher dopings as in ex-
periment. Further, a quantitative description would also re-
quire the inclusion of spin-polaron effects beyond the leading
1/N approximation,7,20 and a coupling of the charge fluctua-
tions to a collective spin mode.42

In general, it seems that a kink feature in the doping de-
pendence of �� ,0� phonon softening,2,3 which apparently
parallels with the so-called “Yamada plot” for the spin
incommensurability,43 provides an interesting test case for
theory. Its initial linear behavior �� is expected and can be
explained in terms of sum rule arguments.17 The saturation
above a certain doping level is well captured by slave-boson
theories, but it is not fully clear at present why such an
abrupt regime change happens at around the “magic” doping
�1/8 concomitant with the saturation of spin incommensu-
rability.

Finally, it is interesting to notice that the renormalization
of density fluctuations and the so-called charge vertex ��k ,q�
of Refs. 12 and 13 �denoted by ��p ,q� in Refs. 15, 16, and
18� have a common origin. Reflecting this, the charge sus-
ceptibility can readily be expessed via ��k ,q� �see, e.g., Eq.
�16� of Ref. 13�. In fact, in case of zero frequency and small
momenta one finds ��kf ,q�����q /�q

�0��. This relation clari-
fies the origin of strong momentum structure in the electron-
phonon vertex function found in Refs. 12–16 and 18—this
simply reflects the highly momentum-selective action of the
Gutzwiller constraint on density fluctuations as we empha-
sized in previous sections of this paper. Indeed, as �q /�q

�0�

�1/� at small momenta, one realizes that the effective
electron-phonon interaction is essentially the bare one. At
large momenta, however, it is strongly suppressed as the hole
density � is reduced.44 This results in a “predominantly for-
ward scattering” of electrons on phonons in cases when this
coupling is located in a density channel �which is the case for
the scattering on bond-stretching phonons�. In the context of
cuprates, one should, however, realize that this small-
momentum peak structure in �q, hence also in ��k ,q�, is in
fact suppressed by long-range Coulomb repulsion. Moreover,
a bare matrix element for bond-stretching phonons is itself
vanishing as q2 at small q �observe the matrix elements
sin�q�a /2� in Eq. �43� and the resulting the form-factor
�1−�q� in Eq. �45��. These two factors eliminate the
“forward-scattering” feature in cuprates. Altogether, it seems
that effective coupling of the Fermi-surface electrons to
bond-stretching phonons is somewhat reduced from ��0� for
both small and large values of momentum-transfer q. There-
fore, a significance of the bond-streching phonons for the
electronic properties of doped cuprates should not be
overemphasized.44

VII. CONCLUSIONS

We calculated a momentum dependence of the static
charge susceptibility in the t-t�-J model at various doping
levels. We employed the formalism, which effectively re-
sums the RPA series in Gutzwiller, J term, and Coulomb
repulsion V-channel simultaneously. We observe that ��q� is

a featureless function in the limit of a weakly correlated
overdoped regime. With decreasing of the doping level,
strong correlations lead to a nontrivial, highly momentum-
dependent renormalization effect that cannot be described in
terms of simple hole-density dilution effects. We demonstrate
that ��q� is strongly suppressed near �� ,��. However, ��q�
remains large around �� ,0� and �0,�� regions even at dop-
ings as small as 0.1–0.2. A strong anisotropy of charge dy-
namics at finite wave vectors has important experimental
consequences, leading, e.g., to a pronounced anisotropy in a
renormalization of the bond-stretching phonon modes as ob-
served in cuprates. We find that the exchange J and second
hopping t� influence the charge susceptibility in the opposite
way—the former enhances it while t� and also Coulomb in-
teractions weaken the small-momenta anomalies in ��q�. Im-
plications of these findings on the spin and electronic prop-
erties deserve further analysis. The present study specifies
the most “dangerous” regions in a momentum space where
one may expect charge-related anomalies. A complex inter-
play between the charge, spin, and fermionic excitations
should be considered to a fuller extent in order to locate
more precisely a momentum position of low-energy charge
modulations.
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APPENDIX: COULOMB INTERACTION ON THE
LATTICE: POINT-CHARGE LIMIT

Consider the formula for the Coulomb interaction �35� for
f�r�=��r�. Introducing an auxiliary integration, the Fourier
transform Vq at qz=0 can be written as

Vq =
V

�3/2�
0

�

d �
ri�0

e− 2�ri
2+z̃i

2�+iqr, �A1�

where ri
2=xi

2+yi
2 denote square lattice sites with xi ,yi

= �0, ±1, ±2, . . . �, while z̃i= �0, ±1, ±2, . . . �d̃; we set a=1
here. We use now the definition of the Jacobi ! function

!3�u,q� = �
n=−�

�

q−n2
e2iun

and represent Eq. �A1� in the form

Vq =
V

�3/2�
0

�

d �	q

2
,e− 2
 − 1� , �A2�

��q,s� = !3�qx,s�!3�qy,s�!3�0,sd̃2
� . �A3�

This formula can be considered as the limiting case of Eq.
�38� with �→�. Numerically, the values of Vq in the whole
Brillouin zone given by Eqs. �38� and �A2� become very
close at �"3.
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