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We study the transport properties of an Aharonov-Bohm ring containing two quantum dots. One of the dots
has well-separated resonant levels, while the other is chaotic and is treated by random matrix theory. We find
that the conductance through the ring is significantly affected by mesoscopic fluctuations. The Breit-Wigner
resonant peak is changed to an antiresonance by increasing the ratio of the level broadening to the mean level
spacing of the random dot. The asymmetric Fano form turns into a symmetric one and the resonant peak can
be controlled by magnetic flux. The conductance distribution function clearly shows the influence of strong
fluctuations.
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The quantum dot1,2 �QD� is an ideal system to study the
phase coherence of quantum mechanical wave functions.
Such effects can be explained by the interference of different
pathways, induced by elastic scattering from an irregular
boundary and/or impurities. When a dot is connected to
leads, there is a strong overlap between the dot and leads and
we must treat the whole as a quantum system. In fact, a
recent numerical calculation of a chaotic dot shows that there
are scars that connect between the leads.3

The coexistence of a direct path and discrete levels in the
dot induces a prominent effect, the Fano effect.4 It was
shown in QD systems5,6 that asymmetric Fano peaks can be
controlled by gate voltages and magnetic fields. The work in
Ref. 5 demonstrated that an Aharonov-Bohm �AB� ring is a
suitable system to study this effect. A dot is embedded in one
of the arms, and the ring geometry is utilized as an interfer-
ometer. This effect has also been observed in other experi-
ments, including a microwave cavity7 and optical
absorption.8

The situation changes drastically if we take into account
mesoscopic fluctuations. A random distribution of levels in
the dot leads to sample-to-sample fluctuations of the conduc-
tance. In contrast to bulk systems, such fluctuations cannot
be neglected in QD systems, and the conductance distribu-
tion has a broad non-Gaussian shape.9 It was observed in a
QD system10 and in a chaotic microwave cavity.11 Clerk et
al. developed a statistical theory of Fano peaks assuming a
random distribution of peaks.12 These authors focused on
resonance-to-resonance fluctuations of the asymmetric Fano
form, rather than conductance fluctuations.

In this paper we develop a statistical theory of the AB ring
with two QDs in the arms. In addition to a resonant dot in
one of the arms, a random dot is connected to the other arm
and is treated by random matrix theory �RMT�.13 The orbit
through the resonance is correlated to those through the ran-
dom levels, and strong fluctuations can be observed in the
conductance. We show that the Breit-Wigner and Fano reso-
nant forms are no longer maintained in the averaged conduc-
tance.

We focus on the following two issues. First, we examine

the properties of those orbits that contribute to the conduc-
tance. Motivated by the work of Ref. 12, we take into ac-
count the direct nonresonant path in the random dot as well
as the Breit-Wigner resonant path in the regular dot. We
show that these two channels give qualitatively different con-
tributions to the conductance in the presence of random lev-
els. Second, the level broadening of the random dot. For an
open dot, the broadening can be larger than the mean level
spacing due to strong coupling to the leads.1,2 We systemati-
cally change the broadening from small to large values to
elucidate how this parameter affects the results.

Our system is defined by the internal Hamiltonian for the
two QDs and their couplings to the left and right leads. It is
depicted in the upper left inset in Fig. 1�a�. We assume that
one of the dots �dot 1� has regular resonant levels and the
level spacing is much larger than the level broadening. In
this case, each of the levels can be treated independently. The
other dot �dot 2� is relatively large and has many levels dis-
tributed randomly. As is known from scattering theory �see,
e.g., Refs. 1, 2, and 14�, the S matrix of the system is written
as

S = 1 − 2�iw† 1

E − H + i�ww†w , �1�

where H=H1 � H2 denotes the Hamiltonian for the QDs, w is
the dot-lead coupling, and E is the �Fermi� energy. We adopt
a single-level Hamiltonian H1=E1 for dot 1. H2 for dot 2 is
a member of the Gaussian unitary ensemble13 and its size
N is taken to be infinity to find the universal limit. We
assume that the S matrix is a 2�2 matrix, which means the
left and right leads have a single channel respectively. The
conductance, measured in units of 2e2 /h, is calculated from
g= ��S12�2�.

In the present RMT approach, there is no need to know
the full form of w. The matrix w appears in the S matrix
formula �1� as w†Gw, where G= �E+−H�−1. After the averag-
ing, the matrix structure of G is lost and 2�2 matrices �i
=�w�i�†w�i� appear in averaged quantities. Here i=1,2 label
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the dot and w�1� �w�2�� is a 1�2 �N�2� matrix. Assuming a
symmetric coupling with respect to the left and right leads,
we arrive at the general form

�1 =
�1

2
� 1 ei�

e−i� 1
�, �2 =

N�2

2
� 1 ae−i�

aei� 1
� , �2�

where �i is the level broadening of the dot i and � is the AB
flux.15 The real parameter a �0�a�1� represents the
strength of the nonresonant direct path since the off-diagonal
part of � contributes to the conductance directly.14

The averaged S matrix is calculated from the relation �1
− �S�� / �1+ �S��= �1−S1� / �1+S1�+ �1− �S2���1+ �S2��, where
S1,2 are the S matrices of the dots 1,2, respectively. In RMT
the magnitude of the Gaussian fluctuations determines the
mean level spacing �. Then the averaged Green’s function of
the dot 2 is given by �G�=−i� /N�, where we take the limit
N→	 and neglect the real part of G. In this limit we obtain
�S2�= �1−��2 /N�� / �1+��2 /N�� while S1= �E−E1− i�1� /
�E−E1+ i�1�. �S� is determined by the following four param-
eters: a, �, 
= �E−E1� /�1, and X=��2 /�. 
 measures the
distance from the resonance point of the regular dot and X
represents the ratio of the level broadening to the level spac-
ing for the random dot. When X�1, the level spectrum is
continuous. The use of RMT implies our consideration is
restricted to the energy scale much smaller than the Thouless
energy.

If we disregard quantum fluctuations, the conductance is
given by g0= ��S12��2, which we call the principal part of g. It
is given by the Fano form

g0 =
a2X2

�1 + �1 + a�X/2	2�1 + �1 − a�X/2	2

�
�E − E1 + q�1�2

�E − E1�2 +
�1 + �1 − a cos 2��X/2	2

�1 + �1 + a�X/2	2�1 + �1 − a�X/2	2�1
2

,

�3�

where q= ie−2i� /aX is the Fano parameter. This parameter is
complex and becomes purely imaginary when the AB flux �
is zero, which is contrasted with the experiments for clean
systems5,6 where a real q has been observed in the absence of
a magnetic field. We also note that the result of Eq. �3� holds
regardless of the choice of the universality class because the
resonance is not treated randomly, in contrast with the ap-
proach in Ref. 12. When a=0, �q � →	 and the result reduces
to the standard Breit-Wigner form. The presence of the ran-
dom dot leads to a reduction of the level broadening and the
conductance by a factor of 1 / �1+X /2�2.

We now consider mesoscopic fluctuations of the conduc-
tance �g=g−g0. We calculate these using the method of
supersymmetry,14 which allows us to derive the nonlinear �
model

F =
1

2
str8ln�1 +

T/2

1 − T/2

� + �

2
� , �4�

where the 4�4 supermatrix � parametrizes the saddle point
manifold and satisfies �2=1.16 str denotes the supertrace and

=diag�1,−1� in retarded-advanced space. The 2�2 matrix
T defined by T=1− �S��S�† is called the transmission coeffi-
cient. This form of the � model is well known as a standard
model of a single random dot. The only difference is in the T
matrix. The fact that the � model is written in terms of T
only demonstrates the universality of the correlation func-
tions of the S matrix elements. For instance, �g in Eq. �7� is
a function of T. This is to be contrasted with the result of Eq.
�3�, where such T universality does not hold. In the present
model, we find the eigenvalues of T at a=0

T1 =
2X

�1 + X/2�2 , T2 =
2X

�1 + X/2�2 + 1/
2 . �5�

We see that T1 is independent of 
.
We present the analytical results for the conductance to-

gether with numerical ones. Numerical calculations are per-
formed using the random S matrix model,17 where the inter-
nal structure of the S matrix is disregarded and randomness
is imposed directly on S. For the distribution of S, we use the
generalized circular unitary ensemble �CUE� based on the
Poisson kernel18

P�S�d� =
det�1 − �S��S�†�2

�det�1 − S�S�†��4
d� , �6�

where d� is the measure of the CUE.13 This is the maximally
randomized distribution under the condition that the average
value is �S�. Following the previous approach for regular
systems15 we separate the system into the dots 1 and 2, and
the left and right forks that connect the dots to leads. Choos-
ing the fork S matrix in a symmetric form we find the trans-
mission through the ring expressed by the S matrix S1,2 for
each dot. S2 is treated statistically using a Poisson kernel.
This random S matrix approach is equivalent to the random
Hamiltonian approach if �S� is chosen properly and N→	.19

We use the same expressions for S1 and �S2� as in the random
Hamiltonian approach.

First we consider the X dependence of the conductance at
a=0. When 
→	, where the regular dot is detached from
the random dot, we have T1=T2=2X / �1+X /2�2, and recover
the known result20

g0 = 0, �g =
T1

3
+

T1
2

6
. �7�

At the resonance point 
=0, T1=2X / �1+X /2�2, T2=0, and
we obtain

g0 =
1

�1 + X/2�2 , �g =
T1

4
=

X/2

�1 + X/2�2 . �8�

In Fig. 1�a�, the X dependence of the conductance is shown
for several values of 
. g0 shows a peak at X=0 while �g
takes a maximum at X=2, as shown by the thin lines and the
inset in Fig. 1�a�, respectively. As 
→ 	 g0��g� is monotoni-
cally decreasing �increasing� and the result rapidly ap-
proaches Eq. �7�.

The 
 dependence of the conductance is shown in Fig.
1�b�. A resonance peak appears at 
=0, reflecting transport
through the regular dot. This peak structure, however,
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changes qualitatively as a function of X. For small X the peak
is convex and the peak height decreases on increasing X.
When X=2, g is independent of 
. Increasing X further, we
find that the peak turns into an antiresonance and g decreases
monotonically. The result for X=2 corresponds to that of the
CUE because �S2�=0, and the Poisson kernel P�S2� becomes
unity.

The obtained results are for a model with a resonance at
a=0. Now the question is whether they are characteristic of
the resonance model. For comparison, we discuss the direct
reaction model with a�0 and 
→	. Both models are simi-
lar in that the conductance g0 becomes finite in the absence
of fluctuations. g0 becomes maximum at a=1, which is simi-
lar to the situation at 
=0 in the resonance model. In the
direct reaction model, the eigenvalues of the T matrix are
given by

T1,2 =
2�1 ± a�X

�1 + �1 ± a�X/2	2 . �9�

T2 goes to zero as a→1 as in the limit 
→0 in Eq. �5�. In
this limit, we find T1=4X / �1+X�2, T2=0, and

g0 =
X2

�1 + X�2 , �g =
T1

4
=

X

�1 + X�2 . �10�

Note that the T1 dependence of �g is the same as in Eq. �8�
but the X dependence is different. We have found numeri-

cally that the peak is maintained for an arbitrary value of X
and that there is no antiresonance, in contrast to the reso-
nance model.

As we have shown in Eq. �3�, when we consider both the
resonance and direct reaction channels, the Fano effect ap-
pears in g0. In Fig. 2, a typical numerical result of the con-
ductance is shown at a=0.7 and �=� /8. We observe that an
asymmetric form is obtained for the fluctuation part as well
as for the principal part. However, these asymmetric peaks
work to compensate each other, resulting in a symmetric g
that has a form similar to the previous result at a=0. The
difference is that the conductance as a whole is enhanced due
to the direct path contribution. Far from the resonance point,
the conductance is independent of �, while it is sensitive at
the resonance point. The resonance �antiresonance� is ampli-
fied at �=0 �� /4� where the Fano parameter q is pure imagi-
nary �real�. When q takes a complex value �when 0��
�� /4�, a dip in the resonance peak is formed at the inter-
mediate values of X �see the plot of X=2 in Fig. 2�.

FIG. 3. �Color online� Conductance distribution at a=0.

FIG. 1. �Color online� Conductance vs X=��2 /� �a� and 

= �E−E1� /�1 �b� at a=0. The thick �thin� lines are the total conduc-
tance g �the principal part g0�. Upper left inset in �a�: Sketch of the
sample. The parameters characterizing each dot are shown in the
figure. Upper right inset in �a� and �b�: Fluctuation part �g=g−g0.

FIG. 2. �Color online� Conductance vs 
 at a=0.7 and �=� /8.
The thick �thin� lines are the total conductance g �principal part g0�.
Inset: Fluctuation part �g.
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As we have shown, �g are of the order of g0 and the mere
calculation of the averaged conductance is not enough to
characterize the system. We show the numerical results for
the conductance distribution function P�g�= ���g− �S12�2�� in
Fig. 3. For 
�1 we find the results in Refs. 9 and 17 ex-
pressed in terms of T1 in Eq. �5�. For finite value of 
, the T
universality does not hold and the results essentially depend
on X and 
. When X�2, the peak representing the resonant
conductance moves from g=0 to 1 as 
 decreases. When X
�2, the resonant conductance is suppressed and the distribu-
tion function shows the strong influence of the chaotic scat-
tering. When 
=0, two peaks appear at g=0 and 1. The peak
at g=0 is larger �smaller� than that at g=1 when X�2 �X
�2�, which clearly shows the coexistence of the contribu-
tions from both regular and chaotic dots. At X=2, P�g� is
always symmetric and is consistent with the results of the
averaged conductance. The curve for 
=0 is well fitted by
the function P�g�=1/�
g�1−g�.

We remark on the effect of dephasing. It can be simply
studied by introducing an imaginary part to the energy E
→E+ i /2�. The substitution of this in Eq. �3� leads to the
reduction of the conductance. The effect on the fluctuation
part is to add F�= ����−1str � to the � model. Numerically
we have observed that the fluctuation part is strongly sup-
pressed by this effect while the principal part shows a small

reduction. This means that the resonance is preserved at any
X. We also anticipate that an asymmetric Fano resonance can
be observed, since the cancellation of the asymmetry be-
tween the principal and fluctuation parts becomes incom-
plete. The quantitative estimate of the dephasing effects us-
ing the method in Ref. 21 is necessary to compare with the
experimental results, as was done in Refs. 10 and 11 for the
single-dot systems. A detailed study will be reported else-
where.

Another interesting problem is the ensemble dependence
of the result. Our numerical calculations using the orthogonal
and symplectic ensembles show that the distribution at the
resonant point �the lowest graph in Fig. 3� is independent of
the ensemble. It implies the distribution is determined by
some universal mechanism.

In conclusion, we have developed a statistical theory for
an AB ring system with regular and chaotic QDs. The con-
ductance and its distribution are strongly influenced by the
mesoscopic fluctuations of the chaotic dot and the position of
the resonance peaks.
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