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We solve the Dirac–Bogoliubov–de Gennes equation in an impurity-free superconductor–normal-metal–
superconductor junction, to determine the maximal supercurrent Ic that can flow through an undoped strip of
graphene with heavily doped superconducting electrodes. The result Ic��W /L�e�0 /� is determined by the
superconducting gap �0 and by the aspect ratio of the junction �length L small relative to the width W and to
the superconducting coherence length�. Moving away from the Dirac point of zero doping, we recover the
usual ballistic result Ic��W /�F�e�0 /�, in which the Fermi wavelength �F takes over from L. The product
IcRN��0 /e of the critical current and normal-state resistance retains its universal value �up to a numerical
prefactor� on approaching the Dirac point.
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While the Josephson effect was originally discovered in a
tunnel junction,1 any weak link between two superconduct-
ors can support a dissipationless current in equilibrium.2 The
current I��� varies periodically with the phase difference �
of the pair potential in the two superconductors, reaching a
maximum Ic �the critical current� which is characteristic of
the strength of the link. A measure of the coupling strength
is the resistance RN of the junction when the superconduct-
ors are in the normal state. The product IcRN increases as
the separation L of the two superconductors becomes
smaller and smaller, until it saturates at a value of order
�0 /e, determined only by the excitation gap �0 in the
superconductors—but independent of the coupling strength.
This phenomenology has been well established in a variety
of superconductor–normal-metal–superconductor �SNS�
junctions3 and forms the basis of operation of the Josephson
field-effect transistor.4,5

A new class of weak links has now become available for
research,6 in which the superconductors are coupled by a
monatomic layer of carbon �graphene�. The low-lying exci-
tations in this material are described by a relativistic wave
equation, the Dirac equation. They are massless, having a
velocity v that is independent of energy, and gapless, occu-
pying conduction and valence bands that touch at discrete
points �Dirac points� in reciprocal space.7 Graphene thus pro-
vides a unique opportunity to explore the physics of the
“relativistic Josephson effect” �which had remained unex-
plored in earlier work8 on relativistic effects in high-
temperature and heavy-fermion superconductors�. We ad-
dress this problem here in the framework of the Dirac–
Bogoliubov–de Gennes �DBdG� equation of Ref. 9.

The basic question that we seek to answer is what hap-
pens to the critical current as we approach the Dirac point of
zero carrier concentration. Earlier theories11–13 have found
that undoped graphene has a quantum-limited conductivity
of order e2 /h, in the absence of any impurities or lattice
defects. We find that the critical current is given, up to nu-
merical coefficients of order unity, by

Ic �
e�0

�
max�W/L,2�W/�F� , �1�

in the short-junction regime L�W ,� �with �= �v /�0 the
superconducting coherence length, W the width of the junc-
tion, and �F the Fermi wavelength in the normal region�. At
the Dirac point �F→�, so the critical current reaches its
minimal value of �e�0 / � �W /L. Since the normal-state resis-
tance has its maximal value RN��h /e2�L /W at the Dirac
point, the IcRN product remains of order �0 /e as the carrier
concentration is reduced to zero.

The system considered is shown schematically in Fig. 1.
A layer of graphene in the x-y plane is covered by supercon-
ducting electrodes in the regions x	−L /2 and x
L /2. The
normal region �x � 	L /2 has electron and hole excitations
described by the DBdG equation,9,10

�H0 − � 0

0 � − H0
���e

�h
� = 
��e

�h
� . �2�

Here H0=−i�v��x�x+�y�y� is the Dirac Hamiltonian, 

0
is the excitation energy, and � is the chemical potential or
Fermi energy in the normal region �measured with respect to
the Dirac point, so that �=0 corresponds to undoped
graphene�. The electron wave functions �e and the hole
wave functions �h have opposite spin and valley indices,
which are not written explicitly. �A fourfold degeneracy fac-
tor will be added in the final results.� The Pauli matrices �i in
H0 operate on the isospin index, which labels the two sub-

FIG. 1. Schematic of a graphene layer, partially covered by two
superconducting electrodes �S�. A dissipationless supercurrent flows
in equilibrium through the normal region �N�, depending on the
phase difference between the two superconductors. Separate gate
electrodes �not shown� make it possible to vary independently the
carrier concentration in the normal and superconducting regions of
the graphene layer.
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lattices of the honeycomb lattice of carbon atoms.
Andreev reflection at a normal-metal–superconductor

�NS� interface couples �e and �h. This coupling may be
described globally by a scattering matrix, as was done in
Ref. 9 to determine the conductance of a NS junction. Here
we follow a different approach, more suited to determine the
energy spectrum �and therefrom the Josephson current�. In
this approach electrons and holes are coupled locally by
means of a boundary condition on the wave function in the
normal region.

We consider the energy range 
	�0 below the excitation
gap �0 in the superconductor, where the spectrum is discrete.
At a point r on the NS interface �with unit vector n̂ pointing
from N to S, perpendicular to the interface�, the boundary
condition takes the form

�h�r� = U�e�r� , �3�

U =
1

�
�
 − i����2 − 
2n̂ · �� = e−i�−i�n̂·�. �4�

Here �=�0ei� is the complex pair potential in S, �
= ��x ,�y� is the vector of Pauli matrices, and �
=arccos�
 /�0�� �0,� /2�.

The relation �3� follows from the DBdG equation,9,14 un-
der three assumptions characterizing an “ideal” NS interface:
�I� The Fermi wavelength �F� in S is sufficiently small that
�F� �� ,�F, where �F=hv /� is the Fermi wavelength in N
and �= �v /�0 is the superconducting coherence length; �II�
the interface is smooth and impurity-free on the scale of �;
�III� there is no lattice mismatch at the NS interface, so the
honeycomb lattice of graphene is unperturbed at the bound-
ary. The absence of lattice mismatch might be satisfied by
depositing the superconductor on top of a heavily doped re-
gion of graphene. As in the case of a semiconductor two-
dimensional electron gas,15,16 we expect that such an ex-
tended superconducting contact can be effectively described
by a pair potential � in the x-y plane �even though graphene
by itself is not superconducting�.

The particle current density out of the normal region,
given by

jparticle = v�e
*n̂ · ��e − v�h

*n̂ · ��h, �5�

should vanish for 
	�0, because subgap excitations decay
over a length � in S. �The possibility of a subgap excitation
entering the superconductor at one point along the boundary
and exiting at another point within a distance � is excluded
by assumption II.� By substituting the boundary condition �3�
one indeed finds that jparticle=0, since U is a unitary matrix
which commutes with n̂ ·�.

In the SNS junction the normal region has two interfaces
with the superconductor, one at x=−L /2 �with superconduct-
ing phase �=� /2 and outward normal n̂=−x̂� and another at
x=L /2 �with �=−� /2 and n̂= x̂�. The boundary condition
�3� at the points r±= �±L /2 ,y� thus takes the form

�h�r−� = U�
��e�r−�, �h�r+� = U−1�
��e�r+� , �6�

U�
� = e−i�/2+i��x, � = arccos�
/�0� . �7�

Since the wave vector ky parallel to the NS interface is
conserved upon Andreev reflection, we may solve the prob-
lem for a given ky �q. The transfer matrix M�
 ,q� relates
the states at the two ends of the normal region:

�e�r+� = M�
,q��e�r−�, �h�r+� = M�− 
,q��h�r−� .

�8�

�For ease of notation, the q dependence will not be written
explicitly in what follows.� The condition for a bound state
�the Andreev level� in the SNS junction is that the transfer
matrix for the round trip from r− to r+ and back to r− has an
eigenvalue equal to unity. This condition can be written in
the form of a determinant,

Det	1 − M−1�
�U�
�M�− 
�U�
�
 = 0, �9�

which we have to solve for 
 as a function of q and �.
The electron transfer matrix M�
� is readily obtained

from the Dirac equation,

M = �eikL�z� , �10�

� = �−1 = �2 cos ��−1/2�e−i�/2 ei�/2

ei�/2 − e−i�/2 � , �11�

��
� = arcsin� �vq


 + �
� , �12�

k�
� = ��v�−1�
 + ��cos ��
� . �13�

The angle � is the angle of incidence of the electron, and k is
its longitudinal wave vector.

Evaluation of the determinant �9� leads after some algebra
to the quantization condition

cos � = �cos �+cos �− +
sin �+sin �−

cos �+cos �−
�cos 2�

+ � sin �+cos �−

cos �+
−

cos �+sin �−

cos �−
�sin 2�

− sin �+sin �−tan �+tan �−, �14�

where we abbreviated �±=��±
�, �±=k�±
�L.
We introduce a finite width W to quantize the transverse

wave vectors, q→qn, n=0,1 ,2 , . . ., and denote by �n�
 ,��
the density of states in mode n. The Josephson current at
zero temperature is then given by

I��� = −
4e

�

d

d�
�

0

�

d
�
n=0

�

�n�
,��
 , �15�

where the factor of 4 accounts for the twofold spin and val-
ley degeneracies. To be definite we take “infinite mass”
boundary conditions at y=0,W, for which12 qn= �n
+1/2�� /W. �For W�L the choice of boundary conditions
becomes irrelevant.� At the Fermi level, the lowest N���
=�W /��v modes are propagating �real k�, while the higher
modes are evanescent �imaginary k�.

We analyze the Josephson effect in the experimentally
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most relevant short-junction regime that the length L of the
normal region is small relative to the superconducting coher-
ence length �. In terms of energy scales, this condition re-
quires �0� �v /L. To leading order in the small parameter
�0L / �v we may substitute �±→��0�, �±→k�0�L in the
quantization condition �14�. The solution is a single bound
state per mode,


n��� = �0
�1 − �nsin2��/2� , �16�

�n =
kn

2

kn
2cos2�knL� + ��/ � v�2sin2�knL�

, �17�

with kn= 	�� / �v�2−qn
2
1/2. This expression for the Andreev

levels in terms of a normal-state transmission probability �n
has the usual form for a short SNS junction.17 Comparison
with Ref. 12 shows that �n is indeed the transmission prob-
ability for a ballistic strip of graphene between two heavily
doped electrodes in the normal state ��0=0, �F� ��F�. The
normal-state resistance RN is thus given by

RN
−1 =

4e2

h
�
n=0

�

�n. �18�

Substitution of �n�
 ,��=�	
−
n���
 into Eq. �15� gives
the supercurrent due to the discrete spectrum,

I��� =
e�0

�
�
n=0

�
�nsin �

	1 − �nsin2��/2�
1/2 . �19�

Contributions to the supercurrent from the continuous spec-
trum are smaller by a factor L /� and may be neglected in the
short-junction regime.18 For L�W the summation over n
may be replaced by an integration. The resulting critical cur-
rent Ic and the IcRN product are plotted as a function of � in
Fig. 2.

The limiting behavior at the Dirac point ��� �v /L� for a
short and wide normal region �L�W ,�� is

I��� =
e�0

�

2W

�L
cos��/2�arctanh	sin��/2�
 , �20�

Ic = 1.33
e�0

�

W

�L
, IcRN = 2.08�0/e . �21�

These results for ballistic graphene at the Dirac point are
formally identical to those of a disordered normal metal
�Fermi wave vector kF, mean free path l�,17,19 upon substitu-
tion kFl→1. This correspondence is consistent with the find-
ing of Ref. 12 that ballistic Dirac fermions have the same
shot noise as diffusive nonrelativistic electrons.

In the opposite regime �� �v /L we have instead �still
for L�W ,�� the result

Ic = 1.22
e�0

�

�W

� � v
, IcRN = 2.44�0/e . �22�

�We do not have a simple analytic expression for the � de-
pendence in this regime.� The critical current �22� is about
half the ideal ballistic value17,20 Ic=2Ne�0 /�, with N
=�W /��v the number of propagating modes �per spin and
valley�. This reduction is due to the mismatch in Fermi
wavelength at the NS interfaces. Equations �21� and �22�
together contain the scaling behavior �1� with �F=hv /� an-
nounced in the introduction.

In conclusion, we have shown that a Josephson junction
in graphene can carry a nonzero supercurrent even if the
Fermi level is tuned to the point of zero carrier concentra-
tion. At this Dirac point, the current-phase relationship has
the same form as in a disordered normal metal—but without
any impurity scattering. Instead of being independent of the
length L of the junction, as expected for a short ballistic
Josephson junction, the critical current Ic at the Dirac point
has diffusionlike scaling proportional 1 /L. Since the normal-
state resistance RN�L, the IcRN product remains fixed at the
superconducting gap �up to a numerical prefactor� as the
Fermi level passes through the Dirac point. This unusual
“quasidiffusive” scaling of the Josephson effect in undoped
graphene should be observable in submicrometer scale junc-
tions.
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dation NWO/FOM. We have benefited from discussions
on the experimental implications of this work with A.
Morpurgo, B. Trauzettel, L. M. K. Vandersypen, and other
members of the Delft/Leiden focus group on Solid State
Quantum Information Processing.

FIG. 2. Critical current Ic and IcRN product of a ballistic Joseph-
son junction �length L short compared to the width W and super-
conducting coherence length ��, as a function of the Fermi energy �
in the normal region. The asymptotes �21� and �22� are indicated by
dashed lines.
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