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Using density-functional calculations, we study the electronic structure of the purple bronze Li0.9Mo6O17,
which has been proposed to be a paradigm system for the Luttinger liquid behavior. Our results show that the
quasi-one-dimensional �1D� electron bands crossing the Fermi energy originate from the Mo atoms on the
double zigzag chains with predominant Mo �dxy� character and a Fermi surface that consists of two slightly
warped planes, normal to the direction of the zigzag chains. The overall shape and dispersion of the bands as
well as the calculated Fermi surface nesting vector are in excellent agreement with recent photoemission
measurements. From constrained density-functional calculations of the Coulomb interactions and the calcu-
lated Fermi velocity, we estimate the values for the characteristic parameters of the Luttinger liquid, viz., the
ratio of the spin-charge velocities to be v� /vs�1.8 and the anomalous dimension characterizing the Fermi
surface discontinuity to be ��0.6. The general agreement of these values with experiments further strengthens
the case for the lithium molybdenum purple bronze as a Luttinger liquid.
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I. INTRODUCTION

The Fermi liquid theory is successful in describing the
behavior of the ordinary metals but breaks down in attempts
to explain properties of one-dimensional �1D� systems. The
Fermi liquid behavior is characterized by the Landau quasi-
particles, which are low-energy single particle excitations,
while, in sharp contrast to this, the low-energy excitations of
the Luttinger liquid in 1D are collective excitations and ex-
hibit the spin-charge separation. The existence of the collec-
tive excitations is based on a special property in 1D, viz.,
that all electron-hole excitations with a fixed momentum
near the Fermi energy EF cost the same energy. Two key
features of the Luttinger liquid are the spin-charge separa-
tion, where the spin and the charge degrees of freedom are
completely separated into collective density waves �“spin-
ons” and “holons”� that propagate with different velocities,
and the power-law dependence of the correlation functions,
which is characterized by the anomalous dimension.1

The idea of the Luttinger liquid goes back some 50 years
or so. In a seminal paper, Tomonaga2 showed that in 1D, the
problem of interacting electrons is exactly solvable by
bosonization. Quite remarkably, the problem of the interact-
ing electrons in 1D reduces to the problem of noninteracting
bosons, if one linearizes the band dispersion about the Fermi
energy. Later, Luttinger3 introduced the model with strictly
linear dispersion, which was then solved exactly by Mattis
and Lieb.4 Subsequently, Haldane5 argued that the generic
features of interacting electrons in 1D are described by the
low-energy physics of the Tomonaga-Luttinger model, much
like the celebrated Fermi liquid theory in 3D.

A key feature needed for the experimental realization of
the Luttinger liquid is a 1D band dispersion. While truly 1D
systems such as the carbon nanotubes are currently being
studied,6 it is also recognized that 3D crystals with quasi-1D
band structures might actually be the better systems to study,
since it is easier to grow quality single crystals in a con-
trolled fashion. Recently, the lithium molybdenum purple

bronze has been identified as a possible paradigm system for
studying the Luttinger liquid behavior.7 Recent angle-
resolved photoemission spectroscopy �ARPES� data8,9 have
indicated the presence of a 1D band crossing the Fermi sur-
face and have provided evidence for the two main character-
istics of the Luttinger liquid, the anomalous dimension and
the spin-charge separation.

In this paper, we study the electronic band structure of the
lithium molybdenum purple bronze Li0.9Mo6O17 from
density-functional calculations and connect our results with
the predictions of the Luttinger liquid model.

II. CRYSTAL STRUCTURE

Molybdenum bronzes are a class of solid oxides exhibit-
ing an intense color, with a chemical composition given by
the formula AxMyOz, where A stands for an alkali metal or Tl
and M stands for a variety of metal atoms such as Mo or W.10

The lithium molybdenum purple bronze Li0.9Mo6O17, the
subject of our paper, is a quasi-1D metal at room temperature
with a highly anisotropic conductivity along the principal
crystal axes. It is metallic at room temperature and, as tem-
perature is reduced, undergoes a phase transition at 24 K,
finally becoming a superconductor below 1.9 K.10,11 There is
a small hump in the specific heat11 and a resistivity
upturn12,13 at the transition point at 24 K, however no notice-
able change in the lattice through the metal-insulator transi-
tion is observed.14

Unlike the blue bronze9 or the other purple bronzes
A0.9Mo6O17 �A=K, Na �Ref. 15�, Tl �Ref. 16��, which are 2D
metals exhibiting charge density waves �CDW�, there is no
evidence for the CDW either in the magnetic susceptibility17

or in the optical experiments.14,18 There is also no indication
of any Peierls instability in the x-ray diffraction,9 where no
structural distortion has been observed, strengthening further
the viewpoint that the transition at 24 K is not a CDW tran-
sition. The absence of a CDW is an important feature of the
Li0.9Mo6O17, leading to a unique quasi-1D metal, where any
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Luttinger liquid behavior is not complicated by the existence
of a CDW instability lingering nearby.

The crystal structure of Li0.9Mo6O17 is monoclinic, with
the space group P21/m �No. 11 in the International Tables�.
The unit cell parameters are a=12.762 Å, b=5.523 Å, c
=9.499 Å, and �=90.61° with the atomic positions given by
Onoda et al.19 The unit cell contains six crystallographically
different Mo sites �Fig. 1�, with two molybdenum atoms,
Mo�3� and Mo�6�, in a tetrahedral MoO4 surrounding, while
the remaining four—including the Mo�1� and Mo�4� on the
zigzag chain—are in an octahedral surrounding, forming the
MoO6 octahedra. The zigzag chains run along the b direc-
tion, forming a chain pair in the unit cell, which are well
separated from chains in the neighboring cells as indicated in
Fig. 2. The chains within the pair are laterally connected by
the rungs of Mo�1�-O-Mo�4� atoms.

III. BAND STRUCTURE

The band structure calculations were performed within
the local-spin-density approximation to the density-function-
al theory �DFT� using the linear muffin-tin orbitals method in

the atomic spheres approximation20 �LMTO-ASA� to solve
the Kohn-Sham equations. There are 48 atoms in the unit cell
�two formula units �Li0.9Mo6O17�2�, but since the crystal
structure is loosely packed, it was necessary to insert a large
number of empty spheres for accurate calculations, resulting
in a total of 108 atomic spheres per unit cell. We used the
von Barth–Hedin exchange-correlation potential21 together
with the generalized-gradient approximation of Perdew and
co-workers.22 The basis sets used are Mo�5s ,5p ,4d�,
O�2s ,2p ,3d�, and Li�2s ,2p ,3d�, and 30 mesh points in the
irreducible zone were used for the Brillouin zone integration.
The band calculations were performed for the ideal crystal
structure LiMo6O17 with no Li vacancy, and since lithium
basically donates one electron, the Fermi energy EF was de-
termined by rigidly shifting it down by about 0.03 eV �0.1
less electron per formula unit� to take into account the 10%
Li vacancy of the actual crystal structure. The same was
done in the calculation of the Fermi surface as well.

The calculated band structure around the Fermi energy is
shown in Fig. 3. The four bands forming the topmost valence
region are separated from the O�2p� bands, which are imme-
diately below in energy, as seen from the projected density of
states �DOS� �Fig. 4�. The overall features of our band struc-
ture are in general agreement with the earlier, pioneering
work of Whangbo and Canadell,23 which studied the band
structure of the molybdenum bronze with an empirical tight-

FIG. 1. The unit cell of Li0.9Mo6O17, indicating the 1D zigzag
chains that run along the b direction and are responsible for the
quasi-1D bands crossing the Fermi energy.

FIG. 2. Projection of the zigzag chains onto the ac plane. Pairs
of chains belonging to different unit cells �four shown here� are well
separated from one another. As a result, the largest band dispersions
of the zigzag chain quasi-1D bands are along the b direction, nor-
mal to the plane of paper, along which the chains run.
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FIG. 3. Density-functional band structure of Li0.9Mo6O17 close
to the Fermi energy EF �solid lines� compared to the ARPES data
�points� along the �-Y direction. The data point sets marked A
through D correspond to the peaks in the ARPES data, which are
taken from Fig. 9�b� of Ref. 9. The labels “spinon edge” and the
“holon peak” refer to the spin-charge excitations inferred from the
ARPES in the linear band structure regime close to the EF. The
“spinon edge” cannot be clearly demarcated from the ARPES and in
the figure it is only meant to be a guide. The collective excitations
change over to the one-particle excitations as one goes deeper be-
low EF into the nonlinear regime of the band structure, show up as
robust C and D peaks in the ARPES. The k� points in the Brillouin
zone are Y = �0,0.5,0�, �= �0,0 ,0�, X= �0.003,0 ,0.291�, M
= �0.003,0.5,0.291�, and Z= �0.216,0.0,0.0� in units of 2� /b. The
points P and K are indicated in Fig. 6.
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binding method. However, the overall widths of the tight-
binding bands were too small by a factor of about two to
three as compared to the density-functional bands or the pho-
toemission data.

The two bands crossing the Fermi energy exhibit a
quasi-1D character: Their most prominent dispersion is for k�
varying along the length of the zigzag chain ��-Y or X-M
line�, while the dispersion along directions perpendicular to
the chain, �-X or �-Z, is much smaller. The overall band
width of the density-functional bands is in reasonable agree-
ment with the photoemission data. The point where the
quasi-1D bands cross EF as measured from the � point, is
calculated to be k�Y

F =0.487� /b, in excellent agreement with
the ARPES results9 of �0.51� /b.

The basic band structure near EF, which originates from
the chain site Mo�d� orbitals, is conveniently described in a
local coordinate system with origin on the chain site Mo
atoms and with the x and the y axes pointed approximately
along the Mo-O-Mo bonds. In this coordinate system, the
two quasi-1D bands crossing the Fermi energy originate
from the Mo�dxy� orbitals, while the lower two occupied
bands of the four-band manifold �see the �-Y direction in
Fig. 3� originate from the Mo�dyz+dxz� orbitals. The orbital

character of these quasi-1D bands is illustrated by the
charge-density contour plot of Fig. 5, which clearly shows
the Mo�dxy� character of the bands.

The double chains serve a very important role in produc-
ing the quasi-1D bands by removing the xz /yz bands away
from the Fermi energy. Below we will argue that it is the
interchain interaction that is responsible for this. The four
lowest bands at the Y point in the band structure of Fig. 3
have the chain site xz /yz character and because of the non-
crossing rule, the upper two merge with the quasi-1D bands
as seen from the band structure along the �-Y line.

Not counting the spin, there are all in all eight xz and yz
orbitals per unit cell arising out of the chain site Mo atoms
�two chains per cell, two Mo atoms on each chain, and two
orbitals per atom�, which split into four bonding and four
antibonding states due to interaction within the chain be-
tween neighboring Mo atoms. The four bonding states which
have the lower energy then split into two groups �again,
bonding and antibonding� due to coupling between the
chains, which are displaced along z with respect to each
other. These latter two bonding states are the lowest in en-
ergy �two lowest bands along �-Y in Fig. 3�, with a clear gap
at the Y point, which separates them from the two antibond-
ing states. For the quasi-1D bands originating from the
Mo�dxy� orbitals, while the intrachain bonding interaction is
present �Vdd��,24 the interchain coupling is extremely weak
�Vdd��, leading to the two nearly degenerate bands crossing
the Fermi energy. Within this picture, by splitting the xz /yz
bands by the interchain interaction and removing them away
from EF, the double chain serves an essential role in produc-
ing two clean xy bands crossing the Fermi energy. However,
the price we had to pay for having the double chain structure

FIG. 4. Total and atom-and-orbital projected densities of states
for Li0.9Mo6O17. The bands near EF originate from primarily the
chain site Mo atoms �viz., Mo�1� and Mo�4�, whose DOS’s are very
similar�. Mo�2� and Mo�6� are representative out-of-chain atoms.
Mo�2�, which is denoted by Mo� in Fig. 5, contributes a significant
amount to the bands near EF owing to its proximity to the chains,
while the contribution of the remaining out-of-chain Mo atoms is
minimal. The inset in the Mo�1� panel shows the contributions of
the xy vs the xz+yz orbitals of Mo�1� in a local coordinate system,
with the x and y axes pointing along the Mo-O-Mo bonds and the
z axis, along the rung connecting the two chains. The inset indicates
the quasi-1D bands crossing EF to originate mostly from the chain
site Mo�dxy� orbitals �see also Fig. 5�, with a significant admixture
from the xz+yz orbitals.

FIG. 5. Charge-density contour plot of the quasi-1D bands near
EF on a plane containing the zigzag chain. The second chain in the
unit cell is stacked on top of the chain shown, directly above the
plane of the paper and connected to it by the Mo-O-Mo rungs at
every Mo atom. Energy window for the charge-density plot is EF

and 0.1 eV below it. Contour values are �n=2.7�10−3

�100.21ne− / Å3, with n=0,1 ,2 , . . . ,7.
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is the presence of the two quasi-1D bands �one per chain�
instead of just one, which would have produced a textbook
example of a single 1D band crossing the Fermi energy.

The nominal chemical valence of the compound may be
obtained with the following argument. Since two xz /yz
bands derived from the chain site Mo atom are occupied in
the unit cell, which has four such atoms, and each band can
hold two electrons taking into account the spin, we have one
electron occupied per chain site Mo atom in these bands. In
addition, the two xy-like bands crossing the Fermi energy are
half full, leading to the occupancy of two xy electrons in the
unit cell including the spin or, equivalently, half an electron
per Mo atom. This results in the nominal valence of Mo�d1.5�
for the chain site atoms, while the out-of-chain Mo� atoms
have the valence Mo��d0�, leading to the nominal valence of
Li+1�Mo+4.5�2�Mo�+6�4O17

−2, where Mo �Mo�� refers to the
chain site �out-of-chain� atoms. For the real crystal with 10%
Li vacancy, electrons have to be depleted from the chain site
Mo atom in the above formula.

The Fermi surface shown in Fig. 6 consists of two double
sheets, the two quasi-1D bands producing one double sheet
each. The sheets form slightly warped ac planes, perpendicu-
lar to the chain direction b. The warping, caused by the weak
interchain interaction, is mainly along c with very little
warping along the a direction, since the band dispersion
along a is small. The calculated nesting vector q
=2� /b�0,0.487,0� is in agreement with the ARPES result9

of q�2� /b�0,0.50,0�. The topology of the Fermi surface is
consistent with the highly anisotropic character of the mea-
sured conductivity, with ratios of about 250:10:1 for conduc-
tivities along the b, c, and a axes, respectively.12,13

IV. BAND STRUCTURE AND ARPES LINE SHAPES

Photoemission line shapes for Li0.9Mo6O17 have been
analyzed by Allen and coworkers9 by using predictions25,26

of the Tomonaga-Luttinger model for T	0 and a refined
analysis using nonzero T by the same group is given is Refs.
7,27. The key results of the theory are as follows. For the
angle-integrated spectrum, the spectrum vanishes as power
law �E−EF�� at the Fermi surface. For the angle-resolved
spectrum and for momentum k inside the Fermi surface, the

charge and spin excitations, the holons and spinons, show up
as two peaks �the spinon as an edge if �
0.5�, while for
momentum outside the Fermi surface, one gets an edge. This
result is valid for a single band with linear dispersion at the
Fermi energy.

In the purple bronze, we have two linear bands crossing
the Fermi energy originating from the two zigzag chains.
Since their electronic structures are weakly coupled, one
would expect a holon-spinon pair for each of the two linear
bands crossing EF, which, however, cannot be resolved in the
photoemission. As one moves deeper below EF, the band
dispersions are no longer linear, so that the excitations
should become one-particle-like as opposed to the collective
charge and spin excitations for the linear bands. If the elec-
tron correlation effects can be neglected, we may then com-
pare the energy of the one-particle excitations observed from
the ARPES much below EF with the band structure theory.
Thus for energies well below the Fermi surface, the holon
peaks and the spinon edges in the ARPES will then go over
to single-particle excitation peaks, which appear as robust C
and D peaks in the ARPES.

In Fig. 3, we have indicated the ARPES data taken from
Fig. 9�b� of Ref. 9 along the �-Y direction in the Brillouin
zone. The spin-charge excitations marked by “spinon edge”
and “holon peak” close to the EF in the linear regime of the
band structure are inferred from the ARPES data. Because
the “spinon edge” can not be clearly determined from the
ARPES since it is an edge rather than a peak, and more
fundamentally because the momentum and the energy of the
measured photoexcited electron is built up of the various
spin-charge excitations, the spin and charge velocities are not
extracted directly from the dispersion curves. Rather, they
are determined by fitting the predicted Luttinger liquid line-
shapes with the angle-integrated photoemission data.

The overall ARPES bandwidth is somewhat smaller than
the width of the density-functional bands. In the Tomonaga-
Luttinger model, the charge velocity is higher than the spin
velocity and the ARPES data indicates this as shown in Fig.
3. If the electron interaction is spin independent, then the
spin velocity equals the Fermi velocity vF, while for the case
of a spin-dependent interaction, the spin velocity is no longer
the same as the Fermi velocity, but may be somewhat lower
than vF �e.g., in the one-band Hubbard model�.30 Since the
spinon shows up as an edge in the ARPES, its position, as
already mentioned, cannot be accurately determined to dis-
tinguish between the predictions of the spin-dependent vs the
spin-independent interactions by comparing the spin velocity
with the Fermi velocity calculated from the band structure.
However, the spin velocity does seem to be a bit lower than
the band structure vF, while the charge velocity appears to be
somewhat higher than the vF.

Thus there are two distinguishing features in the ARPES
that support the Luttinger liquid picture over the Fermi liquid
picture. The first is the presence of two different excitations
�holons and spinons� that disperse with two different veloci-
ties, the charge velocity v� and the spin velocity vs. There
would be a single dispersion in the Fermi liquid theory. The
second feature is the presence of the spinon edge, rather than
a peak.

FIG. 6. Calculated Fermi surface for Li0.9Mo6O17, indicating the
two pairs of warped Fermi sheets. The shaded region is occupied.
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V. LUTTINGER LIQUID PARAMETERS

We now turn to the estimation of the two main character-
istic parameters of the Luttinger liquid, viz., the anomalous
dimension � and the velocities for the collective spin and
charge excitations, vs and v�, respectively. We determine
these parameters from the density-functional theory from a
direct evaluation of the Coulomb interaction and the calcu-
lated Fermi velocity.

The Fermi velocity vF for the noninteracting electrons can
be computed by taking the derivative of the energy along the
�Y line: �vF=�E�ky� /�ky�EF

=3.72 eVÅ. For spin-
independent interaction, this also equals the spin velocity vs,
while the charge velocity is enhanced by the factor �= �1
+V�0� / ���vF��1/2. Here, V�0� is the integral of the interac-
tion V�x� over all space in the continuum model and, for a
1D tight-binding model of interacting orbitals, we may esti-
mate it from the expression: V�0�=a�U0+�U1+�U2+ ¯ �,
where U0 �Ui� is the on-site �near-neighbor� Coulomb repul-
sion, a is the Mo-Mo distance �a=3.72 Å�, and �=2 is the
number of the various near neighbors.

Using an established procedure28,29 within the framework
of the “constrained” DFT, we have evaluated the Coulomb
parameters for the chain-site Mo atom. We followed the ap-
proach used by Gunnarsson et al.,28 setting to zero the hop-
ping integrals for the d electrons of a single chain-site Mo�1�
atom. The d occupancies for the other Mo atoms were fixed
at integral values �d3 in the present case�, also by removing
the hoppings. The U value may depend on how one con-
strains the other Mo 3d shells, but this dependency should be
small for well-localized d orbitals.

Fully self-consistent calculations for two different con-
figurations were performed and using the Slater’s transition
rules,31 one obtains U0=C3d

Mo�1��n=4�−C3d
Mo�1��n=3�, where

C3d
Mo�1��n� is the band center calculated with the fixed occu-

pancy n of the Mo�1� atom. The on-site Coulomb repulsion
estimated with this procedure is U0=6.4 eV. The nearest-
neighbor Coulomb repulsion U1 may be estimated as U1
�e2 /a�0.2 eV, with �10, which is consistent with the

fact that the nearest-neighbor interaction U1 in solids is typi-
cally a few tenths of an eV. Neglecting the further-neighbor
Coulomb repulsions, we get V�0�=25.3 eVÅ, which leads to
the ratio for the spin-charge velocities to be �=v� /vs=1.8,
which is of the order of the experimental value7 of ��2. We
hasten to add that even though this is the best value of the
parameter one can get from the band theory at present, we
consider it to be no better than a “good” estimate. It is nev-
ertheless satisfying that our calculated Luttinger liquid pa-
rameters are close to those extracted from the experiments.

The anomalous dimension using the lowest-order per-
turbation theory32 may be calculated as ��2�= [V�0� /
�2��vF�]2 /2=0.59. Experimental estimates from photo-
emission vary in the older literature between �=0.6–0.9,7,9,33

depending on the theory used to fit the photoemission line-
shapes. Refined estimates using Orgad’s theory34 of the
finite-temperature lineshapes have just appeared in the
literature,27 which indicate the value of � to be temperature-
dependent, varying between �=0.9 at T=300 K to the value
of 0.6 at lower temperatures between T=50–200 K.

From a completely different type of experiment, Hager et
al. have inferred the value of �=0.62±0.17 from the power-
law behavior of the differential tunneling current using scan-
ning tunneling spectroscopy for T=5–55 K.35 Thus there
now seems to be a general concensus for the value of the
anomalous dimension to be ��0.6 at T=0 between the vari-
ous experiments and theory. While the anomalous dimension
could become renormalized in the Luttinger liquid theory
due to the presence of the two bands at EF and also due to
the presence of the back scattering term, the general agree-
ment between theory and experiment is nevertheless quite
satisfactory, strengthening the case for Li0.9Mo6O17 to be a
paradigm Luttinger liquid.
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