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Detailed microscopic study of the crystal field strength 10Dq and lowest charge transfer �CT� energies for
different interionic distances in Cs2NaYX6 :Cr3+ �X=F, Cl, Br� crystals is performed in the present paper. The
method used in the calculations is the first-principles fully relativistic discrete variational multielectron
�DVME� method �K. Ogasawara et al., Phys. Rev. B 64, 115413 �2001�� based on solving Dirac equations
with the local density approximation. From the results of performed calculations, the functions describing the
dependencies of 10Dq and lowest CT energy on the metal-ligand distance R were obtained without introducing
any fitting or semiempirical parameters. It was shown that 10Dq depends on R as 1/Rn, with n=4.4634,
4.3742, and 4.3532 for Cs2NaYF6:Cr3+, Cs2NaYCl6 :Cr3+, and Cs2NaYBr6:Cr3+, respectively. The lowest CT
energies E�CT� are linear functions of R and decrease with increasing R with dE�CT� /dR=−953 cm−1/pm,
−621 cm−1/pm, and −520 cm−1/pm for Cs2NaYF6:Cr3+, Cs2NaYCl6 :Cr3+, and Cs2NaYBr6:Cr3+, respec-
tively. Using these results, the constants of the electron-vibronic interaction, Huang-Rhys parameters, Stokes
shifts, and Gruneisen constants for the a1g normal mode in all considered hosts were calculated. The obtained
results are in good agreement with the experimental data and can be readily applied for analysis of the optical
spectra and electron-vibronic interaction of the �CrX6�3− �X=F, Cl, Br� units in other hosts.
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I. INTRODUCTION

As is well known from crystal field theory, if any impurity
ion with an unfilled electron shell is placed into a crystalline
or glass host matrix, its energy levels are split due to the
action of the crystal �ligand� field.1–4 The splitting pattern is
determined by the nature of an impurity ion and its nearest
surroundings �in what follows this group of ions will be re-
ferred to as an “impurity center” �IC��, geometrical arrange-
ment of the ligands �in other words, symmetry of IC�, chemi-
cal bond lengths, etc. In the case of ions with a 3d open
electron shell in a cubic crystal field this splitting is quanti-
tatively described by so called cubic crystal field strength
10Dq, which is equal to the energy separation between the
antibonding eg and t2g orbitals of the central ion1–4 �where eg
and t2gindicate the symmetry properties of the wave func-
tions of the split states transforming in accordance with cor-
responding irreducible representations of the Oh group�. It
was shown in the framework of the simplest point charge
model of the crystal field1 that 10Dq depends on the interi-
onic separation R as 1/Rn, n=5. However, the value of 10Dq
predicted by this model is several times smaller than the
experimental values,5,6 and this is a clear indication that n
deviates from 5. More elaborated models based on the mo-
lecular orbital calculations lead to n value in the 3.5–7.3
range.7–9 It is highly desirable to know exactly how 10Dq
depends on the distance between impurity ion and ligands,
since such knowledge can help in getting valuable informa-
tion about essential electronic properties of an IC, such as
constants of electron-vibronic interaction �EVI�, energetic
Stokes shifts, Huang-Rhys parameters, compressibility, and
Grüneisen parameters.6–15 Therefore, a thorough microscopic
analysis of the 10Dq�R� dependence for a number of impu-
rity ions in various hosts is an important problem, and it is

very attractive to tackle it by the first-principles methods in a
systematic and consistent way to get a better insight into the
microscopic structure of an IC. As earlier examples of such
an analysis, we mention that detailed ab initio studies of 3d
orbitals splitting for Cr3+ in fluorides,6 Cr4+ in oxides,9 mi-
croscopic treatment of the S�a1g� Huang-Rhys factor,7 optical
spectra and pressure effects for V2+ and Cr3+ in elpasolites
Cs2NaYCl6 and Cs2NaYBr6 �Refs. 11 and 16�, and for Mn2+

in KZnF3 �Ref. 17� were reported.
In the present paper we report on a systematic and con-

sistent ab initio analysis of the dependence of the crystal
field strength parameter 10Dq and lowest charge transfer
�CT� energies on the distance between Cr3+ ion and ligands.
The calculations were performed for three isostructural crys-
tals from the elpasolite family, Cs2NaYF6, Cs2NaYCl6, and
Cs2NaYBr6. We obtain the functional dependencies of both
quantities on the distance, and use them for an estimation of
the EVI constants, Huang-Rhys factors, bulk modulus, and
Grüneisen parameters. The results obtained in the present
study can be applied to IC formed by Cr3+ and halogen ions
in other matrices as well.

The choice of the elpasolite crystals as the object of the
present study was determined by the high symmetry �Oh� of
the Cr3+ position. Besides, these materials have been the sub-
ject of many extensive experimental and theoretical
studies11,16,18–30 which results in a considerable amount of
reliable information on their optical spectra and normal vi-
bration frequencies.

The paper is organized as follows: in the next section we
briefly describe the main ideas underlying the calculation
method. Then we proceed with a short summary of crystal
structure data for the considered materials, present the ob-
tained results, and after a discussion conclude the paper with
a brief summary.
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II. METHOD OF CALCULATIONS

The method employed in the present calculations is the
fully relativistic discrete variational multielectron �DVME�
method developed by Ogasawara et al.31 This is a
configuration-interaction �CI� calculation program, which
makes use of the four-component fully relativistic molecular
spinors obtained by the discrete-variational Dirac-Slater
�DV-DS� cluster calculations.32 The DVME method is based
on the numerical solution of the many-electron Dirac equa-
tion, and its main advantages are as follows: �1� the first-
principles method without any phenomenological parameters
�this is especially important for the development of new ma-
terials, prediction of their expected properties, and analysis
of the common trends between similar compounds�; �2� a
very wide area of applications: to any atom or ion in any
symmetry from spherical to C1 for any energy interval from
the infrared to the x-ray spectral regions; �3� the possibility
to take into account all effects of a chemical bond formation
such as covalency, ionicity, and configuration interactions;
�4� the potential to calculate a wide variety of physical prop-
erties �like transition probabilities, for example� using the
obtained wave functions of the corresponding energy levels.
All relativistic effects, such as spin-orbit interaction and de-
pendence of mass on velocity, are no longer considered as
small perturbations, but are taken into account from the very
first step of the calculations.

The key idea of the method is that the molecular orbitals
�MO� consisting of the wave functions of an impurity ion
and ligands are used throughout the calculations rather than
atomic wave functions. This makes the effects of the cova-
lent bond formation in a cluster to be taken into account
explicitly, since the percentage contribution of wave func-
tions of different ions to any MO can be readily evaluated.

The relativistic many-electron Hamiltonian is expressed
as follows �in atomic units m=e= � =1�:

H = �
i=1

n �c�pi + �c2 − �
�

Z�

�ri − R��
+ V0�ri� + �

�

Z�
ef f

�ri − R���
+ �

i=1

n

�
j�i

n
1

�ri − r j�
, �1�

where �, � are the Dirac matrices, c the velocity of light, ri,
pi the position and the momentum operator of the ith elec-
tron, Z� and R� the electrical charge and position of the vth
nucleus, Z�

ef f and R� the electrical charge and position of the
�th ion outside the model cluster �in the simplest case, the
model cluster consists of the central ion and the host lattice
ions of the first coordination sphere. In principle, using clus-
ters with ions from further coordination spheres is also pos-
sible, though more computational efforts are needed in this
case�, n the number of explicitly treated electrons �in our
case, 3d-electrons of Cr3+�. In fact, “explicitly treated elec-
trons” are those involved in the considered electron transi-
tions. Since in the present work the main attention is focused
on the splitting of 3d orbitals of the Cr3+ ion, it is natural to
consider “explicitly” three d electrons of Cr3+. In case of L2,3
x-ray absorption near-edge structure �XANES� spectra, for
example, 2p and 3d electrons are referred to as explicitly

treated electrons.31 V0�ri� is the potential from the remaining
electrons �Ref. 33�

V0 =	 �0
G�r��

�r − r��
dr� +

3

4
��0

G�r�Vxc
�0
G�r�� − �0

G�r�Vxc
�0
G�r��

�1
G�r�

− Vxc
�1
G�r��� , �2�

where �G, �1
G, �0

G represent the charge density of all elec-
trons, that of the explicitly treated electrons and that of the
remaining electrons, respectively; �G=�1

G+�0
G and Vxc is the

Slater’s X� potential. The superscript G indicates the values
for the ground state. Coulomb and exchange interactions be-
tween explicitly considered electrons are accounted for by
the last term of Eq. �1�, whereas all interactions between
these n electrons and those of the central ion and ligands are
described by Eq. �2�. Diagonalization of the Hamiltonian �1�
in the basis spanned by all possible Slater determinants for
the considered electron configurations gives a complete elec-
tron energy level scheme for the considered cluster. The
Slater determinants are constructed from the relativistic four-
component MO’s, which, in turn, can be calculated self-
consistently on the basis of the Dirac-Fock-Slater formalism
using the relativistic SCAT computation code.32 Since the
eigenfunctions of the corresponding energy levels are also
obtained, the absorption spectra �for electric dipole, electric
quadrupole, and magnetic dipole transitions� can be obtained
in a straightforward manner after calculating the appropriate
matrix elements. For example, in the case of electric dipole
transitions the oscillator strength �averaged over all possible
polarizations� is calculated as follows:

Iif =
2

3
�Ef − Ei��
� f��

k=1

n

rk��i��2

, �3�

where �i and � f are the initial and final states with energies
of Ei and Ef, respectively.

Relativistic effects explicitly considered in this computa-
tional method are, of course, more important when heavy
elements �such as lanthanides and actinides� or x-ray absorp-
tion near-edge structure �XANES� spectra are dealt with �as
in Ref. 31�. Nevertheless, we use the DVME method in this
paper for the analysis of crystal field effects on Cr3+ elec-
trons to demonstrate and emphasize the flexibility of this
unified approach and its validity for any elements in the Pe-
riodic Table.

The method recently has been successfully applied to the
analysis of the 4f-5d absorption spectra of various trivalent
lanthanides in LiYF4 �Refs. 34 and 35�, high lying 4f and 5d
states of free trivalent lanthanides,36,37 calculations of the
XANES spectra of transition metal ions,38–41 comparative
study of the Cr3+ absorption spectra in ZnAl2S4 and
ZnGa2O4 crystals,42 and the covalence effects for Cr3+,
Mn4+, Fe5+ ions in the SrTiO3 crystal.43 The first application
of this method to the microscopic consideration of spectro-
scopic and dynamic characteristics of impurity centers re-
ported in the present paper enlarges its area of applicability.
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III. CRYSTAL STRUCTURE AND SPECTROSCOPY
OF Cs2NaYX6 „X=F, Cl, Br… CRYSTALS

All considered crystals have the same structure and be-
long to the cubic Fm3m space group �Fig. 1�. One unit cell
contains four formula units. Lattice constants are �in Å�:
9.075 for Cs2NaYF6 �Ref. 44�, 10.7396 and 11.3047 for
Cs2NaYCl6 and Cs2NaYBr6, respectively.45 Increase of the
lattice constants is directly related to the increase of the halo-
gen ion radii �1.33 Å for F−, 1.81 Å for Cl−, and 1.96 Å for
Br−�.46 Cr3+ ion substitutes for the Y3+ ion in all these hosts
and is surrounded by six halogen ions; since electrical
charges of both substituting and substituted ions are equal,
no charge compensating additions are required to main-
tain electric neutrality. However, there is a considerable
difference in ionic radii of substituting and substituted ions
�0.61 Åfor Cr3+ and 0.90 Å for Y3+�.46 Such a difference
leads to a significant inward relaxation of the halogen octa-
hedrons around the Cr3+ ion and a decrease of the interionic

separation. Quantitatively this relaxation can be accounted
for by multiplying the Y3+–F− �Cl− , Br−� distance by the
ratio �rCr3+ +rhalogen� / �rY3+ +rhalogen�. With the above given
ionic radii this ratio equals 0.87, 0.89, and 0.90 for
Cs2NaYF6, Cs2NaYCl6, and Cs2NaYBr6, respectively.

Absorption and luminescence spectra of Cr3+ ion in these
hosts are typical for the octahedral Cr3+ ion and were re-
ported and analyzed previously.18–30 We will not repeat these
data here, but will refer to some of them when discussing the
results of our calculations.

IV. THEORETICAL BASIS

Dependence of 10Dq on the “impurity ion—ligand”
chemical bond length R in the vicinity of the equilibrium
position can be represented by the expression �Refs. 6, 7, 9,
and 13�,

10Dq =
K

Rn , �4�

where K is a constant. The 10Dq�R� functional dependence
is not only important for the impurity ion energy levels split-
ting, but influences the EVI between the impurity ion and
lattice normal modes.6 The EVI Hamiltonian in the 4T2g state
of a 3d3 ion �like V2+, Cr3+, Mn4+, Fe5+� in the harmonic
approximation �if only a1g and eg normal modes are consid-
ered� can be written in matrix form as follows �Ref. 47�:

HEVI = VA�Qa1g
0 0

0 Qa1g
0

0 0 Qa1g

�
+ VE�

1

2
Qeg	

−
�3

2
Qeg


0 0

0
1

2
Qeg	

+
�3

2
Qeg


0

0 0 − Qeg	

� ,

�5�

where VA, VE are the constants of the EVI with a1g and eg
normal modes, respectively, and Q	�3z2−r2 and Q
�x2

−y2 are the normal coordinates of the eg Jahn-Teller active
mode. VA can be expressed in a way similar to 10Dq �Ref.
6�:

VA = −
nK

�6Rn+1
. �6�

Finally, VE is related to VA by means of the following simple
relation �Ref. 48�:

VE =
VA

�2
. �7�

One of the experimentally observed manifestations of EVI is
the energetic Stokes shift ES�i� �the difference between the
maxima of the lowest absorption and emission bands�. Due

FIG. 1. �Color online� Crystal structure of Cs2NaYBr6. �a� One
unit cell. Y3+ ions are at the centers of the octahedrons formed by
Br− ions, Na+ ions are located at the edges of the unit cell between
bromine octahedra, Cs+ ions are located inside the unit cell. �b� Six
Br− ions forming octahedral coordination of Y3+ ion �or Cr3+ after
substitution�. Drawn with VENUS developed by Dilanian and Izumi.
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to the ith normal mode, this shift is defined as follows �Refs.
49 and 50�:

ES�i� = 2Si � �i =
Vi

2

M�i
2 , �8�

where M is the mass of a single ligand, and Si stands for the
nondimensional Huang-Rhys factor for the ith mode with a
frequency �i �vibration frequencies can be obtained from
Raman spectra or an analysis of the vibronic progressions�.
For the Cr3+ ion in halide crystals the total Stokes shift ES
arising from the combined effect of both a1g and eg modes
can be written just as a sum of the individual contributions
from each mode �Refs. 49 and 50�:

ES = ES�a1g� + ES�eg� . �9�

This circumstance gives a good opportunity to compare the
calculated values from Eqs. �8� and �9� Stokes shift with
experimental values, thus providing a test for the reliability
of the calculations.

One additional application of the 10Dq�R� function is re-
lated to the estimation of the local bulk modulus B around an
impurity ion. The following equation holds true �Ref. 10�:

� �10Dq

�R
�

R=R0

= − � �10Dq

�P
�

P0

3B

R0
, �10�

where R0 is the equilibrium position, and the derivative �10Dq
�P

relates to the pressure dependence of 10Dq. Having obtained
the 10Dq dependence, it is also possible to estimate the Grü-
neisen constant ��a1g�. It was shown7 that the Stokes shift
for the a1g full-symmetric mode increases with increasing
interionic separation:

ES�a1g� = 2S�a1g� � ��a1g� 
 Rp, �11�

where

p = 6��a1g� − 2�n + 1� . �12�

Then, if the pressure dependence of S�a1g� and ���a1g� are
known, the value of ��a1g� can be easily found.

As seen from Eqs. �4�–�12�, exact knowledge of the
10Dq�R� functional dependence turns out to be an important
factor for calculating spectroscopic and elastic constants of
crystals.

V. RESULTS OF CALCULATIONS AND DISCUSSION

To analyze the microscopic behavior of Cr3+ ion in the
chosen hosts, the octahedral �CrX6�3− �X=F, Cl, Br� cluster,
which is formed by the nearest ligands around the Cr3+ ion,
was used in the calculations. This cluster was embedded into
an effective Madelung potential created by several thousand
point charges �with formal charges “+1” for Cs, “+1” for Na,
“+3” for Y, and “−1” for halogen ions� located at atomic sites
outside the cluster. The atomic orbitals used for the calcula-
tions were from 1s to 4p for the Cr3+ ion and from 1s to 2p
for F− �3p for Cl−, 4p for Br−�. Such a cluster is typical for
an octahedral Cr3+ ion, and inclusion of the Madelung poten-
tial for real crystals into the calculations made the final re-
sults realistic and reliable.

Table I shows the results of the calculation of the 10Dq
value �calculated as the energy difference between the Cr3+

antibonding eg and t2g orbitals� in all considered crystals for
different distances between the Cr3+ ion and the halogen
ions. In addition to the crystal field strength, the energies of
the lowest CT transitions which correspond to the excitation
of the electron from the highest occupied p orbital of ligand
to the lowest unoccupied eg orbital of the Cr3+ ion are shown
as well �this transition would lead to the highest spin S=2 of
a Cr2+ ion with a 3d4-electron configuration and, in accor-
dance with Hund’s rule, to the lowest energy�. An increase of
the interionic separation is accompanied by a decrease of the
10Dq value and CT energy. This trend was reported earlier9

TABLE I. Values �in cm−1� of 10Dq and lowest “ligand-metal” CT transition energy in the �CrX6�3− cluster embedded into
Cs2NaYX6 �X=F, Cl, Br� crystals calculated for different values of the Cr3+—halogen distance. Interionic distance is given in units of the
Y3+—halogen equilibrium distance re, which is 2.268 75 Å for Cs2NaYF6 �Ref. 44�, 2.619 39 Å for Cs2NaYCl6, and 2.765 13 Å for
Cs2NaYBr6 �Ref. 45�. In all approximating functions R is measured in Å, and the calculated result is the energy measured in cm−1.

Cr—
Halogen
distance 0.825 re 0.850 re 0.875 re 0.900 re 0.925 re 0.950 re 0.975 re 1.00 re

Approximating
functions

10 Dq

Cs2NaYF6 18007 15704 13771 12141 10762 9590 8587 7564 294650

R4.4634

Cs2NaYCl6 – 16849 14818 13089 11609 10337 9234 8274 557820

R4.3742

Cs2NaYBr6 – 16100 14182 12543 11136 9921 8861 7929 664190

R4.3532

CT

Cs2NaYF6 68985 61646 55089 49206 43924 39170 34879 30835 245200−95270R

Cs2NaYCl6 – 51291 46418 41908 37719 33827 30210 26853 188710−62071R

Cs2NaYBr6 – 45611 40913 37428 33699 30197 26906 23814 167060−51992R
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and is confirmed in our calculations as well. The obtained
data sets were approximated by linear functions for the CT
energies and power laws for the 10Dq values; these functions
are shown in Table I. Figures 2–4 illustrate the behavior of
the CT energy and 10Dq as the functions of the interionic
separation. It is seen that all calculated values �shown by
triangles for the CT energy and squares for 10Dq� excel-
lently follow the fitting lines. The quality of fitting is shown
in each figure by the correlation coefficient R51 which is
practically equal to unity for all lines. In all cases the value
of n is about 4.4, in excellent agreement with an earlier re-
ported result,9 where n was found to be about 3 for the
�CrO4�4− complex and it was stressed that this value for oc-
tahedral complexes like �CrF6�3− would be about 50%
higher.

It is possible to relate the results of the lowest CT energy
calculations to the values of n. If the ligand’s electron is

excited to the eg orbital of an impurity ion �situated 10Dq
above the t2g orbital�, the CT transition energy E�CT� in the
first approximation is proportional to 10Dq. Hence the de-
rivative dE�CT� /dR should be proportional to n, being a de-
creasing function of n. This conclusion is supported by Fig.
5, which indeed shows the linear dependence of dE�CT� /dR
on n for all considered crystals. It should not be, however,
understood, that such dependence should always be linear
with the same slope as in Fig. 5. dE�CT� /dR is expected to
be a linear function for the octahedrally coordinated ions
with three or more d electrons, when CT leads to the forma-
tion of a high spin state �for ions with less than three d
electrons the lowest CT transition would promote the
ligand’s p electron into one of the vacant t2g-orbitals, and CT

FIG. 2. �Color online� Dependence of 10Dq �squares� and CT
energy �triangles� on the Cr3+–F− distance in Cs2NaYF6:Cr3+.

FIG. 3. �Color online� Dependence of 10Dq �squares� and CT
energy �triangles� on the Cr3+–Cl− distance in Cs2NaYCl6 :Cr3+.

FIG. 4. �Color online� Dependence of 10Dq �squares� and CT
energy �triangles� on the Cr3+–Br− distance in Cs2NaYBr6:Cr3+.

FIG. 5. �Color online� Relation between dE�CT� /dR and n for
Cs2NaYX6 :Cr3+ �X=F, Cl, Br�. The filled circles are the values of
dE�CT� /dR for the corresponding values of n and the straight line
is the linear approximation �its equation is given in the figure�.
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in the first approximation does not depend on 10Dq�. Since
the coefficients of the dependence of dE�CT� /dR on n de-
pend in fact on a complicated interrelation between many
factors �nature of ligands and impurity ion, effects of chemi-
cal pressure,13 etc.�, in principle, they may vary from system
to system.

It is also instructive to compare the composition of the 3d
MO �determined by the Mulliken’s population analysis52� for
the studied compounds �Table II�. Though the contribution
coming from the Cr3+ 3d orbitals is, of course, dominating,
in all cases there exists a considerable component of the p
and small component of the s orbitals from ligand in the 3d
MO. The latter contribute only to the eg orbitals, since ad-
mixture of the ligand’s s states into the metal t2g orbital is
forbidden by symmetry.6 Ligand’s contributions increase
with increasing the halogen atomic number; therefore,
Cs2NaYBr6 is the most “covalent” crystal among three hosts
studied in the present paper. Also ligand’s contribution in-
crease with the decreasing metal-ligand distance. Data from
Table II can be directly related to the results of the CT en-
ergy calculations from Table I. Increasing ligands’ contribu-
tion to the 3d MO can be explained by decreasing the energy
gap between the p orbitals of ligands and 3d orbitals of
Cr3+,and, therefore, increasing the mixture of the Cr3+ and
ligand’s wave functions. Therefore, CT energies should de-
crease in the following order: �CrF6�3−→ �CrCl6�3−

→ �CrBr6�3−, in agreement with the results shown in Table I.
Table III shows the results of calculations of the EVI con-

stants, Stokes shifts, and Huang-Rhys parameters performed

using obtained analytical expressions for 10Dq. Required
frequencies of the a1g and eg normal modes were taken from
literature �corresponding references are given in Table III�.
Inspection of Table III shows that there is reasonable agree-
ment between the calculated and experimentally obtained
Huang-Rhys parameters �apart from Cs2NaYF6 crystal�, and
very good agreement between the calculated and estimated
from experimental results Stokes shifts.

Estimations of the lowest CT energy in Cs2NaYF6:Cr3+ at
R0=1.88 Å yield the value 66 092 cm−1=8.19 eV, which is
reasonably close to the one �7.91 eV� reported in Ref. 53 for
the �CrF6�3− unit in K3CrF6 �the chosen value R0=1.88 Å
was shown in Ref. 53 to correspond to the minimum of the
4A2g ground state potential surface for the �CrF6�3− unit�.

The lowest CT transitions for the �CrCl6�3− unit in
Cs2NaScCl6 was measured above 30 000 cm−1 by Wenger
and Güdel,54 with the Cr3+–Cl− distance 2.49 Å. Using this
value of R and CT energy approximation for
Cs2NaYCl6 :Cr3+ �Table I�, the value of 34 153 cm−1 can be
obtained, which is quite reasonable.

Pressure dependence of the Huang-Phys parameter and
normal vibration frequencies can be used to find the value of
the Gruneisen constant ��a1g� for the fully symmetric mode.
As shown in Ref. 7, the Huang-Rhys factor S�a1g� increases
when R increases �or, in other words, S�a1g� decreases when
applied pressure increases�. This is possible if the value of p
from Eq. �11� is positive. So, the lowest estimation of ��a1g�
can be obtained in a straightforward manner by solving the
inequality p�0 �provided the value of n is known�. Using

TABLE II. Partial contribution �in %� of the ligands p and s orbitals into 3d MO in Cs2NaYX6 :Cr3+ �X=F, Cl, Br� crystals. Values of
distance are the same as in Table I.

Cr–Halogen
distance 0.850 re 0.875 re 0.900 re 0.925 re 0.950 re 0.975 re 1.00 re

Cs2NaYF6

t2g

states

Cr3+ 3d 92.79 92.95 93.05 93.12 93.14 93.12 93.05

F− 2p 7.12 7.05 6.95 6.88 6.86 6.88 6.95

F−2s – – – – – – –

eg states

Cr3+ 3d 83.59 83.59 83.52 83.87 83.67 82.91 82.61

F−2p 15.69 15.84 16.02 16.27 16.55 16.87 17.21

F−2s 0.72 0.57 0.46 0.36 0.28 0.22 0.18

Cs2NaYCl6

t2g

states

Cr3+ 3d 92.43 92.70 92.90 93.05 93.15 93.19 93.16

Cl−3p 7.56 7.30 7.10 6.95 6.85 6.81 6.84

Cl−3s – – – – – – –

eg states

Cr3+ 3d 77.65 78.07 78.36 78.52 78.56 78.55 78.44

Cl−3p 20.76 20.61 20.55 20.58 20.68 20.84 21.06

Cl−3s 1.59 1.32 1.09 0.90 0.74 0.61 0.50

Cs2NaYBr6

t2g

states

Cr3+ 3d 92.60 92.86 93.06 93.22 93.32 93.36 93.33

Br−4p 7.40 7.14 6.94 6.78 6.68 6.64 6.67

Br−4s – – – – – – –

eg states

Cr3+ 3d 75.82 76.29 76.62 76.82 76.89 76.87 76.76

Br−4p 22.66 22.46 22.35 22.34 22.42 22.57 22.78

Br−4s 1.52 1.25 1.03 0.84 0.69 0.56 0.46
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the values of n from Table I, the lowest estimations of ��a1g�
are: 1.82 for the �CrF6�3− complex, 1.79 for the �CrCl6�3−

complex, and 1.78 for the �CrBr6�3− complex. Decrease in
the values of n in the series �CrF6�3−→ �CrCl6�3−

→ �CrBr6�3−is accompanied by a decrease in the lowest pos-
sible value of ��a1g�, in accordance with Eq. �12�. No ex-
perimental measurements of the pressure effects in
Cr3+-doped bromides were reported to our knowledge, that is
why we cannot make any further conclusions regarding the
�CrBr6�3− unit and hence leave the obtained result as is. On
the contrary, corresponding experimental data for the
�CrF6�3− complex in K2NaGaF6 �Ref. 55� and �CrCl6�3−

complex in Cs2NaScCl6 �Ref. 12� are readily available. Our
estimation of the value of ��a1g� for the �CrF6�3− unit agrees
well with the Gruneisen constant �1.83� for the a1g mode of
the �CrF6�3− complex in K2NaGaF6 reported in Ref. 55.
Wenger et al.12reported detailed measurements of the Huang-
Rhys parameter and normal vibrations frequencies as a func-
tion of pressure for the �CrCl6�3− unit. Analysis of their data
leads to the value of p in Eq. �11� equal to 12.449 for the a1g
mode, and, as a result of the application of Eq. �12�, to the
value ��a1g�=3.87 for the �CrCl6�3− complex.

Finally, the last application considered in the present pa-
per of the obtained 10Dq dependence for Cr3+ in Cs2NaYCl6
is connected with estimation of the compressibility around
Cr3+ impurity. The application of Eq. �10� implies the knowl-
edge of the pressure dependence of 10Dq. Wenger et al.12

studied the effects of pressure on the Jahn-Teller effect in
Cs2NaScCl6 :Cr3+. From their data on pressure dependence
of the 4T2g-4A2g zero-phonon line emission energy in the
�CrCl6�3− unit we estimated � �10Dq

�P
�
P0

=17.457 cm−1/kbar.
With the 10Dq dependence from Table I and equilibrium
distance R0=2.40 Å we found the local bulk modulus B
=101.2 GPa=1012 kbar, and compressibility for the
�CrCl6�3− unit in Cs2NaYCl6 �=1/B=9.88�10−4 kbar−1.
The obtained value is close to those reported in Ref. 12 for
the �CrCl6�3− unit in Cs2NaScCl6 �9.7�10−4 kbar−1 at 15 K
and 1.47�10−3 kbar−1 at room temperature�. We note here
that in all our calculations the temperature was set at 0 K.

It is instructive to summarize all of the obtained results
and consider how they are affected by the nature of ligands.
It is well known that in the �CrF6�3−→ �CrCl6�3−

→ �CrBr6�3− series the values of 10Dq, force constants and
normal vibrations frequencies are decreasing.57 Being based
on the results of our calculations, we can extend this obser-
vation by stating that the values of n in the 10Dq�R� depen-
dence and the absolute values of the derivatives dE�CT� /dR
for the lowest CT energies follow the same trend. On the
contrary, the degree of covalency �related to the ligands con-
tribution to the 3d MO� increases when passing from
�CrF6�3− to �CrBr6�3−.

VI. CONCLUSION

As a result of systematic ab initio microscopic analysis,
the functional dependencies of 10Dq and the lowest CT en-
ergy on the chemical bond length were obtained for the
�CrX6�3− units in Cs2NaYX6 �X=F, Cl, Br� crystals. No em-
pirical or fitting parameters were used in the calculations.
Since all calculations are entirely based on the MO concept,
not only the Coulomb interaction �which itself is not suffi-
cient to reproduce properly experimental results�, but cova-
lent effects and configuration interaction have been taken
into account. A simple point charge approximation describes
the dependence of 10Dq on distance as 1/R5, whereas a
more elaborate approach developed in the present study
shows that 10Dq depends on the interionic separation R as
1/Rn, with n=4.4634, 4.3742, and 4.3532 for
Cs2NaYF6:Cr3+, Cs2NaYCl6 :Cr3+, and Cs2NaYBr6:Cr3+,
respectively. Dependence of the lowest CT energy on
R is linear for all considered crystals; CT energy decreases
when R increases with dE�CT� /dR=−953 cm−1/pm,
−621 cm−1/pm, and −520 cm−1/pm for Cs2NaYF6:Cr3+,
Cs2NaYCl6 :Cr3+, and Cs2NaYBr6:Cr3+, respectively. These
values can be used for estimations of the lowest CT energies
in the �CrX6�3− units �X=F, Cl, Br� in other hosts. It was
shown that the dE�CT� /dR values for the considered systems
depend linearly on the above-given values of n. The 10Dq
and E�CT� functions obtained as a result of our calculations
were used for estimations of the EVI constants, Huang-Rhys
parameters, Stokes shifts, and Gruneisen constant ��a1g� for
all above-mentioned crystals and compressibility around the
�CrCl6�3− unit in Cs2NaYCl6. Good agreement between the
calculated and experimental �when available� values con-

TABLE III. Calculated �this work� values of the EVI constants, Huang-Rhys parameters, and total Stokes shifts for Cr3+ in Cs2NaYF6,
Cs2NaYCl6, and Cs2NaYBr6 at given Cr3+—halogen distance R0. ES was calculated using Eq. �9�. Experimental values and vibration
frequencies were taken from Ref. 29 for Cs2NaYF6:Cr3+, from Ref. 56 for Cs2NaYCl6 :Cr3+, and from Refs. 11 and 56 for Cs2NaYBr6:Cr3+.

Distance
R0, Å

�A,
cm−1

�E,
cm−1

Calculation Exp.

VA, Na VE, Na SA SE ES, cm−1 SA SE ES, cm−1

Cs2NaYF6 1.88 501 402 −3.39�10−9

�−171�
−2.40�10−9

�−121�
2.05 1.99 3654 3.2 0.64 3721

Cs2NaYCl6 2.40 298 240 −1.79�10−9

�−90�
−1.27�10−9

�−64�
1.57 1.65 1663 1.6 1.5 1612

Cs2NaYBr6 2.44 183 144 −1.98�10−9

�−100�
– 1.40�10−9

�−70�
3.41 3.50 2256 3.7b 3.0b 2218

aThe value in cm−1/pm is given in parenthesis.
bThe values obtained in 11 from experimental Stokes shifts assuming Stot=SA+SE �compare with Eq. �9��.
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firms the validity of the obtained results, which can be ap-
plied to other octahedral IC formed by the Cr3+ ion and the
halogen ions. As an additional result, a numerical analysis of
the MO composition shows that the covalency increases in
the following order: Cs2NaYF6:Cr3+→Cs2NaYCl6 :Cr3+

→Cs2NaYBr6:Cr3+. Increase of the covalency is followed
by a decrease of the CT energy.

In general, reliability of the DVME method in its appli-
cation to the microscopic analysis of the spectroscopic and
elastic parameters related to the 3d-ions in crystals was dem-
onstrated in this paper. The computational technique can be

applied in a straightforward way to IC formed by other 3d
ions in crystals.
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