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The amount of screening of a proton in a metal, migrating under the influence of an applied electric field, is
calculated using different theoretical formulations. First the lowest order screening expression derived by Sham
�Phys. Rev. B 12, 3142 �1975�� is evaluated. Contrary to Sham, who estimates the screening to be negligible,
we find a finite screening of the order of 15%. In addition, “exact” expressions are evaluated which were
derived according to different approaches. For a proton in a metal modeled as a jellium the screening appears
to be 15±10%, which is neither negligible nor reconcilable with the controversial full-screening point of view
of Bosvieux and Friedel �J. Phys. Chem. Solids 23, 123 �1962��. In reconsidering the theory of electromigra-
tion, a new simplified linear-response expression for the driving force is shown to lead to essentially the same
result as found by Sorbello �Phys. Rev. B 31, 798 �1985��, who has used a rather complicated technique. The
expressions allow for a reduction such that only the scattering phase shifts of the migrating impurity are
required. Finally it is shown that the starting formula for the driving force of Bosvieux and Friedel leads
exactly to the zero-temperature limit of well-established linear response descriptions.
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I. INTRODUCTION

The amount of screening of a hydrogen atom in a current
carrying metal has been the subject of a long-standing con-
troversy. In brief, considering the driving force F on such an
atom as being composed of two contributions, a direct force
Fd due to the charge of the proton, and a wind force Fw due
to the transfer of momentum of the current carrying electrons
to the proton, so

F = Fd + Fw = �Zd + Zw�eE = Z*eE , �1�

Bosvieux and Friedel1 found a complete cancellation of Fd,
implying full screening of the proton charge and only a wind
force being operative, while most other researchers in the
field were in favor of at most a very limited screening.2 Ac-
cording to the convention in electromigration theory, the
forces in Eq. �1� are written as being proportional to corre-
sponding valences and the applied electric field E. The
effective valence Z* is the measurable quantity. The wind
force has been calculated reliably for many systems with
ab initio methods for the electronic structure. This has
been done not only for migration of interstitials such as hy-
drogen, but also for substitutional impurities, including
self-electromigration.2–4

Electromigration is a complicated phenomenon. Its com-
plexity has nothing to do with the many-body nature of the
electron-electron interaction. In all electronic structure calcu-
lations of pure metals and of alloys, the electron-electron
interaction is accounted for using the local density approxi-
mation in a standard way, and this is applied in all theoretical
treatments of electromigration as well.4,5 This implies that all
theory of electromigration is one-electron theory. We return
to this in Sec. II. The complexity of electromigration comes
from the fact that both electron transport and ionic transport
have to be taken into account. The electron transport leads to
the wind force on the migrating ion. Another contribution to
the driving force leading to migration is the direct force.

In view of the long history of the controversy regarding
the direct force we mention just a few key papers. The linear
response expression for the driving force derived by Kumar
and Sorbello6 was considered as a sound starting point for
the resolution of the controversy. From an evaluation to low-
est order in the impurity potential Sham concluded to a neg-
ligible screening.7 Using an evaluation up to all orders in the
potential, in 1985 Sorbello found a screening of at most
25%.8

Experiments done in the seventies of the previous century
had not been able to determine the value of the direct valence
of hydrogen in pure metals unambiguously.2 After that neg-
ligible screening was measured in V�H� and Ta�H�, but in
Nb�H� a screening of the order of 50% was found.9 Carefully
designed experiments on NbxV1−x�H� strongly suggest that
Zd might be close to the value of +1 �Ref. 10�. Further,
comparison of measured Z* values in a number of metal
hydrides with state-of-the-art calculations of Zw led to the
conclusion that Zd has a value close to unity.11 All this led to
a consensus at that time.

Nevertheless, Friedel kept defending that only a wind
force was operative, the more so as Turban et al. had given
another support for that point of view.12 The confusing fea-
ture of the latter work is that their starting formula is a well-
established form of a linear response expression. But these
authors do not evaluate that expression. On the contrary, they
just use a proportionality argument regarding the expression
for another physical quantity. Another support for the full-
screening point of view was given by the present author.13

However, that result was considered to be valid in the low
temperature limit only,14 and this limit is a rather academic
one in view of the relatively high temperatures at which elec-
tromigration experiments are carried out. More recently
Ishida predicted a screening ranging from 0 to 100%, but his
results were depending sensitively on the electron density of
the host metal.15

We will present a thorough study of the amount of screen-
ing. We start with summarizing the main ingredients of the
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linear response description of the driving force in Sec. II.
Although all in this section is standard, including the transi-
tion from a many-body expression to a one-electron formula,
this section serves as a reference point for further develop-
ments in the core of the paper. After that first Sham’s screen-
ing expression is evaluated numerically for a number of
model potentials representing the impurity. The results, given
in Sec. III, do not support Sham’s conclusion of a negligible
screening, but they are in line with Sorbello’s result of a
screening of 10–30%.

Second, in Sec. IV we will present a very simple evalua-
tion of the linear response description. This evaluation is
supplementary to the evaluation given by Rimbey and
Sorbello8,16 and furthermore much more straightforward. The
two descriptions are compared in Sec. V. In Sec. VI it ap-
pears to be possible to reduce the final expression for the
direct force valency Zd to a form containing just the scatter-
ing phase shifts of the migrating impurity potential. Numeri-
cal results will be presented in Sec. VII, and compared with
Sorbello’s results.8

In Sec. VIII we will show that the starting expression of
Bosvieux and Friedel for the driving force is precisely the
zero temperature limit of well-established linear response ex-
pressions. This is found by describing the switch on of the
electric field properly and by giving credit to the Hermitian
property of the Hamiltonian of the unperturbed system. It
implies that the old claim that only a wind force is operative,
is false. Conclusions and suggestions for further research are
given in Sec. IX.

II. LINEAR-RESPONSE DESCRIPTION

The linear response expression for the force on an impu-
rity with chemical valency Zi at a position R1 due to an
applied electric field is given by

F = ZieE − ieE��
0

�

dte−atTr���H��Fop�t�,�
j

rj
�	


� Fd�
bare� + Fw

total. �2�

The first term clearly is the direct force on the bare ion. The
Cartesian label � runs from 1 to 3, the infinitesimally positive
number a represents the adiabatical switch on of the electric
field represented by the potential

�V�t� = eEeat · ��
j

r j − Zi�
�

R�
 � �Veat, �3�

with j running over the electrons and � over the ions, and the
operator ��H� is the grand-canonical density depending on
the system Hamiltonian H. The force operator contains the
electron-impurity potential

Vei = �
j,�

v�r j − R�� � �
j,�

v j
�, �4�

which is part of the system Hamiltonian, and is given by

Fop � − �R1
Vei = − �

j

�R1
v�r j − R1� � �

j

f j
1. �5�

Its time dependence refers to the Heisenberg representation

Fop�t� � eiHtFope
−iHt. �6�

It appears that the second term in Eq. �2�, which is of course
supposed to lead to the wind force, also contains some
screening contribution to the direct force. The controversy
has not to do with the fact that there is a screening contribu-
tion in Fw

total, but it is as to the magnitude of that screening
contribution that people do not agree. The expression pub-
lished by Kumar and Sorbello �Ref. 6�,

Fw
total = −

i

a
E��

0

�

dte−atTr���H��Fop�t�,J��� , �7�

follows simply and straightforwardly from a partial integra-
tion of Eq. �2� with respect to the time. The current vector is
defined

J = ie��
j

r j,H	 = − e�
j

p j

m
= �

j

j j . �8�

The driving force �2� can be decomposed as follows:

F = ZieE + Fw
total = ZieE + Fw

scr + Fw
BF = �Zi + Zscr + Zw�eE

= �Zd + Zw�eE , �9�

containing the result of Bosvieux and Friedel for the wind
force Fw

BF and a screening contribution.1 In all treatments
available Fw

BF can be written in its general form �Refs. 4, 7,
and 8�

Fw
BF = −� �n�r��R1

v1d3r, with v1 = v�r − R1� . �10�

The precise explicit form depends on the level of approxi-
mation used to represent �n�r�, which is the local deviation
of the electron density from its unperturbed host value due to
the applied field and the presence of the impurity. It is worth-
while to point out that the form �10� is a one-electron expres-
sion, completely in line with standard treatments of elec-
tronic and transport properties in condensed matter,
particularly in metals and metallic alloys. In these treatments
the local-density approximation �LDA� is made for the elec-
tronic contribution to the potentials used in the description.
In the LDA the electron density, which contains a local direct
part and a nonlocal exchange term, is given a local form.5,17

The LDA, being common to most of the treatments of me-
tallic properties, is used in electromigration theory as well.4

This will be made explicitly below, when the many-body
expression in Eq. �2� is reduced legally to a one-electron
expression, although it is clear that use is made implicitly of
the LDA.18 From now on we will concentrate on Zd.

All previous relevant descriptions have been given for the
electron-impurity system,4 for which the Hamiltonian H can
be written as a sum of single particle Hamiltonians h, so

H = �
j

hj with h = h0 + v = h0 + �
�

v�. �11�

This form for H is standard for all studies of the electronic
structure in condensed matter theory and it is common
knowledge that its use implies the application of the
LDA.5,17 The unperturbed one-electron Hamiltonian h0
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stands for the Bloch Hamiltonian, which contains the kinetic
energy of the electron and the periodic potential of the me-
tallic atoms in the lattice. For a jellium model, that periodic
potential is smeared out to a constant positive background,
and one obtains effectively a free-electron Hamiltonian. The
full Hamiltonian h contains in addition the potential of the
alloying impurities, which may be either substitutional impu-
rities or interstitial impurities, such as hydrogen. For the
present problem the form �11� allows for a reduction of the
many body expression in Eq. �2� to the following one-
electron expression:

Fw
total = − ieE��

0

�

dte−attr��r�,n�h��f1�t�� , �12�

where n�h� is the Fermi-Dirac distribution function in opera-
tor form

n�h� =
1

e��h−�F� + 1
. �13�

It has been shown explicitly that if in the right-hand side of
Eq. �12� the statistical operator is replaced by this operator
for the free particle system, so n�h�→n�h0�, the Bosvieux-
Friedel wind force expression Fw

BF arises.13 That means that
the screening part is given by

Fw
scr = − ieE��

0

�

dte−attr��r�,n�h� − n�h0��f1�t�� = ZscreE .

�14�

The screening valency Zscr is defined

Zscr = −
i

3
�

0

�

dte−attr��r,n�h� − n�h0�� · f1�t�� , �15�

in which the factor of 1
3 comes from the fact that all three

terms in the inner product of the vectors r and f1 contribute
equally. In all further evaluations the metallic host is mod-
eled by a jellium, which is the only model used so far in the
literature for the study of the direct force problem. This
means that the electrons are perturbed by the random distri-
bution of impurities only. Following Sham7 we now first
consider the result to lowest �second� order in the impurity
potential v.

III. EVALUATION OF SHAM’S EXPRESSION

The evaluation of Eq. �15� to lowest order in v requires
the expansion of the statistical operator n�h�−n�h0� in v,

n�h� = n�h0� − n�h��
0

�

dseshve−sh0�1 − n�h0�� , �16�

while in the time dependence of f1 one can replace h by h0.
One obtains

Zscr = −
4

3m
�
kk�

�k2 − k · k��
�vkk��

2

��k − �k��
2 + a2� �nk

��k
−

nk − nk�

�k − �k�

 ,

�17�

where k is a free electron wave vector and �k is
the corresponding energy. The matrix element
�k � �r� ,n�h�−n�h0�� �k�� is most easily evaluated if one real-
izes, that it is equal to i� �

�k�
+ �

�k��
��k �n�h�−n�h0� �k��. Follow-

ing Sham and Sorbello8 the potential v refers to the migrat-
ing impurity only. Sham stored part of the presence of the
impurities through the replacement a→�−1, � being the
transport relaxation time due to the impurities, which can be
justified by an average over the distribution of the impurities
in the time dependence of the force operator. Both Sham and
Sorbello were able to make their complete derivations after
taking the T→0 limit only. It has been shown that Eq. �17�
reduces to Sham’s expression after taking that limit.19

A numerical evaluation of Zscr becomes possible if one
employs the spherical wave expansion for a plane wave, con-
verts the summations over the wave vectors to integrals, and
carries out the angular integrals over the directions of the
wave vectors. After using the relation between k2 and the
energy �k one ends up at

Zscr = −
4

3	2m
�

0

�

d�k�
0

�

d�k�

�nk

��k
−

nk − nk�

�k − �k�

��k − �k��
2 + a2�

�

f��k,k�� ,

�18�

in which the function f��k ,k�� is defined

f��k,k�� = �k��k�v��k�,k���2 � + 1�kv��k�,k�

− 2�� + 1�k�v�+1�k�,k�� , �19�

containing the information about the ion potential through

v��k�,k� = �
0

�

r2drj��k�r�v�r�j��kr� . �20�

The integrand has to be treated with care when �k�=�k, be-
cause then the denominator attains the value a2 which would
imply “singular” behavior. However, precisely then the nu-
merator becomes zero, because lim�k�→�k

�nk−nk�� / ��k−�k��

→ �nk

��k
. The crucial part of the integrand lies in the square

around the point ��k ,�k��= ��F ,�F�. In studying the Zscr inte-
gral it appears that in that square one has to keep the Fermi-
Dirac distribution function in its finite temperature form. We
could not obtain a reliable stable numerical result by using
Sham’s T→0 expression. The result of a numerical evalua-
tion for different ion potentials is shown in Fig. 1. We used a
screened Coulomb potential
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v�r� = −
Zie

2e−
r

r
while vk�k �

1

8	3 � d3rei�k−k��·rv�r� ,

�21�

with Zi=1 representing a proton in a jellium and the inverse
screening length 
 given by the Thomas-Fermi expression
�Ref. 20�


2 = 4	e2N��F� with N��� =
m�2m�

	2 → vkk = −
Zi

8	3N��F�
.

�22�

In addition square well potentials were employed in the same
spirit as Sorbello did.8 The width r0 of the square well po-
tential was chosen to be equal to the screening length 1/

and twice as large. The corresponding well depth v0 was
determined by the condition v0 /vc=0.999, where vc
=	2 /8mr0

2 is the critical value of the well depth for which a
bound state forms. For further details, see Ref. 8. The value
of 
 is determined by the Fermi energy. While Sorbello
chose five values for the Fermi energy, typical for metals
ranging from sodium to aluminum, we have done the calcu-
lation for a whole range of Fermi energies. The results are
plotted as a function of the Fermi wave number kF. The kF
values of sodium and aluminum are indicated.

Because 
 increases monotonically with the Fermi energy,
the range of the corresponding screened Coulomb potential
decreases with increasing kF, whose reduction in strength is
seen clearly in the solid curve. In Fig. 2 the vkk

2 curves are
plotted for the three potentials. A clear decrease is seen for
the Coulomb potential, and a rather flat behavior for the
square well potentials, while the one with 2/
 is markedly
stronger than the one with the smaller width. Apparently, the
screening to second order in the impurity potential is not
negligible at all, but on the average as large as 15±10%. As
a guide for the eye we gave the average of Zscr for the three
potentials as a dotted line.

For security we evaluated an alternative expression for
Zscr, given by

Zscr = −
4

3m
�
kk�

�k2 − k · k���vkk��
2
nk − nk�

�k − �k�

��k − �k��
2 − a2

���k − �k��
2 + a2�2 .

�23�

This expression follows if Eq. �15� is modified such that the
dipole operator r commutes with the force operator f1�t� in-
stead of with the statistical operator. While Zscr given by Eq.
�17� reduces to Sham’s expression after taking the T→0
limit, such a proof is not available for Zscr given by Eq. �23�.
On the other hand, the two expressions �17� and �23� are
equivalent, being related to each other through a partial in-
tegration for the derivatives with respect to the k and k�
vectors. The alternative for Eq. �18� becomes

Zscr = −
4

3	2m
�

0

�

d�k�
0

�

d�k�

nk − nk�

�k − �k�

��k − �k��
2 − a2

���k − �k��
2 + a2�2

��
�

f��k,k�� . �24�

If one takes proper care of the higher sensitivity of the ex-
pression �24� to the choice of the infinitesimal parameter a
the results turn out to be the same. It can be taken relatively
small, much smaller than a typical value of 0.01 for the in-
verse transport relaxation time. In fact, it is the mesh of the
integration that determines the lower limit of a. For the ex-
pressions �18� and �24� it was never larger than 0.00015 and
0.005, respectively. On the other hand, for a=0.01 the
screening represented by the curves in Fig. 1 reduces by at
most 2%.

IV. REDUCTION OF LINEAR-RESPONSE FORMULA
FOR THE SCREENING

The evaluation of the linear-response formula �15� to all
orders in the impurity potential can be achieved by restrict-
ing the evaluation to a system with one impurity in a jellium,

FIG. 1. The amount of screening represented by Zscr according
to Eq. �18�, for the screened Coulomb potential and for two square
well potentials.

FIG. 2. vkk
2 plotted as a function of kF, for the two square well

potentials and the screened Coulomb potential.
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which is in accordance with earlier work by others.8 In that
case f1= i�p ,h�= i�p ,h0+v1�. By writing Eq. �15� in terms of
eigenstates of h→h0+v1, labeled by q and q�, one can carry
out the time integral and finds

Zscr =
i

3�
qq�

�q��r,n�h� − n�h0���q�� ·
�q − �q�

�q� − �q + ia
pq�q

=
i

3�
qq�

�q��r,n�h� − n�h0���q�� · �− 1

+
ia

�q� − �q + ia
pq�q = −
i

3
tr��r,n�h� − n�h0�� · p�

+
i

3 �
qq�

�q=�q�

�q��r,n�h� − n�h0���q�� · pq�q. �25�

The first term in the last line reduces to −Zi
because itr��r� ,n�h�−n�h0��p��= itr��n�h�−n�h0���p� ,r���
= tr�n�h�−n�h0����,�=Zi��,�. One arrives at

Zscr = − Zi + Zcorr

with

Zcorr �
i

3 �
qq�

�q=�q�

�q��r,n�h� − n�h0���q�� · pq�q. �26�

In view of Eq. �9� this would imply a correction term Zcorr
=Zd due to the cancellation of the bare direct valency Zi. The
step of subtracting and adding an ia term in the numerator in
the second line of Eq. �25� may look somewhat artificial, and
the ia factor creates the impression to lead to a zero result in
the a→0 limit. We have to admit that, in earlier work, we
overlooked this rather hidden trap. It is to the merit of Sor-
bello that he discovered the trap.18 At that time we could not
go along with Sorbello’s suggestion yet.21 But after a rigor-
ous search we now follow him by noting, that for the �q
=�q� terms in the third line the ia factor cancels, and the
remaining terms give a finite contribution.18

Sorbello8 starts from a result obtained by Rimbey and
Sorbello16 through an evaluation of Eq. �7� and finds after
some rewritings for Zd

Zd = −
2

3	m
Im tr�p2�G��F� − G0��F��� . �27�

The single particle Green’s function G��� for one impurity in
a jellium, with h=h0+v1, and the free electron Green’s func-
tion G0��� are given by

G��� =
1

� + ia − h
and G0��� =

1

� + ia − h0

with

h0 =
p2

2m
. �28�

This form for Zd is Sorbello’s Eq. �12� and it implies a can-
cellation of Zi present in his Eq. �7�. In order to distinguish

our result for Zd from Sorbello’s Zd we keep the notation
Zcorr.

V. COMPARISON OF THE TWO DESCRIPTIONS

While the description by Rimbey and Sorbello is rather
involved and the result �26� is obtained in a few lines, it is
worthwhile to compare the final expressions. We first evalu-
ate Zcorr to lowest order in the impurity potential, for which
we take a screened Coulomb potential, Eq. �21�. By using
Eq. �16� and the equality

�r,n�h�� = −
i

m
�

0

�

ds n�h�eshpe−sh�1 − n�h�� , �29�

in which the electron mass m= 1
2 in atomic units, one finds

straightforwardly for Zcorr
0

Zcorr
0 =

i

3�
k

�k��r,n�h� − n�h0���k� · k

= − 4	��Fvkk = Zi � Zi�pot� , �30�

in which a quantity Zi�pot�=−4	��Fvkk is defined to be used
below. For the screened Coulomb potential this quantity is
equal to Zi=1, but this is not the case for other potentials.
This result from an explicit calculation follows also if one
writes the sum over the free space states �k� as a trace and
uses the equality given in the sentence just below Eq. �25�.

Similarly one finds for Sorbello’s Zd to lowest order in the
impurity potential, writing the trace in Eq. �27� in terms of
free space states labeled by k,

Zd
�0� = −

2

3	m
Im� d3kk2Gk

0��F�vkkGk
0��F� = − 4	��Fvkk = Zi.

�31�

This is obtained by using the following two equalities,

�

��k
Gk

0��� =
�

��k

1

� − �k + ia

= Gk
0���Gk

0��� and lim
a→0

Im Gk
0��F� = − 	���F

− �k� . �32�

Apparently, to lowest order in the impurity potential the
two final expressions Zcorr and Zd are equal and they repro-
duce the bare valency of the migrating ion. Although the
complete expressions are not equal, an “almost” equality can
be derived. We rewrite Zcorr by applying Eq. �29� both for h
and h0. After inserting a complete set of free electron states
in the h0 term in Eq. �26� and carrying out the integral over
s, one finds

CALCULATIONS OF THE SCREENING OF THE CHARGE¼ PHYSICAL REVIEW B 74, 045111 �2006�

045111-5



Zcorr =
�

3m
�
qq�

�q=�q� �nq�1 − nq�pqq� − �
k�

nk��1 − nk��

��q�k��k��k��q��	 · pq�q →

−
1

3	m
�
qq�

�q=�q� �Im Gq��F�pqq� − �
k�

Im Gk�
0 ��F�

��q�k��k��k��q��	 · pq�q = −
1

3	m
Im �

qq�

�q=�q�

�q�p�G��F�

− G0��F���q�� · pq�q. �33�

In the transition from the first to the second line the T→0
limit was taken, for which �nq�1−nq�=− �

��q
nq→���q−�F�

=− 1
	 Im Gq��F�. Both Sham and Sorbello give their elabo-

rated expressions in this T→0 limit. The similarity of this
last line with Sorbello’s Zd, Eq. �27�, is striking. The factor
of 2 reflects whether the electron spin degeneracy has been
accounted for explicitly or not. In fact, if in the last line of
Eq. �33� the states q and q� are replaced by the unperturbed
ones k and k�, it reduces to Sorbello’s expression. This im-
plies an intriguing equality indeed, and it shows that the two
descriptions are closely related.

VI. THE CORRECTION TERM IN TERMS
OF PHASE SHIFTS

For the evaluation of the correction term Zcorr as it is
defined in Eq. �26� one needs the states �q�. These states are
the eigenstates of a system with one impurity in free space. It
is known that the scattering states �
k� for this system, which
have a one-to-one correspondence to the free space states �k�,
are exact solutions of the Schrödinger equation for one im-
purity in free space as well. It appears that the evaluation of
Zcorr becomes relatively simple if one uses the scattering
states instead of the true eigenstates. We return to this point
below.

The expansion of the scattering state �r �
k��
k�r� in
terms of spherical harmonics is given by


k�r� =
4	

��
�
L

i�YL
*�k̂�R��r,k�YL�r̂� . �34�

The angular momentum label L combines the labels � and m,
so L� �m, and R��r ,k� is the radial solution of the
Schrödinger equation at the energy �k for a spherically
symmetric potential v centered at the origin. For r
outside the range of the potential R��r ,k� can be written in
terms of the scattering t matrix t�=− 1

k sin ��exp�i��� as
j��kr�− ikt�h�

+�kr�, where �� are the phase shifts. This means
that for a plane wave R��r ,k�→ j��kr�. The box normaliza-
tion in the system volume � induces a discrete set of k
values. In the properties to be presented below a delta func-
tion normalization will be used, which means that in Eq. �34�
the system volume � has to be replaced by 8	3. Using the
expansion Eq. �16�, the equality �k� �v �
k�= tk�k which holds

for scattering states �q�→ �
k�, and the overlap property for
scattering states

�k��
k� =
��k − k��

k2 �
L

YL�k̂��YL
*�k̂��1 − ikt�� , �35�

one finds for Zcorr

Zcorr = −
4

3	m
�

0

�

k3dk� �

��k
���k − �F�	F��k�

=
2

	
�F��F� +

2

3
�F

3/2 �

��F
F̄��F�	 , �36�

in which the function F��k� is given by

F��k� =
1

4�
�

�� + 1��sin 2�� + sin 2��+1��cos2��� − ��+1� + 1� ,

�37�

and F̄��k�� 1
k F��k�. Crucial steps of the derivation of Eq.

�36� are given in the Appendix. This expression can be
evaluated simply, because it is just a function of the phase
shifts of the impurity potential at the Fermi energy. Zcorr as it
is given by Eq. �36� has to be compared with the lowest
order expression, obtained by the replacements �q�→ �k� and
�q��→ �k��. For the sake of a proper comparison this expres-
sion has to be evaluated in a similar way, by the use of
scattering states. This way one obtains

Zcorr
0 = −

4

3	m
�

0

�

k3dk� �

��k
���k − �F�	F0��k�

=
2

	
�F0��F� +

2

3
�F

3/2 �

��F
F̄0��F�	 , �38�

in which the function F0��k� is given by

F0��k� =
1

2�
�

�2 � + 1�sin 2�� = �
�

�2 � + 1�sin �� cos ��,

�39�

and F̄0��k�� 1
k F0��k�. The right-hand sides of Eqs. �38� and

�30� can have different numerical values, because the two
elaborations are different in character. Comparison of these
numerical values can be considered as a test of the error
made in using scattering states instead of the true eigenstates.
Another test of this error is obtained by evaluating the sim-
plified lowest order result for Zcorr explicitly, to be denoted as
Zcorr

00 , using the expansion �16�. One finds

Zcorr
00 = tr�n�h� − n�h0�� =

2

	
�

�

�2 � + 1�sin �� cos ��

=
2

	
F0��k� �

2

	
�

�

�2 � + 1��� = ZF, �40�

in which ZF stands for the Friedel sum. The inequality in Eq.
�40� must be attributed to the use of scattering states instead
of the true eigenstates. The difference between these two
types of states has been stressed by Fenton22 and commented
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on by the present author.23 A scattering state is prepared such
that it is an unperturbed state at t=−�, which develops under
the influence of a scattering potential located at some posi-
tion in the system. An eigenstate has to be constructed using
the boundary conditions of the system in addition to the
properties of the potential. In terms of scattering theory,
eigenstates contain the influence of backscattering by the
boundaries in addition to the information about the scattering
by the potential. It is clear that the third member of Eq. �40�
reduces to ZF in the small phase-shifts limit ��→0.

Sorbello’s equation for Zd, Eq. �27�, can be evaluated
through the use of scattering states as well. We first give the
form corresponding to the eigenstates of h, denoted as usual
by �q�, followed by the result obtained by using scattering
states.

Zd = −
2

3	m
Im�

q
�
k�

�q�k��k�2Gk�
0 ��F��k��v�q�Gq��F�

→
4

3	

�

��F
�

0

�

�k
3/2d�k���F − �k�F̄0��k� =

4

3	

�

��F
�F

3/2F̄0��F� .

�41�

As above, for scattering states the potential matrix element
becomes equal to the t matrix element tk�k. The energies �k
and �q are equal, being connected by a delta function as
shown in Eq. �35�. Interestingly, this rewritten Zd is equal to
our Zcorr

0 given by Eq. �38�. This again shows the close rela-
tionship between the results obtained through the simplified
approach presented here and Sorbello’s results.

Sorbello calculated Zd of Eq. �27� using the square well
potentials described in Sec. III. To that end he derives his
rewritten form Eq. �17�, which we reproduce in a slightly
different notation as follows:

Zd =
4v0kF

3	
�

0

r0

r2dr�
�

�2 � + 1�„R�
2�r,kF� − j�

2�kFr�…

+
4�F

3	
�

�

�2 � + 1�
���

��
��F

+
4kFv0r0

3

9	
. �42�

In the derivation has been used, that p2

2m =h−v=h−�F+�F
−v, G−G0=GvG0, �h−�F�G=−1, −Im Tr�G−G0�=���2�

+1�
���

�� ��F
, Im G0�r ,r�=−kF�LjL

2�r�, and Im G�r ,r�=
−kF�LRL

2�r�, with RL�r��R��r ,kF�YL�r̂�. For r�r0 the radial
solution R��r ,kF�� j��kvr�, with kv=�kF

2 +v0. For reasons of a
proper comparison we evaluated Zd according to Eq. �42� up
to �=2, because Sorbello restricted himself to �max=0.

VII. NUMERICAL RESULTS

The expressions obtained will be evaluated for the same
square well model potentials as were used in Sec. III, in that
employing a slight generalization of the potentials used by
Sorbello.8 Results for Zd /ZF and Zcorr /Zcorr

0 are shown in Fig.
3. Because the Friedel sum for the model square well poten-
tials is rarely equal to unity, the use of ratios gives the proper
measure for the screening, in which we follow Sorbello.

It is seen that for the stronger potentials, with r0=2/
,
Sorbello’s boldly dashed curve lies somewhat lower than the
dashed curve for the present description, while they display
almost equal results for the higher kF values. The curves for
the weaker potentials lie lower than those for r0=2/
. Al-
though they differ considerably for smaller kF values, the
curves approach each other for higher kF. Both results imply
a decrease of the inaccuracy related to the �q�→ �
k� replace-
ment in the present description for states with increasing k
values. This is reasonable, because larger k values corre-
spond to smaller wave lengths, which probe the scattering
potential more precisely, while the boundary effect de-
creases. As a guide for the eye the average for the two well
widths are drawn as dotted lines. From the present descrip-
tion one comes to a direct valency of 0.85±0.15 on the av-
erage, while this is 0.91±0.10 for Sorbello’s description. So
it appears that the �q�→ �
k� replacement is not too crude in
determining a measure for the amount of screening. The
screening mentioned by Sorbello is based mainly on the
r0=1/
 potentials, because for these potentials his restriction
to �max=0 is reasonable. If we correct for the higher � values
we find 0.82 for Zd /ZF in aluminum instead of his 0.75. He
used the latter value in mentioning a screening of 25%. For
the sake of completeness we remark, that if one would com-
pare the boldly dashed curve with the values given in Sor-
bello’s Table II one would observe considerable differences.
This is due to the fact that for the r0=2/
 potentials the
�=1 and 2 terms contribute significantly. Taking everything
together the available models and descriptions end up at a
screening between 5 and 30%. Comparing with the largely
metallic-density dependent result of Ishida, covering the en-
tire range of no screening to complete screening, the present
result can be considered as rather conclusive, in that com-
plete screening is excluded.15

In order to get some more insight in the kF dependences
shown in Fig. 3 we display the quantities Zcorr

0 , Zi�pot�, and
ZF in Fig. 4. It is seen that all curves have a positive slope,
apart from the one for ZF for the weaker r0=1/
 potential.
This is certainly related to the seemingly deviant Zd /ZF curve
in Fig. 3 and the fact that the Zd /ZF curves have been ob-

FIG. 3. Zd /ZF and Zcorr /Zcorr
0 plotted as a function of kF, for the

two square well potentials.
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tained by an accurate numerical evaluation of Eq. �42�, while
the Zcorr /Zcorr

0 results “suffer” from the �q�→ �
k� replace-
ment. The effect of this replacement is larger for the weaker
potential, which can be seen from both Zcorr /Zcorr

0 curves in
Fig. 3 and the Zcorr

0 curves in Fig.4. This is understandable if
one realizes that the effect of the potential on the wave func-
tions increases with its strength, while the effect of the
boundaries remains unchanged. Further we observe that Zcorr

0 ,
Zi�pot�, and ZF lead to different curves. The difference be-
tween Zcorr

0 and Zi�pot� as shown in Fig. 4 is certainly due to
the �q�→ �
k� replacement. However, Eq. �30� implies that
for the screened Coulomb potential one should find Zi�pot�
=Zcorr

0 =Zi=ZF=1. This means that a difference between
Zi�pot� and ZF uncovers some limitation of the use of the
model square well potential. Although the differences in
shape of the three potentials are known, in Fig. 5 we show
their shapes for a certain kF value, for which we choose a
value in the middle of 0.7.

VIII. THE FORCE EXPRESSION OF BOSVIEUX
AND FRIEDEL

The starting expression of Bosvieux and Friedel for the
driving force is

FT=0 = − ����R1
�Vei + �V���� , �43�

in which the state ��� is a solution of the Schrödinger equa-
tion for the system in the presence of an applied field. This
means that one has to solve the time dependent Schrödinger
equation

i
���t�

�t
= H�t���t� � �H + �V�t����t� . �44�

The subscript T=0 is added by the present author in order to
distinguish this force from the force given in Eq. �2�. The
derivation of Eq. �2�, in which a solution of the Liouville
equation is used, has been given in the literature many times.
Because the approach through the system wave function is

typical for the theory of Bosvieux and Friedel, and because
some questions can be raised about their solution, we give
crucial steps of the derivation. We solve Eq. �44� by using
the interaction representation for ��t�, defined by

�I�t� � eiHt��t� . �45�

The equation for �I�t� becomes

i
��I�t�

�t
= eiHt�V�t�e−iHt�I�t� . �46�

After integrating this equation and using that for t→−� the
system is in the ground state of the unperturbed system
Hamiltonian H, one finds for ��t� linearly in �V,

��t� = − ie−iHt�
−�

t

dt�eiHt��V�t��e−iHt��I�− � �

+ e−iHt�I�− � � . �47�

With �V�t�=�Veat, applying the substitution t− t��s, and
considering an arbitrary time in the present, so t=0, this
becomes

��0� � � = − i�
0

�

dte−�iH+a�t�VeiHt�I�− � � + �I�− � � .

�48�

If one calculates matrix elements with this ���, the factor
e−iE0� in the state ��I�−� �� drops out so that just the ground
state �
0� of H remains.

By this one finds for Eq. �43�

FT=0 = − �
0��R1
��V��
0�

+ i�
0

�

dte−at�
0���R1
Vei�e−iHt�VeiHt�
0� + c . c.

= ZieE + i�
0

�

dte−at�
0����R1
Vei�,e−iHt�VeiHt��
0� .

�49�

FIG. 4. Zcorr
0 , Zi�pot�, and ZF plotted as a function of kF, for the

two square well potentials.
FIG. 5. v�r� for the three potentials plotted as a function of r.
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Because H commutes with the coordinates R� in �V only the
electron coordinates survive. Using the definition of the force
operator, Eq. �5�, and the Hermitian property of H it is clear
that the time dependence can be applied to Fop as well, and
Eq. �49� can be written as

FT=0 = ZieE − ie�
0

�

dte−at�
0��Fop�t�,E · �
j

r j��
0� .

�50�

Interestingly, Eq. �50� is precisely the zero-temperature
equivalent of Eq. �2�. This becomes even more clear if one
writes down the form which shows up after the reduction of
Eq. �50� to single particle states denoted by �q�.

FT=0 = ZieE − ie�
0

�

dt e−at�
q

�q��f1�t�,E · r��q� . �51�

The force operator f1 is defined in Eq. �5�. At T=0 the sum
over the single particle states has a sharp cutoff at �q=�F.
The finite temperature equivalent of Eq. �51� can be written

F = ZieE − ie�
0

�

dte−attr�n�h��f1�t�,E · r�� , �52�

in which the Fermi-Dirac distribution n��� has been inserted,
see Eq. �13�. Clearly, Eq. �52� is completely equivalent to
Eq. �12� of the present text. By this, electromigration theory
can be considered as being unified. Apparently, the starting
formula of Bosvieux and Friedel was correct, but these au-
thors did not recognize its precise contents. In fact, they
wrote down surface-integral terms, by this not appreciating
the Hermitian property of the system Hamiltonian. This
property implies that these terms are zero, but their full-
screening results were derived from these terms. In addition,
they missed the power of their starting formula, Eq. �43�, by
taking the a→0 limit in too early a stage of the derivation. A
detailed account of these statements, in which the original
paper is followed as closely as possible, can be read
elsewhere.24

IX. CONCLUDING REMARKS AND PERSPECTIVES

The amount of screening of the direct force on a proton in
an electric-current carrying metal has been shown to lie be-
tween 5 and 25%. By this the full-screening prediction of
Bosvieux and Friedel has been invalidated, completely in
agreement with an earlier result obtained by Sorbello.1,8 On
top of that, the surface integral terms used by Bosvieux and
Friedel to derive their full-screening result appear to be zero,
due to the Hermitian property of the Hamiltonian. Interest-
ingly, it has been shown explicitly that the starting expres-
sion of Bosvieux and Friedel for the driving force is the
zero-temperature limit of all linear-response expressions
used in the literature since their introduction by Kumar and
Sorbello.6

All existing calculations use a jellium model for a metal,
or are not applicable to transition metals.15 In view of the
description presented it becomes feasible to account for real
metallic effects. These effects have been accounted for in the

calculations of the wind force to a large detail,3 but for the
direct force this was much too involved up to now.4 Such a
development would be interesting, because this may lead to
an explanation of a measured result which has not been un-
derstood yet. For most hydrides a direct valency for the hy-
drogen has been measured which is of the order of unity.
However, in Nb�H� a direct valency was found of about 0.44.
Such a deviating value may arise from multiple scattering
effects of the electrons around a proton surrounded by me-
tallic atoms, which can be accounted for in a finite-cluster
description. It is worthwhile to investigate this possibility,
because in the development of the description of the wind
force surprising positive values for the wind valence in V�H�
and Nb�H� were found, which were in agreement with the
experiment.25 The surprise comes from the fact that in a sys-
tem composed of a finite cluster embedded in a jellium the
electron dispersion relation is still free electronlike, from
which one would expect a negative wind valence. The cal-
culated result must be due to the rather strong multiple scat-
tering effects, which were accounted for explicitly. A finite
cluster description for the direct valency would be a straight
generalization of the impurity in a jellium description imple-
mented so far. This is a feasible development if one uses the
simplified treatment presented above, of which it has been
shown that the expressions can be evaluated in terms of the
scattering phase shifts of the constituent atoms.
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APPENDIX: CRUCIAL STEPS IN THE DERIVATION
OF EQ. (36)

For the evaluation of Zcorr defined in Eq. �26� one needs
the momentum matrix element pq�q and the matrix element
of the commutator with the statistical distributions. For pq�q
one writes

pq�q =
�4	�2

8	3 �
LL�

i�−��YL��k̂��YL
*�k̂� � d3rRL�

* �r�pRL�r� ,

�A1�

in which Eq. �34� with �→8	3 has been used for the wave
functions and RL�r��R��r ,k�YL�r̂�. If one represents the
scattering potential by a square well with depth v0 the inner
radial solution is a Bessel function as well, so R��r ,k�
=A�j��kvr�, with kv=�k2+v0, and one finds

� YL�
* �r̂�pRL�r�dr̂ = i��−�kvDL�LR����r,k� , �A2�

in which the equality

� YL�
* �r̂�pjL�r�dr̂ = i��−�kDL�Lj���kr� �A3�

has been used and
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DL�L �� dk̂YL�
* �k̂�k̂YL�k̂� . �A4�

The double-� label in Eq. �A2� refers to the fact that the
factor A� is not changed by the momentum operation and the
angular integration, so that

kvR����r,k� = kv
A�

A��
R���r,k� → k�j���kr� − ikt�h��

+ �kr�� .

�A5�

If one substitutes Eq. �A2� in Eq. �A1� one obtains

pq�q =
2

	
�
LL�

YL��k̂��YL
*�k̂�DL�LI���

RR �k�,k� �A6�

with

I���
RR �k�,k� = �

0

�

r2drkrR��
* �r,k��R����r,k� , �A7�

and in which kr=kv inside the range of the potential and kr
=k=kF outside of it. Using the equality

�
0

�

r2drj��k�r�j��kr� =
	��k − k��

2k2 , �A8�

it appears to be possible to reduce the integral I���
RR �k� ,k� to

I���
RR �k�,k� =

k	

2

��k − k��
k2 Ī���

RR , �A9�

in which

Ī���
RR � 1 − ikt� + ikt��

* − 2ikt�ikt��
* . �A10�

Now we turn to the other matrix element in Eq. �26�.
Using Eq. �16� one finds

�q��r,n�h� − n�h0���q��

= − �
0

�

ds�q��r,n�h�eshve−sh0
„1 − n�h0�…��q�� .

�A11�

We remind the reader that in this equation h and v just refer
to the system with one impurity, so to h1 and v1. Now we use
the equality �29� and the following related equality:

�e�h,r� = −
i

m
�

0

�

dsp�s�e�h �A12�

twice, one time for h and one time for h0. By that the com-
mutator in the right-hand side of Eq. �A11� can be written as
follows:

�r,n�h�eshve−sh0
„1 − n�h0�…�

= −
i

m
n�h���

0

�

ds�p�s���1 − n�h��eshve−sh0

− �
0

s

ds�p�s��eshve−sh0 + eshve−sh0p�s − �n�h0��

��1 − n�h0�� . �A13�

It will be clear that p�s� in the first and second term refers to
h.

Now we develop the qq� matrix element of this operator
as it occurs in Eq. �A11�. In that we will make use of the
property proven above through Eq. �A6� with �A9�, namely
that the energies �q and �q� in the matrix element pqq� are
equal, and of the equality of the energies �k and �q in the
overlap �k �q�, see Eq. �35�. In the first and second term we
have to insert two complete sets, one q set �q���q�� and one
k set �k���k��. In the third and fourth term one needs the
complete k set only. This way one writes for the qq�matrix
element in the left-hand side of Eq. �A11�

�q��r,n�h� − n�h0���q�� =
i�2

m
nq��

q�
�
k�

pqq��1

2
− nq�
tk�k�

*

+ �
k�

tk�k
* k��1

2
− nk�
	�1 − nk��

��k��q�� , �A14�

in which the potential matrix element vqk�=vk�q
* , between an

exact scattered state �q�= �
k�, see Eq. �34�, and an unper-
turbed state, a plane wave �k��, has been replaced by the
corresponding t matrix element tk�k

* .
By now we have developed the means for bringing Zcorr in

a manageable form. One has to take the inner product of the
matrix element given by Eq. �A14� with i

3pq�q and to carry
out the summations. Because the summations are equivalent
to integrals and the absolute values of all k vectors involved
are equal through delta functions, one just has to carry out
the angular integrations. We write for Zcorr in Eq. �26�

Zcorr =
i

3
� dk̂� dk�̂� dk�̂�� dk�̂
�q��r,n�h1�

− n�h0���q�� · pq�q, �A15�

in which the right-hand side of Eq. �A14� is supposed to

have been substituted. The angular integration over k̂� ap-
plies to the first term in the right-hand side of Eq. �A14� only.
The product of statistical factors which shows up can be
simplified and in the T→0 limit be written as follows:

− �2nk�1 − nk��1

2
− nk


=
1

2
�

�

��k
�nk�1 − nk�� →

1

2

�

��k
���k − �F� . �A16�

If one substitutes this equality, uses Eqs. �A6�, �A9�, �A10�,
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and �A14�, accounts for the factor of 2 due to the spin de-
generacy, and carries out all angular integrations, one finds
for Zcorr of Eq. �A15�

Zcorr =
2

3	m
�

0

�

k2dk
�

��k
���k − �F��

LL�

DLL� · DL�L�1 − ikt���

� �t��
* Ī���

RR + t�
*�k2Ī���

RR

= −
4

3	m
�

0

�

k3dk� �

��k
���k − �F�	F��k� , �A17�

in which it has been used that

Ī���
RR = cos��� − ����e

−i���−����, �A18�

and

�
mm�

DLL�
� DL�L

� =
1

3
���„�� + 1����,�+1 + � ���,�−1… .

�A19�

In the right-hand side of Eq. �A17� one recognizes the
second member of Eq. �36�, by which the derivation has
been completed. The derivations leading to Eqs. �38�, �40�,
and �41� are similar, and they are simpler as well.
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