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Eigenmodes of metallic ring systems: A rigorous approach
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To study the eigenmodes of a metallic system in ring geometry, we develop an approach which rigorously
considers all inductive/capacitive effects within the quasistatic approximation. Application to a single-ring split
ring resonator (SRR) reveals that the odd-numbered modes exhibit both magnetic and electric responses while
the even ones only exhibit electric responses, and the SRR shows a bianisotropy for the odd-numbered
resonances. Symmetry restriction allows a plane wave to excite only certain resonance modes of a SRR.
Simulations on realistic structures verify all theoretical predictions. Calculations for a double-ring case suggest
“optic (acoustic) modes” of asymmetric bianisotropy that are much more electric (magnetic) in character.
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I. INTRODUCTION

There is much recent interest in the scattering of electro-
magnetic (EM) waves from collections of nanoelements, par-
tially motivated by recently discovered left-handed materials
(LHM’s).! A modular approach to investigate such problems
consists of studying the circuit characteristics of individual
constitutive elements. When different elements are combined
to form a new structure, some characteristics need not be
recalculated. This approach complements other approaches
in that it provides for easier understanding of the scattering
properties of structures, particularly when some constitutive
elements are changed.

It is not commonly appreciated that for any element the
circuit characteristics are not a single number but a series of
numbers corresponding to different normal modes of that
element. The single circuit characteristics discussed in text-
books (say, the mutual capacitance between two conductors)
correspond to that of the lowest mode. Such a description is
valid only when the object can be considered as a single
lumped element, in which the spatial charge (current) fluc-
tuations are not important inside the object. In general, how-
ever, we need to know the characteristics for all normal
modes. We illustrate below the calculations of such charac-
teristics of a single metallic ring.

The studies of metallic ring-like systems>~® were stimu-
lated by the discovery that a split ring resonator (SRR) pro-
cesses a negative u in some (microwave) frequency regimes’
and thus can be employed to fabricate a LHM.! A naive
approach to create a LHM at higher frequencies is to scale
down the sizes of systems proven to work at lower
frequencies.9 However, the differences between various ring-
like structures (single-ring, double-ring, one cut, two cuts,
etc.)!™ are not yet completely clear. Since the experimental
control of structures on a smaller scale is more limited, it is
desirable to gain a complete theoretical understanding of the
resonances in arbitrary metallic-ring-like systems.

In a pioneering paper,? Pendry et al. first pointed out that
magnetic resonances exist in such SRR systems. However,
Pendry et al. considered the ring as a single lumped element,
described by single circuit characteristics, and approximated
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the mutual capacitance between two metallic rings by that
for two infinitely large metallic sheets.> Later, Shamonin et
al. modeled the system as an equivalent circuit consisting of
an infinite number of lumped elements and set up a differen-
tial equation to describe the current-voltage relations on the
rings.* This approach can handle the cases of nonuniform
current (charge) distributions and therefore, has included an
important part of local inductive/capacitive effects.* How-
ever, the latter were still not completely considered in that
approach,* since in principle self (mutual) inductive/
capacitive effects exist for any single (pair of) lumped ele-
ment(s) inside the model. In addition, the approach still
needs a set of empirical parameters that cannot be calculated
rigorously,* such as the self-inductance of a single lumped
element, the mutual capacitance between two lumped ele-
ments in two rings (denoted by C in Ref. 4), etc. Those
values were determined under some approximations. For in-
stance, the parameter C was again approximated by the mu-
tual capacitance between two infinitely large metal plates.*

The SRR systems and their topological equivalents were
also studied by numerical calculations.®-8 Although such
full-wave studies should in principle contain all relevant field
information, sometimes it is not easy to analyze this infor-
mation (usually presented as the transmission/reflection
spectra), so as to extract the useful properties of a SRR from
such information. For example, to obtain the effective & and
wm of a single SRR, one needs to perform complicated calcu-
lations on the transmission/reflection spectra obtained for a
SRR array,8 and even faces intrinsic difficulties in some
cases (see footnote 12 in Ref. 10).

In this paper, within the quasistatic approximation
(QSA),'! we develop an alternative approach to study metal-
lic ring systems. Compared to previous analytical
approaches,” the present one considers the inductive/
capacitive effects completely and calculates the involved cir-
cuit parameters rigorously rather than empirically. In addi-
tion, the approach provides us not only all the resonance
frequencies but also the direct responses of the structure un-
der an arbitrary probing field, which is complementary infor-
mation to numerical approaches. This paper is organized as
follows. After presenting all mathematic details of the theory
in Sec. II, we applied it to study a single-ring SRR in Sec. III
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as an illustration. We found that the even-numbered reso-
nance modes of a single-ring SRR exhibit only electric re-
sponses, while the odd ones exhibit both electric and mag-
netic responses; the SRR possesses a bi-anisotropy at all
odd-numbered resonances. We employed finite-difference-
time-domain (FDTD) simulations'? on realistic structures to
successfully verify the predictions of the rigorous theory. In
Sec. IV, we quantitatively compared our theory with previous
empirical ones and discussed the applicability of the QSA,
which is the only approximation adopted in this paper. After
briefly introducing some other applications of the theory in
Sec. V, we summarized our results in the last section.

II. BASIC THEORETICAL FORMALISMS

We consider a ring of radius R in the xy plane. In what
follows, a common time-varying factor exp(iwt) is omitted
for every quantity. Within the QSA,!" the inductive field

E, (7 can be expressed in terms of the current j(7') by Fara-
day’s induction law,

E,(F) = dAldt = — iwu, f Jdr i @AaF-7)). (1)

The capacitive field EC(F) can be expressed in terms of the
accumulated charges p,(r') by Coulomb’s law,

v 1 fpegf’)flf’
4’778() |F=7|

1[IV )M
- iwdme f ’ @

where the current-charge conservation law V~f+ ap,/ dt=0
has been used.

We consider the thin-wire limit, a << R, where a is the
radius of the metal wire forming the ring. In the frequency
regime that we consider, the current flows on the conductor’s
outer surface within a layer of thickness of skin depth, so

Ec(P)=-VV() =~

that j(#') is basically a very complicated function of 7.
However, when the wire is very thin, we can simplify the
realistic current distribution as a delta function localized in
the middle of the wire, f(?’)=5¢l(¢)sin 08(cos 6)S(r'—R)/
R with eg=—sin ¢pe,+cos ¢e,. This simplification will not
generate any significant errors for calculating the fields out-
side the metal wire in the thin-wire limit. On the other hand,

both El(f) and Ec(f) should still be calculated on the outer
surface of the metal wire where the current physically flows.

Again considering the fact a <R, we understand that EL(F)

and E(r) would not vary dramatically around the wire (as
long as they are on the same position of the ring with a fixed
¢), so that we can pick a particular (convenient) point on the
wire surface to calculate these fields.

We expand the current as a Fourier series with respect
to the azimuthal angle I(¢)=3" _I,e™? with I,
=(1/2m) [§7I(¢p)e"¢d $. By expanding 1/|F—7'| in terms of
spherical harmonics, '3
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FIG. 1. (Color online) Ay, A}, A,, Az as functions of 2a/R, cal-
culated by directly evaluating infinite series (symbols). Lines are
obtained by fitting to the formula D,,+B,In(2a/R). Here, D
=0.946, By=-0.3057, D;=0.303, B;=-0.3066, D;=0.0894, B;
=-0.3069, D,=-0.0389, B,=-0.3070.
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with r_ (r-) being the smaller (larger) value of |r|
we can carry out the 7’ integration in Eq. (1) to obtain

E'=—iwL,l,, (4)

where
21 .
E'L":—f E; - e, exp(-imp)dd (5)
27T 0

is the Fourier component of the inductive field, and
Lm = MO(Am—l + Am+1)/4 (6)

is the inductance parameter

i (1—m)!

" I=|m)| (l + m)'

in which P}’ is the associated Legendre function. Here we
have a=(R—a)/R<1, since we are calculating the field at a
particular point (r=R—-a, 8=1/2,¢=¢) on the wire surface.
We can also take another position (r=R+a, 0=1/2,p=¢) to
do the calculations. In that case, we find that a=R/(R+a). It
is worth noting that (R—a)/R=~R/(R+a)=1-a/R in the
thin-wire limit a<<R, which justifies our previous argu-
ments. We analyzed the series shown in Eq. (7) and found an
asymptotic form A,,=~D,,—In(2a/R)/(a"m) in the limit of
a < R. The numerical results for A,, as the functions of a/R
are shown in Fig. 1, which unambiguously verifies the above
asymptotical form (note that the values of B,, shown in the
caption of Fig. 1 are quite close to the analytical value,
—1/7=-0.318). We emphasize that this logarithmic diver-
gence is a typical feature of many physical properties, in-
cluding the self-inductance, of a thin-wire system.'*

The capacitive term can be calculated similarly. After
some straightforward calculations, we obtain

Ef=-1,/(inC,), (8)

A

o[PT(O), (7)

where
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2
Erg = ;TL EC . E¢ exp(— lm¢)d¢, (9)

the Fourier component of the capacitive field, and

_ 2€0R(R - a)

10
T (10)

are the capacitance parameters. Note that 1/L,C;= w%,
where wy=cy/R is the angular frequency with wavelength as
the ring perimeter, and co=1/\gyu, is the speed of light. w,
is the frequency unit of the present problem.

According to Ohm’s law, the induced current ;(17) is

driven by the sum of the external field Eex,(ﬂ, the inductive
and the capacitive fields. In Fourier component form we get

ext

> pm—m' ), =E" +El'+ ER=E" —iwL,l, —1,/inC,,

(11)

where p(m—m’) is the Fourier component of p(¢)=p(¢)/S,

the resistivity p(¢) normalized by the area S through which

the current flows. The displacement current is omitted in

writing Eq. (11), which is consistent with the QSA. We will

discuss the applicability of this approximation in Sec. IV.
Equation (11) can be written as

Em/Hmm’Im’=EZj\'t’ (12)
where
Hypr = plm —m") + ioL,,(1 = Q2/0%) 8, (13)

with

Q,,= 1L, C,, = |mlwg\24,/a(A,,_, +A,y).  (14)

We note that (2, — |m|w, in the limit of a/R— 0. We diag-
onalize the H matrix through

H=P'HP, 1=P'l, E,,=P'E,,, (15)
and get
_ Em
I,=—%=, (16)
A(@)

where \,, is the mth eigenvalue of the H matrix. We numeri-
cally determine the resonance frequencies by the condition
that the magnitude of the lowest eigenvalue of the matrix H
exhibits a minimum.

III. APPLICATIONS TO A SRR

We consider a single-ring SRR to illustrate our ideas. We
set the resistivity of the metal as 0, and that of the air gap as
50»

_ Po> ¢ e [-A2,A/2],
p(e) = (17)
0, elsewhere.
We take a very large value of py in our numerical calcula-
tions and consider the limit py— o later. The magnitude of
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FIG. 2. (Color online) Min[|\,,|] as functions of w/w, calcu-
lated with different values of M., and py (in units of ugwy).

the lowest eigenvalue is shown as a function of frequency in
Fig. 2 for a typical SRR with A=7/40 and @=0.99. The
general agreements among different sets of calculations
show that the adopted approximations, namely, taking finite
values of angular momentum cutoff M, and the gap resis-
tivity parameter py, do not introduce any significant errors.
The series of resonances in Fig. 2 can be categorized into
two classes.!> The even-numbered resonances w,; coincide
well with the intrinsic resonances defined in Eq. (15), (),
indicating that these resonances might be solely determined
by the ring geometry. The odd-numbered ones, however,
must be introduced by the air gap through the term p(m
—m'"). The eigenvectors [contained in the matrix P defined in
Eq. (15)] are shown in Fig. 3 for the lowest four resonances.
The odd-numbered (even-numbered) resonance modes pos-
sess symmetrical (antisymmetrical) eigenvectors with respect
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FIG. 3. The eigenvector distributions for the lowest eigenmode
at the lowest four resonance frequencies.
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to index m. A simple three-mode approximation for the low-
est resonance gives w=[L,/(2Ly+L;)]"*Q, = Q,/\3, in rea-
sonable agreement with the numerical results.

With the knowledge of the eigenvectors, we can further
evaluate the electric and magnetic responses of the system.
According to Egs. (15) and (16), we find the SRR to possess
the following nonzero components of dipole moments:

1

Px= E [P 1j Pl ] Eexl’
7 M) o T
1 @R
= ——LP_j+P E R
py ; )\j((l)) la)[ 1/] ext

R2
m, = EW

o Fl (18)

where
Efzxt_ E (P_l) lEext

1 R
- [ S iy ent-itias 19

represents the external field component projected on the jth
eigenmode. We consider the following four types of external
probing fields, which are plane waves with polarization (E
field direction) and wave propagating direction given by (a)

2, 2,
the wave vector). The moment amplitudes under these prob-
ing fields are respectively shown in Fig. 4 as functions of the
reduced frequency. The odd-numbered resonance modes pos-
sess both magnetic (m,) and electric (p,) responses, while the
even-numbered ones possess only electric (p,) responses.
The appearance of p, is always accompanied by the appear-
ance of m,. This bi-anisotropy property of the SRR has been
proposed and studied previously but only for the lowest
mode.>’ Here, we rigorously demonstrate that the bi-
anisotropy is the system’s intrinsic property at all odd-
numbered resonances. Symmetry restricts a probing field to
excite only a particular set of resonance modes of the SRR.
Taking configuration (a) as an example, since the probing
field projected on the ring, E,,(p)=E,,-é,=E, cos ¢, ex-
hibits an even symmetry with respect to ¢, only the odd-
numbered modes possessing even-symmetry current distribu-
tions (see Fig. 3) can be excited. Similar arguments hold for
other configurations.

We have performed FDTD simulations on realistic struc-
tures to verify the above predictions. To model a single-ring
SRR with R=4 mm, a=0.1 mm, and A=7/40, we first con-
struct a 0.2 mm thick metallic disk of radius 4.1 mm, then
cut it by a 0.2 mm thick air disk of radius 3.9 mm, and
finally cut an air gap of the required width on the resulting
structure. It is difficult to employ FDTD simulations to di-
rectly compute the dipole moments of a single SRR induced
by an external plane wave. Instead, we study the transmis-
sion spectrum of an array of such SRR’s, and identify the
resonances by the dips of the transmission spectrum. For the
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FIG. 4. (Color online) Amplitudes of the induced moments,
Ipels 1P for different prob-
ing fields as shown in the figure.

two configurations studied in Figs. 4(a) and 4(c), we con-
struct SRR arrays to periodically tile the xy plane, with lat-
tice constants 16 mm along both x and y directions. For the
other two configurations, we construct SRR arrays to peri-
odically tile the xy or yz plane, respectively, with a lattice
constant =12 mm along x or y direction and 16 mm along z
direction. The transmission spectra!® under the four plane
wave inputs are shown, respectively, in Figs. 5(a)-5(d).
When we compare Fig. 5 with the results shown in Fig. 4, we
find that they agree with each other quite well.!” We clearly
identify the dips at w=0.42w, shown in Figs. 5(a), 5(b), and
5(d) as the lowest eigen resonance mode (w;), the dips at
w=1.19w, shown in Figs. 5(c) and 5(d) as the second reso-
nance mode (w,), and the dips at w= 1.46w, as the third one

(@3).

IV. FURTHER DISCUSSIONS ON THE THEORY

In this section we will compare our theory with previous
analytical ones and discuss the applicability of the QSA,
which is the only approximation adopted in the present
theory.

As it is tedious to reproduce the results by Shamonin et
al.,* we will compare our theory with the pioneering work by
Pendry et al? Tn Ref. 2, Pendry et al. considered a double
split-ring system and found that the system possesses a mag-
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FIG. 5. FDTD calculated transmission spectra of the SRR arrays
(explained in the text) as functions of w/w, for plane wave inputs
specified in the figure.

netic resonance with frequency determined by

3dc?
wo=\/ #Rg : (20)

where d is the space between two split rings. In order to
compare with the present results, we examine the properties
of the single-ring SRR limit of Pendry’s approach. Naively,
we expect that the double-ring SRR becomes two indepen-
dent single-ring SRR’s as d—, where the inner ring re-
mains unchanged and the outer ring becomes too large to be
relevant. Therefore, inserting d — o into Eq. (20) should gen-
erate the results for a single-ring (i.e., the inner ring) SRR
with radius given by R. However, when we put d — % into
Eq. (20), we find that the resonance frequency approaches
infinity, in apparent disagreement with the numerical results
shown in Fig. 5. That there is only one resonance in such a
system is also inconsistent with the numerical results shown
in Fig. 5. Such discrepancies are caused by the fact that
Pendry et al. only considered the mutual capacitance be-
tween two rings but neglected the self-capacitance effect of a
single ring caused by the gap and neglected the capacitance/
inductance effects for all higher order modes. In contrast, our
theory has considered the capacitive/inductive effects com-
pletely and thus can be compared with the full-wave simula-

PHYSICAL REVIEW B 74, 035419 (2006)

tion results successfully, without taking any empirical param-
cters.

Our theory is developed under the QSA. Within such an
approximation,'! we neglected the displacement current in
writing Eq. (11) and the radiation effects in writing Egs. (1)
and (2). Omission of the displacement current in Eq. (11) is
well justified for the present problems, since the realistic
current inside a good metal is much larger than the displace-
ment current in the frequency regime considered here.!' We
now consider the radiation corrections to Egs. (1) and (2). If
the radiation effects are fully included, Eq. (1) should read

f(r’)exp[iw|7— 7 |/co]

EF (D) =—iou, f di'.  (21)

dmlr—7'|
Compared with Eq. (1), one may argue that the QSA is ap-
plicable only when the condition

max[w|r —7'|/cy] = w2R/cy =20l wy < 1 (22)

is fulfilled. However, the comparison between the theory and
numerical simulations (with radiation effects fully included)
suggested that the applicable regime of the QSA is much
wider than that indicated by the condition (22), as shown in
last section. We believe that condition (22) is too strict for
such problems, particularly in the thin-wire limit. Since we
are calculating the electric fields on the wire surface, the
dominant contributions to the integration (21) come from
those points 7' that are very close to 7. For such points |7
—7'|/cy< 1 and the radiation corrections are very small.
Therefore, the QSA has considered correctly the most domi-
nant part of the contribution and neglected those radiation
corrections which are less important. Let us check the radia-
tion correction to the inductive field,

()
47T|F— 17'|

x{explio|r —r'|/co] - 1}dr". (23)

AE,(A) = Ef(D) ~ EL(7) =~ iwp f

> >

Since {expliw|r—7"|/cy]l-1}/|r=7"|;_; —i(w/cy), the inte-
gration (23) becomes convergent in the a— 0 limit. Consid-
ering the logarithmic divergence of the function A,, and
hence E;, we find that

const.

AE
| f(m - S0, ast0. (24
|E,(7)] In(2a/R) R

Equation (24) indicates that the radiation corrections are in-
deed negligible in the limit of @ — 0 for such problems, and
as the result, our theory becomes exact in the limit of a
—0. For a finite value of a, there exists a finite frequency
regime for the QSA to be applicable. Nevertheless, such a
regime should still be much wider than that indicated by
condition (22), which is too strict for the present problem.
Li et al.'® provided a general representation to rigorously
calculate the radiation fields of a current-carrying metallic
ring, which is an active element with current distribution
predetermined. Our theory calculates the responses of a me-
tallic ring system under an arbitrary external field in which
the metallic ring is a passive element whose current distribu-
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tion is unknown and is what we are interested in. To derive
the system’s responses from Li et al.’s theory,'® one needs to
calculate the total fields (both the radiation fields from the
current loop itself and any other external fields) on the wire
surface and then determine the current distribution through
Ohm’s law self-consistently. This is precisely the contribu-
tion of the present work. Certainly, it is worthwhile to em-
ploy Li et al.’s representation'® to incorporate the radiation
corrections into our theory, which will be an interesting issue
for future works.

V. OTHER POSSIBLE APPLICATIONS

The present “rigorous” theory is applicable to many other
situations. Below we sketch some examples. For two con-
centric rings of radii R' and R (R'">R), we find that the
mutual inductance L, is the same as L, except that
A, should be replaced by A, Ez—\m|[(l m)! /(1
+m)!]@[P"(0)]* with @=R/R’, and the mutual capacitance
is now C =2€)RR’ /m2A The interactions between rings
make the eigenmode structures even intriguing. For example,
consider a standard double-ring SRR with two cuts on oppo-
site sides of the two rings. If we assume the same self-
inductances and capacitances of the two rings (valid for R
~R’), in a three-mode approximation we find that the reso-
nance frequencies for the lowest two modes are given by
.= \/(Llﬂﬁiilﬁ%)/(LlJ_rZﬁZLoiZZO), and the current
distributions in the two rings are given by j= jo[—1+cos ¢]
and j'==jo[1+cos ¢]. While both modes exhibit bi-
anisotropy, for the higher (lower) frequency optical (acous-
tic) mode, the magnetic (electric) m, (p,) response is signifi-
cantly reduced, leaving the net response much more electric
(magnetic) in character.

To apply the present theory to study the SRR arrays, we
need to consider the mutual-inductance and capacitance be-
tween two metallic rings located at arbitrary positions. We
find that analytical formulations can be obtained for some
special configurations with high symmetries. For example,
consider two identical rings (with radius R) placed on differ-
ent xy planes, whose centers are separated by a distance d on
the z axis. For this system, the mutual inductance L, (d) is
found to be the same as Eq. (6), with A, replaced by

Al (d)=2] ol (I=m) 1/ (1+m) 1(@")*'[P(0)]* in which o
=R/\VR*+d?, and the mutual capacitance is found as C;,(d)
=2e,RVRZ+d*/m*A! . 1t is clear that the inter-ring interac-
tions are decreasing functions of the separation d, consistent
with our naive expectations. With these parameters, we can
in principle investigate the eigenmode properties of a special
SRR array, in which the centers of rings are on the same z
axis. However, for a general type of periodic SRR array,
analytical formulations are difficult to obtain and we have to
seek help from numerical simulations.®

We can also study the effect of absorption in the SRR
systems. The dissipation rate in such a system is found as

ot f Re{[E,..(7.0] j(7.0}di = 7R S Re[ (L) T,.].

dr 2
(25)

In the limit of py— o that we consider, the H matrix (13) is
essentially a Hermitian matrix, so we can prove that
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FIG. 6. (Color online) Re[1/X\] [in units of (ugw)~'] as func-
tions of w/w, calculated with different values of p, (in units of
towo) specified in the legend. Here we set py= 107 uowy.

1
= 7R, |Em|2ReL\—] . (26)

Therefore, the real parts of eigenvalues are intimately related
to the absorption in such systems. Take a single-ring SRR as
an example. Suppose the conductor forming the ring has a
finite resistivity p., the resistivity function then becomes

sin[(m-m")AI2] _  _
————(Po—P.)>

m#+m',

Bm—m') = m(m—-m')

_ A
pe+ 5 —(Po=po)
(27)

Inserting Eq. (27) to Hamiltonian (13) and solving the ma-
trix, we obtain a series of eigenvalues {\,,} as the functions
of frequency. We label the eigenmode with the lowest eigen-
value by index 1 and depict the values of Re[1/\(w)] in
Fig. 6 as the functions of frequency, calculated with different
values of p,. Since |[E™ |* are positive-definite numbers and
Re[1/N\(w)] is the largest one among Re[1/\,,(w)], we un-
derstand that the spectra shown in Fig. 6 are closely related
to the true absorption spectra. When p, is small, we find that
the absorption is significant only at the vicinities of reso-
nance. As p, increases, the absorption spectrum is obviously
smeared out. All these are very typical features of resonance
behaviors. We note that the exact value of the dissipation rate
depends on the concrete form of the external probing field.
Other elements such as disks and spheres can also be
studied from this perspective. The scattering from spheres
obtained by matching the tangential components of £ and H
fields at the boundary is well known, but only for the case
with uniform conductivity. The current approach provides a
way to study the situations with nonuniform conductivity.

VI. CONCLUSIONS

We have established an analytical theory within the qua-
sistatic approximation to study the EM properties of metallic
ring-like systems. The theory is “rigorous” in the sense that
we have incorporated the capacitive and inductive effects
completely and have calculated the involved parameters rig-
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orously. The application to a single-ring SRR uncovers rich
properties of its eigenmodes, which are successfully verified
by FDTD simulations on realistic structures. We have dis-
cussed the applicability of the quasistatic approximation
adopted in our theory and found that the approximation be-
comes exact in the thin-wire limit. Other possible applica-
tions are also briefly discussed.
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