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We present a scheme for charge qubit implementation in a double-barrier nanoring. The logical states of the
qubit are encoded in the spatial wave functions of the two lowest energy states of the system. The Aharonov-
Bohm phase introduced by magnetic flux, instead of tunable tunnelings, along with electric fields can be used
for implementing the quantum gate operations. During the operations, the external fields should be switched
smoothly enough to avoid the errors caused by the transition to higher-lying states. The structure and field
effects on the validity of the qubit are also studied.
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I. INTRODUCTION

Solid-state systems seem to be good candidates for quan-
tum computing implementations. In some schemes, qubits
can be encoded in nuclear �or electron� spin states.1,2 Al-
though spin states have relatively long decoherence times
��ms�, spin operations are rather slow processes. Besides,
the single-spin measurement3,4 is still a great challenge.
Many recent researches focus on charge-based quantum
computing technology,5–7 in which qubits are encoded in the
charge degrees of freedom. Charge-based qubits have shorter
decoherence times ��ns for GaAs �Ref. 8� and maybe much
longer in some other materials9� than their spin-based coun-
terparts. Yet all quantum gates can be done in very short
times ��ps�, which are well below the decoherence times.
The initialization and readout of charge qubits have been
proposed.

For charge-qubit implementation, a typical scheme is a
coupled quantum dots �CQDs� system with an electron tun-
neling back and forth.9 It can be easily scaled up based on
the staggered CPHASE or CNOT configuration.5 Such a
scheme, however, is based on the variability of the
tunneling.9–11 In many physical quantum systems, the handle
on the tunneling is limited or impossible. Then the imple-
mentation of full single-qubit manipulation requires tunable
external magnetic fields and the architecture of the system
must be elaborately designed.11,12

Nowadays, benefiting from new fabrication and experi-
ment techniques, we can fabricate a ringlike quantum dot,
namely nanoring, with various materials, such as
InAs/GaAs,13–16 Si,17,18 SiGe,19,20 and so on.21 Its ringlike
geometry is suitable for observing the Aharonov-Bohm �AB�
effect. It has been shown that additional structures, such as
two barriers or impurities can bring unique electronic and
transport characters to the system. There are two important
modes of AB oscillations in a double-barrier nanoring named
X and O modes.22 The ground state entanglement with
environment23,24 and the persistent current oscillations24,25

are also widely studied. To a certain extent, such a system
can be viewed as CQDs with a multiply connected domain.
Then it may serve as a charge qubit and facilitate the quan-
tum operation by changing the AB phase caused by the mag-
netic flux.

Employing the external fields to modify the wave func-
tions of an electron in nanostructures is the foundation of

solid quantum computation. So in this work, we will study
the evolutions of the wave functions and demonstrate the
validity of the charge qubit based on the double-barrier nano-
ring. Full single-qubit operations can be carried out by elec-
tric fields and magnetic flux. The remainder of this paper is
organized as follows. The descriptions of model Hamiltonian
and the calculation method for the evolution of states are
presented in Sec. II. Main results and discussions are given
in Sec. III followed by a summary in Sec. IV.

II. MODEL SYSTEM

The model Hamiltonian for an electron in a two-
dimensional ring with two identically sectorial barriers, sub-
jected to a magnetic flux � and an in-plane electric field F
applied along the axis �=0, as shown in Fig. 1, is written as

H = �− i � +
�

�r��
2

+ Vc + Vg + F · r , �1�

where ra and rb are, respectively, the inner and outer radii. Vc
is the hard wall potential which is 0 in the ring and infinite
elsewhere. Vg are the barriers in the ring whose height are V0
in the barriers and 0 elsewhere. The width of the barrier is
selected quite small to ensure that the wave function has
maximally one angular node inside each barrier. Here we use
the effective atomic units, in which the effective Rydberg
Ry*=me

*e4 /2�2 �4��0�r�2, the effective Bohr radius aB
*

=4��0�r�
2 /me

*e2, and �0=2��c /e are taken to be the en-
ergy, length, and magnetic flux units, respectively. The units

FIG. 1. �Color online� Scheme of a parallel double-barrier nano-
ring subject to a magnetic flux and an in-plane electric field.
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for the electric field is F0=Ry*/eaB
* . For InAs/GaAs materi-

als, for example, Ry*=5.8 meV, aB
* =10 nm, and F0

=5.8 kV/cm. �0 included by a one-dimensional �1D� ring
with a radius of 10 nm corresponds to the magnetic field
13.18 T.

The eigenenergies En and corresponding eigenstates �n of
the double-barrier nanoring were computed by direct diago-
nalization of the Hamiltonian in a basis set of 59 eigenstates
of the same nanoring without a barrier.22 Since the nanoring
is divided into two segments by the barriers, the electron
states localized in right and left segments can be, respec-
tively, regarded as the logical state �0� and �1�, as will be
shown below.

In order to demonstrate the implementation of quantum
gate operations, we need to calculate the evolutions of the
states when F and � are changing. Assume that the Hamil-
tonian is the sum of H and H��t�, where H��t� is the change
of the Hamiltonian from time t=0, the time evolution of a
state

��t� = �
k

Ck�t�exp�−
i

�
Ekt��k �2�

is given by

i�
dCn�t�

dt
= �

k

Ck�t�	�n�H��t���k�exp
 i

�
�En − Ek�t� .

This ordinary differential equation set was solved by the
Runge-Kutta method. Then we could explore the external
field and structure effects in implementations of different
gate operations.

III. ANALYSIS

For the nanoring with a hard-wall potential, we can, re-
spectively, define the radius R and the width W as the aver-
age value of inner and outer radii and the difference between
them.

A. Energy spectra and qubit definition

In our scheme of charge qubit, the logical states are en-
coded in the wave functions of the first two states of the
double-barrier nanoring. Due to the AB effect, it can be seen
from the energy spectra in Fig. 2�a� that the ground state ��1�
and first excited state ��2� of a parallel double-barrier nano-
ring �the angle between two barriers is equal to �� are de-
generate when �=0.5�0 and F=0. These two occasionally
degenerate states are just X-type states which had been dis-
cussed in a previous work.22 The virtue of this condition is
that the qubit can be frozen in any linear superposition in its
qubit space to avoid unnecessary evolutions in idle time.
This request can also be satisfied by applying high enough
barriers, just like the situation in a CQDs system. It is con-
venient to take the normalized sum and difference of the two
states ��1±�2� /�2 as logical states �0� and �1�, respectively.
Within such a choice, the electron of state �0� ��1�� is almost
completely localized in the right �left� segment of the ring.
The energy spectra for a nonparallel double-barrier nanoring

are shown in Fig. 2�b�. The first two energy levels can still be
tuned to degenerate by F with �=0.5�0. So the qubit states
can always be defined properly to avoid needless evolutions.
Due to the inherent ringlike geometry of the system, in our
charge qubit scheme it is much easier to implement AB
phase operation than that in CQDs. In the remainder of the
paper, we will focus on a parallel double-barrier nanoring
with an initial magnetic flux �=0.5�0. The initialization of
qubit states to the state �0� can be realized by applying an
appropriate electric field along the axis �=0. The readout can
be implemented by a single-electron transistor26 �SET� or
quantum point contact27–29 �QPC� detector. Because the
double-barrier nanoring can also be viewed as a new kind of
CQDs, the qubit based on it can be scaled up by a present
CPHASE configuration scheme.5

B. State evolutions with F and �

With logical states �0� and �1� defined, we can calculate
the evolutions of the wave functions and qubit states with the
change of external parameters by employing the Runge-
Kutta method. We will present the results concentrating on
the characters of evolutions in this subsection. The quantita-
tive analyses are left to the next subsection.

From Hamiltonian �1� it can be imagined that changing
the magnetic flux, the height of the two barriers and the
electric field all can achieve some evolutions of wave func-
tions. In Figs. 3�a� and 3�b� we illustrate the evolutions of
wave functions when applying an in-plane electric field
along �=0 from t=0. The positions of the barriers are indi-
cated by the vertical dashed lines. The initial states are both
�1, although the wave functions are not the same because Vg
is infinite and �=0 in Fig. 3�a� but �=0.5�0 and Vg is finite
in Fig. 3�b�. Both conditions make the states �1 and �2 de-
generate. After some time the final states can be both �2,
although their wave functions are not equal either. Recalling
the definition of logical states of the qubit, the initial and
final states are just ��0�+ �1�� /�2 and ��0�− �1�� /�2, respec-
tively. It can be seen from the third row of Figs. 3�a� and 3�b�

FIG. 2. �Color online� F-dependence of energy spectra of the
nanoring with two parallel barriers �a� and nonparallel barriers �b�
with R=1.2aB

* , W=0.4aB
* , V0=90 Ry*, �=0 �black lines� and 0.5�0

�red lines�, respectively. The first two levels are also shown in the
inset for clarity.
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that the moduli of the wave functions are unchanged during
the evolutions. This evolution is just the single-qubit gate
operation, namely the Z gate, which will be discussed in the
following section.

One goal of the paper is to identify the similar effects of
changing the AB phase and the barrier heights on the qubit
operations. Thus we verify the evolutions of wave functions
when changing the barrier heights and the magnetic flux
from t=0. The results are shown in Figs. 3�c� and 3�d�. The
initial states are both logical state �0� with different wave
functions, because there is no flux in Fig. 3�a� but 0.5�0 flux
before t=0 in Fig. 3�b�. It can be found that the final states
are both �1�. It means that the two methods can implement
similar quantum operations on the logical states of the qubit.
From Fig. 2 it can be seen that the crossing of the first two
states becomes anticrossing when ��0.5�0, which means
that the two states can mix up. Similar with varying the
barrier height, the change of the flux determines the admix-
ture level. So in the following, we will adopt the magnetic
flux, instead of the barrier height, and the electric field to
explore the evolutions of the qubit states.

The first case with which we are concerned is still the
electric field. An in-plane electric field applied along the axis
�=0 from t=0 makes the energies of one electron localized
in the left and right segments unequal. As shown in Fig. 3�b�
and Fig. 4�a�, the electric field will not change the probabil-
ity of the states projecting to �0� or �1�. It can only bring a
phase difference between the two components. The trajectory
of Bloch vector corresponding to such an evolution is a ro-
tation around the z axis of the Bloch sphere.

The situation is different when the magnetic flux changes.
Because we have assumed that there is an always-on mag-
netic flux �=0.5�0, we will decrease this flux from t=0 and
the initial state is chosen to be �0� without electric fields.
Then the degeneracy of �0� and �1� is removed, and the mix-
ture of the two states forms a cycle trajectory of the Bloch
vector around the x axis of Bloch sphere. From Fig. 4�b� we
can see that the variation of the flux changes the probability
of each component. It also changes the sign of the phase
difference when the Bloch vector rotates half a cycle.

By applying both the electric field and magnetic flux
pulse, we can implement arbitrary rotation of the Bloch vec-
tor. In Fig. 4�c�, we plot one of such rotations, which can be
used for implementing the Hadamard gate.

C. Characters of quantum operations

Through the above analysis, it is straightforward to imple-
ment the single-qubit quantum operations by applying the
electric field and changing the magnetic flux.

The first important gate operation is the Z gate which
implements the transform from ��0�+��1� to ��0�−��1�,

FIG. 3. �Color online� The evolutions of wave functions during
the Z-gate operations by applying F with V0→	 and �=0 �a� or
finite V0 and �=0.5�0 �b�, the NOT-gate operations by changing V0

with �=0 �c� or changing � with fixed finite V0 �d�. The real and
imaginary parts and the modulus of the wave functions are plotted
in three rows, respectively. Different line styles represent the quan-
tities at different times. The black solid lines and red dotted lines
represent the quantities at the starting and ending time, respevtively.
The vertical dashed lines indicate the positions of the two barriers.

FIG. 4. �Color online� Evolutions of the qubit states with in-
plane electric field pulse �a�, magnetic flux pulse �b�, and both fields
together �c�. Black solid, red dashed, and green dotted lines corre-
spond to the square root of probability density of the state occupy-
ing �0�, �1�, and the phase difference, respectively. The trajectories
of Bloch vectors corresponding with the evolutions in �a�–�c� are
shown in �d� noted as Z, NOT, and H gate, respectively.
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where � and � are arbitrary constants. Applying an electric
field and controlling the pulse duration to make the angle of
rotation equal to � just achieves a Z-gate operation. As
shown in the left column of Fig. 5, for the nanoring subjected
to a magnetic flux �=0.5�0 with R=1.2aB

* , W=0.4aB
* , and

V0=90 Ry*, the time for completing a Z-gate operation is
4.66 ps if the amplitude of the electric pulse is 0.05F0. This
operation time is much smaller than the typical charge deco-
herence time for GaAs.

In order to implement full single-qubit operations, we still
need an operation which can make the Bloch vector rotate
around another axis other than the z axis. This operation can
be achieved by changing the magnetic flux11 as discussed in
the previous subsection. In the middle column of Fig. 5, we
have shown such an operation by changing the flux from
0.5�0 to 0.445�0 from t=0. The electric field is set to zero.
When the rotation angle of the Bloch vector is again equal to
�, we can get the NOT-gate which changes the state �0� to �1�
and vice versa. The time for the NOT operation is 37.23 ps,
which is a little longer than the Z-gate but still much smaller
than the decoherence time.

With these two operations, we can implement arbitrary
single-qubit operations. For example, the Hadamard gate,
which may be the most important single-qubit gate in quan-
tum computation, can be achieved by accurately controling
the external fields and the operation time as shown in the
right column of Fig. 5. With the pulses F=0.005 63F0 and
�=0.445�0, the time for a Hadamard operation is 26.65 ps.

Besides the operation time, there is still another important
index of quantum gate. We know that there is a small frac-
tion of probability �P� which is lost from the first two states
to the higher-lying ones during every gate operation. This
phenomenon will result in errors in quantum computation
and may also be considered as a decoherence source. Then
this probability must be regarded as an important judgment
of the validity of the qubit scheme.

In Fig. 5 we have shown two kinds of probability loss
corresponding to different forms of the external field pulses.
It can be seen that the value of P can be less than 0.1% if the

pulse has a smooth rising or trailing edge. Although such an
error rate is still greater than the threshold �10−4 for an esti-
mated value widely accepted at present� for fault-tolerance
quantum computation, it is indeed small enough for coher-
ence quantum operations in single-qubit experiments. If the
changes of external field parameters are instantaneous, P will
be much larger and have severe vibration for both electric
fields and magnetic flux. This also coincides with the idea
that the evolution of the qubit states should be adiabatic dur-
ing the quantum operations. A smooth change of the fields
ensures such a premise.

D. Structure and field effects

In this section, we will discuss the structure and field
effects on the validity of our qubit and corresponding opera-
tions.

First of all, we have chosen the two localized states of the
electron in a double-barrier nanoring as the logical states �0�
and �1�. However, because of the finite height of the two
barriers, these two states are not completely localized in one
segment of the ring. The state mainly localized in one seg-
ment indeed has a probability �
� expanding to another seg-
ment. This probability leads to errors in readout process and
must be limited to a tiny value. It can be seen from Fig. 6�a�
that the probability can be depressed by choosing appropriate
V0 for different R. And the larger R is, the lower V0 is
needed.

Second, we have seen that changing the magnetic flux can
implement the NOT-gate operation. But its operation time is
longer than the Z gate which is implemented by applying a
small electric field. Of course, this operation time is related
to the amplitude of the change of the flux. It can be seen in
Fig. 6�b� that increasing the change of the flux can appar-
ently speed the operation. But on the other hand, it also
increases the probability loss during the operation. So in our
calculation, we have chosen the field parameters carefully, to
ensure both a short operation time and a small P. It is worth-
while to note that the value of V0 can also affect the opera-

FIG. 5. �Color online� Control parameter settings �the bottom row�, angular evolutions �the middle row� of Bloch vectors in the plane of
their trajectories, and probabilities �the upper row� lost from the qubit space to higher states under the operation of the Z �left column�, NOT

�middle column�, and Hadamard gate �right column�. The size of the ring is R=1.2aB
* , W=0.4aB

* , and V0=90 Ry*. The red and green lines
correspond to different pulsing forms.
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tion time and P. Lower barriers can speed the operation and
decrease P. But in fact, it must be selected high enough to
avoid the increase of 
.

Finally, we present R and V0 dependence of the operation
time for the NOT gate in Fig. 7. It can be found intuitively
that large radius R and high barriers V0 will dramatically
increase the operation time. An appropriate choice of the
structural parameters is illustrated by the green line in Fig. 7
where small rings correspond to high barriers and large rings
correspond to low barriers. Such selections can take into ac-
count both the speed of the operation and tolerable errors.

IV. SUMMARY

A scheme of qubit based on one electron’s charge degree
of freedom in a double-barrier nanoring is presented. Be-
cause the first two states of the system are degenerate when
�=0.5�0, the logical states can be frozen in any linear su-
perposition in the qubit space to avoid unnecessary evolu-

tions. The electric fields can implement the z-axis gate op-
erations of the qubit. By virtue of the ringlike geometry of
the system, the x-axis operations can be achieved by the AB
effect of the magnetic flux. As a result, full qubit operations
can be implemented even if the barrier height is kept con-
stant. The structure and field effects are important for the
validity of the qubit. The external field pulse should also
have an appropriate rising or trailing edge to decrease the
transition of the electron to higher-lying states. The radius
and barrier height should be selected appropriately to speed
the operations and depress the errors. These results will be
helpful in understanding the evolutions of wave functions
during the quantum operations and useful for the future
implementation of qubits in a solid system.
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