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Josephson effect in ballistic graphene
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We solve the Dirac-Bogoliubov—de Gennes equation in an impurity-free superconductor-normal-metal—
superconductor junction, to determine the maximal supercurrent /. that can flow through an undoped strip of
graphene with heavily doped superconducting electrodes. The result I.=(W/L)eAy/# is determined by the
superconducting gap A, and by the aspect ratio of the junction (length L small relative to the width W and to
the superconducting coherence length). Moving away from the Dirac point of zero doping, we recover the
usual ballistic result /.= (W/\g)eAy/f, in which the Fermi wavelength A\ takes over from L. The product
I.Ry=Aq/e of the critical current and normal-state resistance retains its universal value (up to a numerical

prefactor) on approaching the Dirac point.
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While the Josephson effect was originally discovered in a
tunnel junction,' any weak link between two superconduct-
ors can support a dissipationless current in equilibrium.? The
current /(¢) varies periodically with the phase difference ¢
of the pair potential in the two superconductors, reaching a
maximum /. (the critical current) which is characteristic of
the strength of the link. A measure of the coupling strength
is the resistance Ry of the junction when the superconduct-
ors are in the normal state. The product /Ry increases as
the separation L of the two superconductors becomes
smaller and smaller, until it saturates at a value of order
Ay/e, determined only by the excitation gap A, in the
superconductors—but independent of the coupling strength.
This phenomenology has been well established in a variety
of  superconductor—normal-metal-superconductor ~ (SNS)
junctions® and forms the basis of operation of the Josephson
field-effect transistor.*>

A new class of weak links has now become available for
research,® in which the superconductors are coupled by a
monatomic layer of carbon (graphene). The low-lying exci-
tations in this material are described by a relativistic wave
equation, the Dirac equation. They are massless, having a
velocity v that is independent of energy, and gapless, occu-
pying conduction and valence bands that touch at discrete
points (Dirac points) in reciprocal space.” Graphene thus pro-
vides a unique opportunity to explore the physics of the
“relativistic Josephson effect” (which had remained unex-
plored in earlier work® on relativistic effects in high-
temperature and heavy-fermion superconductors). We ad-
dress this problem here in the framework of the Dirac—
Bogoliubov—de Gennes (DBAG) equation of Ref. 9.

The basic question that we seek to answer is what hap-
pens to the critical current as we approach the Dirac point of
zero carrier concentration. Earlier theories!''~!* have found
that undoped graphene has a quantum-limited conductivity
of order ¢*/h, in the absence of any impurities or lattice
defects. We find that the critical current is given, up to nu-
merical coefficients of order unity, by

A
I = e_ﬁo max(W/L,27WIN\p), (1)
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in the short-junction regime L<W,§& (with é=fAuv/A, the
superconducting coherence length, W the width of the junc-
tion, and A, the Fermi wavelength in the normal region). At
the Dirac point Ap—, so the critical current reaches its
minimal value of (eAy/#A)W/L. Since the normal-state resis-
tance has its maximal value Ry==(h/e?)L/W at the Dirac
point, the I.Ry product remains of order Ay/e as the carrier
concentration is reduced to zero.

The system considered is shown schematically in Fig. 1.
A layer of graphene in the x-y plane is covered by supercon-
ducting electrodes in the regions x<<—L/2 and x>L/2. The
normal region |x| <L/2 has electron and hole excitations
described by the DBAG equation,”!°

PSRy MRS

=g ) (2)

0 M= H, 0 \I,/’l \I,h

Here Hy=-ifv(0,d,+0,d,) is the Dirac Hamiltonian, £>0
is the excitation energy, and u is the chemical potential or
Fermi energy in the normal region (measured with respect to
the Dirac point, so that w=0 corresponds to undoped
graphene). The electron wave functions W, and the hole
wave functions W, have opposite spin and valley indices,
which are not written explicitly. (A fourfold degeneracy fac-
tor will be added in the final results.) The Pauli matrices o; in
H, operate on the isospin index, which labels the two sub-

FIG. 1. Schematic of a graphene layer, partially covered by two
superconducting electrodes (S). A dissipationless supercurrent flows
in equilibrium through the normal region (N), depending on the
phase difference between the two superconductors. Separate gate
electrodes (not shown) make it possible to vary independently the
carrier concentration in the normal and superconducting regions of
the graphene layer.
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lattices of the honeycomb lattice of carbon atoms.

Andreev reflection at a normal-metal-superconductor
(NS) interface couples ¥, and V,. This coupling may be
described globally by a scattering matrix, as was done in
Ref. 9 to determine the conductance of a NS junction. Here
we follow a different approach, more suited to determine the
energy spectrum (and therefrom the Josephson current). In
this approach electrons and holes are coupled locally by
means of a boundary condition on the wave function in the
normal region.

We consider the energy range & <A below the excitation
gap A, in the superconductor, where the spectrum is discrete.
At a point r on the NS interface (with unit vector fi pointing
from N to S, perpendicular to the interface), the boundary
condition takes the form

W, (r) = UV ,(r), (3)
1 . A2 2a —ib-iph-o
=Z(s—l\e‘|A| —-gMn-0)=e ) (4)

Here A=Aye'® is the complex pair potential in S, o
=(0y,0,) is the vector of Pauli matrices, and S
=arccos(e/Ag) € (0,7/2).

The relation (3) follows from the DBAG equation,’'*# un-
der three assumptions characterizing an “ideal” NS interface:
(I) The Fermi wavelength N\ in S is sufficiently small that
N &, Np, where Np=hv/u is the Fermi wavelength in N
and ¢=fiv/A is the superconducting coherence length; (II)
the interface is smooth and impurity-free on the scale of &;
(II) there is no lattice mismatch at the NS interface, so the
honeycomb lattice of graphene is unperturbed at the bound-
ary. The absence of lattice mismatch might be satisfied by
depositing the superconductor on top of a heavily doped re-
gion of graphene. As in the case of a semiconductor two-
dimensional electron gas,'>'® we expect that such an ex-
tended superconducting contact can be effectively described
by a pair potential A in the x-y plane (even though graphene
by itself is not superconducting).

The particle current density out of the normal region,
given by

jparticle = U\I’Zﬁ : U\I’e - U\I’Zﬁ : U\I’h’ (5)

should vanish for e <A, because subgap excitations decay
over a length £ in S. (The possibility of a subgap excitation
entering the superconductor at one point along the boundary
and exiting at another point within a distance ¢ is excluded
by assumption II.) By substituting the boundary condition (3)
one indeed finds that j,,uie=0, since U is a unitary matrix
which commutes with n- o.

In the SNS junction the normal region has two interfaces
with the superconductor, one at x=—L/2 (with superconduct-
ing phase ®= /2 and outward normal n=-X) and another at
x=L/2 (with ®=-¢/2 and fi=X). The boundary condition
(3) at the points r,=(xL/2,y) thus takes the form

W) =Ue) VP (r), ¥,r)=U"(e)V(r,), (6)

U(e) = e ¥21Pox  B=arccos(e/A). (7)
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Since the wave vector k, parallel to the NS interface is
conserved upon Andreev reflection, we may solve the prob-
lem for a given k,=gq. The transfer matrix M(e,q) relates
the states at the two ends of the normal region:

Y, (r)=M(e,qV,(r), W,(r,)=M(-zq)¥,(r).
(8)

(For ease of notation, the ¢ dependence will not be written
explicitly in what follows.) The condition for a bound state
(the Andreev level) in the SNS junction is that the transfer
matrix for the round trip from r_ to r, and back to r_ has an
eigenvalue equal to unity. This condition can be written in
the form of a determinant,

Det[1 - M (e)U(e) M (- &) U(e)] =0, )

which we have to solve for € as a function of g and ¢.
The electron transfer matrix M (g) is readily obtained
from the Dirac equation,

M = Ae*toA (10)
e—ia/Z eia/Z
A=A""=(2cos a)_1/2< yial? _ i | (11)

hug )’ (12)
+u

ale) = arcsin(
e

k(g) = (hv)'(e + w)cos a(e). (13)

The angle « is the angle of incidence of the electron, and k is
its longitudinal wave vector.

Evaluation of the determinant (9) leads after some algebra
to the quantization condition

sin 6,sin 6_
cos ¢p=1|cos O,cos -+ —— |cos 23
COS @,COS a_
sin ,cos 6_  cos 6,sin 6_
+ - sin 23
cos a, cos a._
—sin @,sin 6_tan a,tan a_, (14)

where we abbreviated a,=a(z¢), 0,=k(xe)L.

We introduce a finite width W to quantize the transverse
wave vectors, ¢—¢q,, n=0,1,2,..., and denote by p,(e, @)
the density of states in mode n. The Josephson current at
zero temperature is then given by

4e d 7 -
sl dEO pule, d)e, (15)

where the factor of 4 accounts for the twofold spin and val-
ley degeneracies. To be definite we take “infinite mass”
boundary conditions at y=0,W, for which'?> g¢,=(n
+1/2)7/W. (For WL the choice of boundary conditions
becomes irrelevant.) At the Fermi level, the lowest N(u)
=uW/whv modes are propagating (real k), while the higher
modes are evanescent (imaginary k).

We analyze the Josephson effect in the experimentally

1($)=-
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most relevant short-junction regime that the length L of the
normal region is small relative to the superconducting coher-
ence length & In terms of energy scales, this condition re-
quires Ay<< fiv/L. To leading order in the small parameter
AgL/fiv we may substitute a,— a(0), 6,—k(0)L in the
quantization condition (14). The solution is a single bound
state per mode,

g,(h) = A1 — 7,5in*(/2), (16)
2
- aZ (17)

) k2cos?(k,L) + (u/ # v)?sin(k,L) "

with k,=[(u/ ﬁv)z—qi]'/z. This expression for the Andreev
levels in terms of a normal-state transmission probability 7,
has the usual form for a short SNS junction.!” Comparison
with Ref. 12 shows that 7, is indeed the transmission prob-
ability for a ballistic strip of graphene between two heavily
doped electrodes in the normal state (Ay=0, A< \g). The
normal-state resistance Ry is thus given by

4% <
Ry=—72r,. 18
N h n:OT (18)
Substitution of p,(e, )= e—¢,(d)] into Eq. (15) gives
the supercurrent due to the discrete spectrum,

©

ey T,8in ¢
l$)= # % [1 - 7,sin(/2)]"

(19)

Contributions to the supercurrent from the continuous spec-
trum are smaller by a factor L/¢ and may be neglected in the
short-junction regime.'® For L< W the summation over n
may be replaced by an integration. The resulting critical cur-
rent /. and the I Ry product are plotted as a function of u in
Fig. 2.

The limiting behavior at the Dirac point (u< Av/L) for a
short and wide normal region (L<K W, §) is

1(¢) = &20% cos(¢@/2)arctanh[sin(¢/2)], (20)

eAO w
=130

I Ry=2.08A/e. 21
P AN o'e (21)

These results for ballistic graphene at the Dirac point are
formally identical to those of a disordered normal metal
(Fermi wave vector kg, mean free path [),!”!° upon substitu-
tion kp/— 1. This correspondence is consistent with the find-
ing of Ref. 12 that ballistic Dirac fermions have the same
shot noise as diffusive nonrelativistic electrons.

In the opposite regime u>>fv/L we have instead (still
for L« W, &) the result
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FIG. 2. Critical current /. and /.Ry product of a ballistic Joseph-
son junction (length L short compared to the width W and super-
conducting coherence length £), as a function of the Fermi energy u
in the normal region. The asymptotes (21) and (22) are indicated by
dashed lines.

eAy uW

1.=122 PR
(We do not have a simple analytic expression for the ¢ de-
pendence in this regime.) The critical current (22) is about
half the ideal ballistic value'’?° I.=2NeA,/%, with N
=uW/whuv the number of propagating modes (per spin and
valley). This reduction is due to the mismatch in Fermi
wavelength at the NS interfaces. Equations (21) and (22)
together contain the scaling behavior (1) with Ap=hv/u an-
nounced in the introduction.

In conclusion, we have shown that a Josephson junction
in graphene can carry a nonzero supercurrent even if the
Fermi level is tuned to the point of zero carrier concentra-
tion. At this Dirac point, the current-phase relationship has
the same form as in a disordered normal metal—but without
any impurity scattering. Instead of being independent of the
length L of the junction, as expected for a short ballistic
Josephson junction, the critical current /. at the Dirac point
has diffusionlike scaling proportional 1/L. Since the normal-
state resistance Ry > L, the I Ry product remains fixed at the
superconducting gap (up to a numerical prefactor) as the
Fermi level passes through the Dirac point. This unusual
“quasidiffusive” scaling of the Josephson effect in undoped
graphene should be observable in submicrometer scale junc-
tions.

ICRN = 2.44A0/e. (22)
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