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We obtain the dynamic correlation function of two-dimensional lattice gas with nearest-neighbor repulsion
in ordered c�2�2� phase �antiferromagnetic ordering� under the condition of low concentration of structural
defects. It is shown that displacements of defects of the ordered state are responsible for the particle number
fluctuations in the probe area. The corresponding set of kinetic equations is derived and solved in linear
approximation on the defect concentration. Three types of strongly correlated complex jumps are considered
and their contribution to fluctuations is analyzed. These are jumps of excess particles, vacancies and flip-flop
jumps. The kinetic approach is more general than the one based on diffusionlike equations used in our previous
papers. Thus, it becomes possible to adequately describe correlations of fluctuations at small times, where our
previous theory fails to give correct results. Our analytical results for fluctuations of particle number in the
probe area agree well with those obtained by Monte Carlo simulations.

DOI: 10.1103/PhysRevB.74.035418 PACS number�s�: 68.43.De, 05.50.�q

I. INTRODUCTION

Lattice gas models have been extensively studied �see
Ref. 1�. They are used for the description of various physical
phenomena such as surface mass transport, ionic conductiv-
ity, etc. and are equivalent to the familiar Ising model with
conserved spin dynamics �e.g., Kawasaki dynamics2�. The
general theory of kinetic phenomena in lattice systems is far
from complete, despite its long history, started from seminal
papers.2,3 Additional complications and new effects arise in
particular models due to nontrivial lattices and complex in-
teractions. All this explains the permanent activity in the
field ranging from keystone problems such as the suscepti-
bility of two-dimensional �2D� Ising model,4 to more specific
questions such as those considered in our previous studies5–7

and other recent papers.8,9

The subject of the present paper is kinetic phenomena in
two-dimensional lattice gas with nearest neighbor repulsion
in the ordered c�2�2� phase �see Fig. 1�, which corresponds
to an Ising antiferromagnet. Static properties of this system
are well studied by means of appropriate approximate or ex-
act methods. Exact expressions for the spatial multipoint cor-
relation functions in grand canonical ensemble at half
filling10 are the most pronounced theoretical results obtained
in this field. In contrast, temporal correlation functions are
less studied even in the case of thermodynamic equilibrium
�excluding the simplest cases such as on-site correlation
function9�. While most efforts were undertaken to describe
critical dynamics, still kinetic phenomena outside the critical
region are poorly understood. The standard approach for
classical gas based on Bogoliubov-Born-Green-Kirkwood-
Yvon �BBGKY� hierarchy is not directly applicable to the
case of lattice gas, because the equation for one-particle dis-
tribution function involves not only two-particle but also
higher distribution functions.

To describe kinetic phenomena, we use the method of
essential configurations which can be outlined as follows.

There are powerful cluster expansion methods such as virial
or low-temperature expansions for studying static properties
of the ordered equilibrium phase. The main idea of these
methods is to reduce the total configuration space to some
important �essential� configurations which involve only finite
number of structural defects. To study the dynamics of lattice
gas, some additional configurations, which are generated by
already chosen ones in the course of their evolution, should
also be considered. These transient configurations, having
short living times, do not contribute essentially to static
properties but affect the kinetics because of their participa-
tion in the displacements of structural defects. Thus, by tak-

FIG. 1. A snapshot for �=2.0 and c=0.5. A black square is an
excess particle �occupied site�, while a white square is a vacancy
�empty site�.
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ing into account mutual transformations of both defect types
we may derive kinetic equations in the reduced space of
essential configurations. Our main interest is for the two-
point two-time correlation function. It will be obtained from
the solutions of the mentioned kinetic equations. This func-
tion is a building block for macroscopic time correlation
functions which play a central role in kinetic phenomena.11

From the point of view of practical applications the cal-
culated correlation function can be utilized in the theory of
adsorbates.12,13 Modern experimental techniques give the op-
portunity for detailed investigations of the motion of such
small objects as individual atoms on crystal surfaces14 �it is
worthwhile to mention that not only kinetics but even fem-
tosecond dynamics can be studied15�. Thus, calculated corre-
lation functions of particle density fluctuations in scales of
one-particle jump may be compared with those experimen-
tally obtained. In such a way some microscopic parameters
of the adsorbate-adsorbate and adsorbate-substrate interac-
tions may be obtained from this comparison. In fact, our
paper is an attempt to generalize the so-called fluctuative
method16,17 to the case of kinetic scales. The correlation
function is also connected directly with the dynamic struc-
ture factor measurable with diffraction techniques.18,19 Fi-
nally, the theoretical analysis may be used to understand and
to interpret data obtained by means of Monte Carlo �MC�
simulations.

More specifically, the objectives of the paper are as fol-
lows: �i� to develop an analytic method for studying kinetic
phenomena in ordered lattice systems; �ii� to supplement the
approach used in the recent paper;5 �iii� to explain previous
results5 of MC simulations for short-time correlations of
fluctuations in small probe areas.

The paper is organized as follows. In Sec. II we specify
the system under consideration and define the main quanti-
ties. Section IV serves as general outlook to the system: typi-
cal snapshots, structural defects, and some insight into ki-
netic phenomena. Then, in Sec. V, the description of essential
configurations, derivation, and solutions of the kinetic equa-
tions for structural defects will be presented. In Sec. VI the
correlation function is calculated. Finally, the comparison of
analytical data with the results of MC simulations is given in
Sec. VII.

II. SYSTEM SPECIFICATION

Consider a lattice gas of N particles hopping on a 2D
square lattice of size L0�L0 with periodic boundary condi-
tions �i.e., on a torus�. Points of the lattice �sites� are denoted
by a single letter, e.g., x= �x1 ,x2�, where x1,2=0 , . . . ,L0−1.
Double occupancy of a site is forbidden. The Hamiltonian is

H =
1

2 �
x�y

Uxynxny ,

where Uxy =U1 if x and y are nearest neighbors and zero
otherwise. The case of repulsion is considered �U1�0�. We
denote �U1=�, where �=T−1 is the inverse temperature.
The system is described by two parameters: the average con-
centration of particles c �in surface science it is usually de-
noted by �� and the interaction strength �.

Also, it is assumed that:
�i� the system is at subcritical temperature, i.e.,

���c�1.76 so that q=e−� is a small parameter;
�ii� c is nearly 0.5 so that c�2�2� phase is pronounced;
�iii� the system is at thermodynamic equilibrium �which

is to imply the absence of domain walls�.
Under these conditions the system is represented by two

sublattices �Fig. 1�: one is almost empty and the other is
almost filled. They are distinguished by indices � ,� , . . . and
� ,	 , . . . for the empty and filled sublattices, respectively. The
concentrations of excess particles in the empty sublattice and
vacancies in the filled one are small enough to treat the sys-
tem as rarefied gas of structural defects.

The motion of particles is assumed to be realized by in-
stantaneous jumps. Thus, simultaneous displacements of dif-
ferent particles are forbidden �single-particle-jump approxi-
mation�. The hopping itself is an overcoming of an activation
barrier. It should be noted that in real physical systems as in
surface adsorbates, all microscopic parameters including ad-
sorption sites, hopping pathways, activation barriers, ada-
toms interaction, etc. can be calculated by ab initio compu-
tations �see, e.g., Ref. 20�.

To be specific, we assume the rate of individual particle
jumps from a filled site x to any unoccupied nearest neighbor
site y to be given by Wxy =
0ek�, where k is the number of
filled sites, which are nearest neighbors to site x, and 
0 is
the jump rate in the absence of particle-particle interaction.
The detailed balance conditions are satisfied for this choice
of jump rate: Wxy /Wyx=e�x−�y, where �x is the particle energy
in site x expressed in units of T. Hence in the absence of
external perturbations, the system relaxation towards equilib-
rium is ensured.

This “single site energy” probability, which is widely used
in modern surface science, has been suggested in a pioneer
paper,21 in which the results of computer simulations for the
particle migration in a two dimensional lattice gas were re-
ported. The same model was used later to develop analytical
approaches in Refs. 22 and 23. It is believed now to be a
more realistic representation of the diffusive kinetics in
experimental systems, although it is slower than the
METROPOLIS algorithm.

To simplify further notations, we will determine time in
units of 
0

−1. In this way the quantity 
0 will be excluded
from rate equations. For example, the motion of a single
particle on the empty lattice is described by the following
rate equation:

ṗx = − 4px + �
e

px+e, �1�

where px= �nx�, the sum runs over nearest neighbor sites �e
means a unit vector�, and the length is given in units of a
lattice constant.

The main object of the paper is the equilibrium two-point
two-time correlation function given by

��nx�t��ny�0�� = �nx�t�ny�0�� − �nx�t���ny�0�� . �2�

In practical applications another quantity is used: the corre-
lation function of particle number fluctuations in a small
probe area, ��N�t��N�0��. It can be measured experimentally
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and useful for surface diagnostics. These two correlation
functions are connected by the relation

��N�t��N�0�� = �
x,y

��nx�t��ny�0�� , �3�

where the summation is over the probe area. It is more con-
venient to use “per site” quantity, which in case of a square
probe area with L�L size is defined as

SL�t� =
��N�t��N�0��

L2 . �4�

In the limit L→ �in such a way that L0�L� we obtain
the thermodynamic correlation function S�t��S�t�,
which for t=0 can be calculated also by the formula
S�0�=T��c /���T,L0

, where � is the chemical potential.
The dynamic structure factor can be also expressed via

two-point correlation function

SL�t,k� =
1

L2�
x,y

��nx�t��ny�0��e−ik�x−y�, �5�

so that SL�t ,0�=SL�t� �this normalization differs from that
used in Refs. 18 and 19�.

III. MONTE CARLO PROCEDURE

Simulations of the particle migration were executed in a
lattice-gas system of size 200�200 sites. Probe areas of
two different sizes were considered in the lattice, of sizes
20�20 and 6�6. We simulate random jumps of individual
particles. Time was monitored in units of MC steps �MCS�.
In the course of one MCS each lattice site is interrogated
once �on average� for the probability of a particle jump out
of it. The preparation of the initial state of the system con-
sisted of three important steps: We started from an ordered,
checkboard, arrangement of the particles. Then, we intro-
duced randomly the defects �vacancies and excess particles�,
the number of which was of the order of q2. Finally, the
particles were allowed to move randomly for 50 000 MC
steps. This procedure allows the system to reach a state
where there is essentially a homogeneous distribution of the
defects. The study of fluctuations due to particle migration
was started only after 50 000 MC steps.

IV. GENERAL OUTLOOK

A typical snapshot �obtained in the course of MC simula-
tions� is shown in Fig. 1. The “chessboard” phase is clearly
seen, even for � close to its critical value. The “defects only”
view is presented in Fig. 2, where only excess particles in the
empty sublattice and vacancies in the filled one are shown.
This view supports the idea that we can treat the system as
rarefied gas of structural defects. To elucidate the nature of
these defects we redraw the snapshots, leaving only the to-
pological charge. This quantity is defined as the difference

between the number of excess particles and vacancies be-
longing to the same cluster of connected defects in Fig. 2. To
produce Fig. 3 we define a cluster as a group of defects
which are nearest neighbors, and place the topological
charges at the mean coordinates of the clusters. The result is
shown in Fig. 3, from where it is clearly seen that the seem-
ing variety of the structural defects in Fig. 2 actually repre-
sents the fluctuating deformations of some basic defects of
charges 1, −1, and 0. Also sparsely populated pairs of defects
�the large circle in Fig. 3� are present.

Before classifying these basic structural defects, it should
be noted that in a real system domain walls are often pre-

FIG. 2. “Defects only” view of Fig. 1. The full circles represent
excess particles, while the empty circles are vacancies. The sites
which are filled according to the regular “chessboard” pattern are
not shown.

FIG. 3. Snapshot of the topological charges after the subtraction
of the excess particle-vacancy pairs. The large circle in the upper
middle of the picture is a dimer of vacancies.
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sented as nonequilibrium long-living metastable configura-
tions. Nuclei of such inclusions are always present as large
continuous areas of defects, observed in Fig. 2. The true
domain walls make the whole system essentially inhomoge-
neous, lacking good ergodic properties. Therefore, we as-
sume that there are no domain walls in the neighborhood of
the probe area.

Various structural defects may be classified by their con-
centrations at exact half filling. To get rid of possible ambi-
guity in defect definitions, we use the following rule: two
structurally similar defects are called distinguishable at level
qn if their concentrations at exact half filling differs by O�qk�,
k�n. To make the ground for the study of kinetic phenom-
ena we will consider the lowest-order defects shown in Fig. 4
up to level q4. It is worthwhile to note that in Fig. 2 �where
q=0.8qc� only five clusters have smaller concentrations:
q5 ,q5 ,q6 ,q7 ,q13.

First of all, excess particles and vacancies can be easily
distinguished as isolated circles in Fig. 2. The concentration
of both defect types at exact half filling is given by1

n = v =
1

2
�1 −	8 1 −

16q2

�1 − q�4
 � q2 + 4q3 �6�

�for simple cubic lattice n=v�q3�.7 Only these two struc-
tural defects constitute the level q2 because all other defects
either have a concentration o�q2� or are indistinguishable
from these two at the level q2.

At level q3 of classification we distinguish the excess par-
ticles surrounded by occupied sites only and the excess par-
ticles with vacancies in the nearest neighborhood �see Fig.
5�. In the first case the structural defect is called excess par-
ticle monomer, Fig. 4�c�. In the second case only one va-
cancy is allowed to have concentration distinguishable from
zero at level q3. This is a so called “flip-flop” pair, Fig. 4�b�,
that is a pair of adjacent excess particle and vacancy. Their
concentration per site of a sublattice is

2�n0ve� � 2q3. �7�

Note that this value is considerably greater than in the ab-
sence of correlation, 2nv�q4. The concentration of mono-
mers is

�n0�
e

�1 − ve� = �n0� − �
e

�n0ve� + ¯ � q2 − 5q4.

�8�

The difference between an excess particle, Fig. 4�a�, and its
monomer, Fig. 4�c� can be illustrated by the equation

from which also the notion of “essential sites” used in the
figures can be understood. Only monomers and flip-flop pairs
constitute the level q3.

The structural defects of the level q4 are monomers, iso-
lated flip-flop pairs, flip-flop tetrads, and transient configura-
tions arising in the course of monomer jumps �Figs.
4�c�–4�g�, see also Fig. 11�. Despite the low concentration of
transient configurations ��q4�, they are not negligible for the
description of the monomer motion. Starting from this level
one must consider also monomer pairs, which are two-
particle configurations. At q4 level this reduces to taking into
account on-site generation-recombination of vacancy and ex-
cess particle monomers and on-site exclusion principle for
identical monomers.

The generation-recombination processes must be consid-
ered in order to understand the long-time asymptotics of the
correlation function5–7�. The generation consists of three
steps. The first two are the creation of a double flip-flop pair
resulting in one of the transient configurations shown in Fig.
6 �their concentration is �q5�. At the last step an adjacent
vacancy and an excess particle monomer are created.

FIG. 4. All structural defects up to q4 level: �a� excess particle,
�b� flip-flop pair, �c� excess particle monomer, �d� flip-flop tetrad,
�e,f� transient configurations during monomer jump, �g� isolated
flip-flop pair. Only essential sites are shown, positions with respect
to sublattices can be easily guessed. Configurations obtained by
color inversion must be also included.

FIG. 5. Structural defects at q3 level, from left to right: excess
particle monomer, flip-flop pair, vacancy monomer. The sites defin-
ing each defect are encircled.

FIG. 6. Generation-recombination precursors. The structural de-
fect �a� is also depicted in the box to show its position with respect
to the sublattices.
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At level q6 isolated monomers become distinguishable
from side and corner dimers shown in Fig. 7. The concentra-
tions of these structural defects have leading terms of the
low-temperature expansion q2−13q4, q4−8q6, and q4−9q6,
respectively. At this level the short-range attraction between
monomers arises, that can be observed as small excess in
concentration of dimers compared to the squared concentra-
tion of monomers, which is �q4−10q6. The number of
dimer configurations increases when c�0.5 �as in the
squared monomer concentration� and in that case they may
contribute significantly to mass transport.5–7

Obviously, when approaching the critical point or moving
away from exact half filling the larger structural defects
should be accounted to obtain reliable results. To understand
the importance of large defects for lattice gas statistics we
calculate their contribution to S�0�, using the analytic expres-
sion for ��nx�n0�= ��nx�0��n0�0�� at exact half filling �the
expression is not explicit but can be derived by recurrent
procedure10�. This can be done by evaluating

Sm�0� = �
�x1+x2��m

��n�x1x2��n�00�� , �9�

and comparing it with S�0��S0�0�. The result is shown in
Fig. 8 for m=3 and 9. Roughly speaking, the upper curve, in
which short-distance correlations ��x1+x2��2� are excluded,
gives an estimate of an error arising when only monomers
and flip-flop pairs are taken into account. This means that the

contribution of long-distance correlations in the case of large
values of � is negligible. Thus, our approach seems quite
reliable when ��2.5 �T�0.7Tc�.

For further analysis it is useful to distinguish two time
scales of the kinetic phenomena. At small time scale we have
a diversity of structural defects �typical snapshot is shown in
Fig. 1�. The major part of them have very short lifetime.
Their fast evolution is due to strong repulsive interaction
with the nearest neighbors. The contribution of short-term
fluctuations to the dynamic correlation function decays ex-
ponentially with time. At long times only topologically stable
structural defects �monomers of excess particles and vacan-
cies, as well as domain walls� survive and contribute to the
correlation function. The motion of long-living defects re-
sults in such macroscopic phenomena as diffusion, segrega-
tion, and domain growth. A typical decay of the correspond-
ing correlation function is given by a power-law form. In the
next section we will derive kinetic equations governing the
evolution of structural defects.

V. KINETIC EQUATION FOR STRUCTURAL DEFECTS

The configuration space of the system is extremely large,

2L0
2
. But observations made in the previous section together

with general principles of statistical physics suggest that only
a tiny part of the entire configuration space is actually occu-
pied. In the present paper we derive the kinetic equation in
the reduced space of essential configurations. The general
sketch of the method is as follows. At first we set the desired
concentration level, say qk, and choose configurations with
concentration no less than qk �note that each configuration
has L0

2 translationally invariant copies, therefore we use “per
site” quantities�. Thus, we obtain the configuration space of
structural defects. Then we determine transient configura-
tions which may be considered as “deformations” of the
structural defects in the course of their displacements. It
should be emphasized that the search of the transient states is
not a specific problem of lattice systems exclusively. It is a
general problem of kinetics. Finally, we write the standard
master equation for the Markov chain in the reduced space of
essential configurations �defects+their deformations�. We
have to solve this set of equations up to order qk. If we are
interested in the correlation function we may exclude tran-
sient configurations �with concentration o�qk�� from this set.
The equations obtained in such a way govern the evolution
of structural defects only. This evolution is non-Markovian
and this is the main effect of transient states.

In our case the first nonvanishing level is q2, which in-
cludes monomers only. We will also consider the next level,
q3, that is, flip-flop pairs in order to look for the corrections
due to higher order defects.

The motion of monomers was explained in Ref. 6. The
main idea of that paper may be outlined as follows. Let us
consider an excess particle shown in Fig. 9. In such configu-
ration the most frequent processes are jumps like that from
D1 to an empty site with rate e�. Let this be site C. The new
configuration is short lived because the most probable pro-
cess has rate e3�. Now there are two possibilities. The first is
that the displaced particle returns to site D1 so that the final

FIG. 7. �a� Isolated monomer, �b� side and �c� corner dimers of
excess particle.

FIG. 8. Relative contribution of long-distance components of
the correlation function to S�0� at exact half filling according to Eq.
�9� depending on interaction strength q /qc�e�c−�. Parameters of
MC simulations �see Sec. VII� are marked by crosses on the hori-
zontal axis �= �3.0,2.7,2.4,2.0,1.86� �from left to right�.
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state coincides with the initial one �i.e., D1→C→D1�. The
second is that the particle in site A jumps to site D1 and the
final state is one with the excess particle displaced from A to
C �i.e., D1→C, A→D1�. Both possibilities have equal prob-
abilities. Therefore if one neglects the living time of the tran-
sient state, the rate of this complex �two step� jump of the
defect will be given by 1

2e�.6 Similarly the rate for A→B
complex jump is 2�

1
2e�, where the factor of two arises from

two possible transient states: D1 and D2. The same reasoning
for vacancy displacements �Fig. 10� results in rate value
equal to 1 for A→B jump and 1

2 for A→C jump.
The essential configurations at q2 level include: empty

c�2�2� lattice, excess particle monomer �see Fig. 11�a��,
vacancy monomer, and transient states for both types of
monomers �see Figs. 11�b� and 11�c� for excess particle�.
Other transient states may be ignored. Because the empty
lattice and the two kinds of monomers have different topo-
logical charges, monomers move independently at this level
of accuracy. Let us now derive the kinetic equation for ex-
cess particle monomers. The approach may be generalized to
any dimension. Here we consider d-dimensional case that
makes formulas more obvious. The level q2 should be re-
placed by qd.

Let us denote the probability of the configuration in Fig.
11�a� by p�, where � is a site indicated by the arrow in the
figure. The transient states in Figs. 11�b� and 11�c� are de-

noted by p�
ee�. They are formed by vacancy at site � and two

excess particles at sites �+e and �+e� �Figs. 11�b� and 11�c�
correspond to e��e and e�=−e, respectively�. Now the ki-
netic equation for excess particle monomer is given by

ṗ� = − 2d�2d − 1�q−1p� + q1−2d �
e�e�

p�−e
ee� ,

ṗ�
ee� = − 2q1−2dp�

ee� + q−1�p�+e + p�+e��, e� � e . �10�

In the first equation of this set the first right hand side �rhs�
term describes �a�→ �b,c� processes. Here 2d is the number
of outer particles in monomer and 2d−1 is the number of
sites to which they can jump with rate q−1. The second rhs
term corresponds to the reverse processes which all have the
same rate q1−2d. In the second equation of the set the first rhs
term describes the �b�→ �a� �if e+e��0� or �c�→ �a�
�e+e�=0� processes. Here the factor of 2 accounts for two
possible particles which can jump to the site �. The last term
corresponds to the reverse processes.

To obtain the correlation function we have to solve this
set of equations with respect to p� up to the order O�qd�. To
do this we introduce a variable

p�� = �
e�e�

p�−e
ee� , �11�

and also a deformed Laplace operator �in continuous limit it
reduces to standard Laplacian�

�̃x� =
1

4d
�
ee�

�x+e+e� − d�x. �12�

Now �10� reduces to two compact equations

ṗ� = − 2d�2d − 1�q−1p� + q1−2dp�� ,

ṗ�� = − 2q1−2dp�� + 4d�2d − 1�q−1p� + 4dq−1�̃�p . �13�

They can be solved by means of discrete d-dimensional Fou-

rier transform: fx→ f̂�k�=�xfxe
ikx. Its inverse is given by

fx =
1

�2��d�
�− �,��d

f̂�k�e−ikxdk . �14�

In the k-domain �13� transforms into two ordinary linear dif-
ferential equations of the first order

FIG. 9. Displacement of excess particle monomer.

FIG. 10. Displacement of vacancy monomer.

FIG. 11. Essential configurations for excess particle monomer:
�a� excess particle monomer, �b,c� transient states. Centering is in-
dicated by arrow.
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ṗ̂ = − 2d�2d − 1�q−1p̂ + q1−2dp̂�,

ṗ̂� = − 2q1−2dp̂� + 4d�2d − 1�q−1p̂ − 4q−1��k�p̂ , �15�

where

��k� = d2 − ��
i=1

d

cos ki
2

. �16�

Their solution is expressed via two exponents e�1,2t, where
�1,2 are solutions of the equation

�2 + 2��d�2d − 1�q−1 + q1−2d� + 4q−2d��k� = 0. �17�

At small q these solutions are given by �1�−2q1−2d,
describing nonpropagating short-time fluctuations, and
�2�−2q−1��k�, corresponding to random displacements of a
monomer as a whole.

Similarly, we may perform a Laplace transform of
�13� with respect to variable t. In such a way Green’s
function of Eq. �13� corresponding to p� �that means
p��t�=��p��0�G�−�

e �t�� reduces to

G̃�−�
e �s� =

q

2d
�1 +

sq2d

4d

g̃�−�

�� sq

2d
�1 +

sq2d

4d
+ d�2d − 1�q2d−2�
 , �18�

where s is the Laplace variable, tilde marks transformed
function, upper index “e” means “the excess particle
monomer,” and g denotes Green’s function of the equation

�̇x= �̃x�, which in k-domain reduces to

ĝ�t,k� = exp� t

d���
i=1

d

cos ki
2

− d2�� . �19�

Simple estimate of �18� shows that G�−�
e �t�=g�−��2dtq−1�

+O�q2d−2�.
The kinetic equation for vacancy monomers is similar to

that for excess particles but with the only difference that time
t is rescaled by the factor q. This means that q−1 and q1−2d in
�13� should be changed by 1 and q2−2d, respectively.
Therefore G�−	

v �t�=g�−	�2dt�+O�q2d−2�. The diffusion
coefficients of monomers, derived from the mean square
displacement �−�kg�t ,k��k=0=2dDt, are equal to 2dq−1 and
2d for excess particles and vacancies, respectively.

Summarizing, in the two-dimensional case at level q3 the
evolution of monomers is governed by the following Green’s
functions:

G�−�
e �t� = g�−��4tq−1�, G�−	

v �t� = g�−	�4t� , �20�

where g is given by its Fourier transform �19� with d=2.
Note that gx is nonzero only if �x1+ ¯ +xd� is even. This
simply means that monomers move only on their own sub-
lattices.

For ��−���1 and ��−	��1 we come to the diffusion
equation used in our previous studies.5–7

Essential configurations for flip-flop pairs include only
empty c�2�2� lattice, see Fig. 12�a�, and flip-flop pair, see

Fig. 12�b�. We denote the probability of these configurations
as p0 and pe, respectively. The kinetic equations are simple

ṗ0 = − 2dp0 + 2dq1−2dpe,

ṗe = − q1−2dpe + p0. �21�

Here −2dp0 term describes �a�→ �b� processes, where 2d is
the number of nearest neighbor sites to which the particle
may jump.

The corresponding Green’s functions are given by

G00
ff =


 + e−�2d+
�t

2d + 

, G0e

ff =
1 − e−�2d+
�t

2d + 

,

Ge0
ff = 
G0e

ff , Gee
ff =

1

2d

2d + 
e−�2d+
�t

2d + 

+

2d − 1

2d
e−
t,

Gee�
ff =

1

2d

2d + 
e−�2d+
�t

2d + 

−

1

2d
e−
t, e � e�, �22�

where 
=q1−2d. It follows from Eq. �21� that in the case of
q�1 the relaxation time of the flip-flop fluctuations is given
by q2d−1.

VI. CORRELATION FUNCTION

Now we can obtain the correlation function. There is no
correlation in the motion of the two types of monomers and
flip-flop pairs. They evolve independently and give additive
contributions to the total correlation function. To find these
contributions we can use the general formula for the corre-
lation function of independent random walks, derived below.

Let N particles randomly walk on a lattice. Denote by �i
the position of ith particle. The number of particles in site x
is given by

nx�t� = �
i=1

N

I��i�t� = x� , �23�

where I�A� is the indicator of an event A. In what follows we
take into account the identity of particles. In this case their
average number at a given site, that is the average on pos-
sible trajectories with fixed initial distribution, reduces to

�nx�t�� = N�I���t� = x�� = NP���t� = x� = Npx�t� , �24�

where � is the position of any selected particle and the for-
mula �I�A��= P�A� is used. The correlation function can be
calculated as follows �t�s�:

FIG. 12. Essential configurations for flip-flop pairs. Centering is
indicated by arrow.
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�nx�t�ny�s�� = �
i

�I��i�t� = x,�i�s� = y��

+ �
i�j

�I��i�t� = x,� j�s� = y��

= N�I���t� = x,��s� = y��

+ N�N − 1��I���t� = x���I���s� = y��

= Npyx�s,t� + N�N − 1�px�t�py�s� . �25�

Hence the correlation function will be given by

��nx�t��ny�s�� = �nx�t�ny�s�� − �nx�t���ny�s��

= Npy�s��Gyx�t − s� − px�t�� . �26�

For homogeneous lattice at equilibrium �26� reduces to

��nx�t��ny�s�� = n�Gx−y�t − s� − Gx−y��� , �27�

where n= �nx��� is the equilibrium concentration of par-
ticles.

Straightforward application of �27� to monomers gives
their contribution to the correlation function to be

��n��t��n��0��e = neG�−�
e �t� = neg�−��4tq−1� ,

��n��t��n	�0��v = nvG�−	
v �t� = nvg�−��4t� , �28�

where the concentrations of monomers were calculated in
Ref. 6

ne,v �	�c −
1

2

2

+ q4 ± �c −
1

2

 �29�

�upper sign is for excess particle monomers�. Other compo-
nents like ��n��n�� are zero for monomers in the approxi-
mation explained above.

For flip-flop pairs the factor n in �27� is unity �it is the
concentration of configurations in Fig. 12�a��. We should
also take into account that each particle in the almost empty
sublattice may appear there due to a jump from any of its
nearest neighbor sites. In this way we obtain the following
nonzero components of the correlation function:

��nx�t��nx�0��ff � 4q3e−q−3t,

��nx�t��nx+e�0��ff � − q3e−q−3t. �30�

VII. FLUCTUATIONS IN PROBE AREA: COMPARISON
WITH MC SIMULATIONS

Now according to �3� we have to sum up the derived
two-point correlation functions over the square probe area of
size L�L to obtain the quantity SL�t�, which we can com-
pare with the results of MC simulations.

From �28� the contribution of monomers will be given by

SL
ev�t� =

ne

L2�
�,�

g�−��4tq−1� +
nv

L2�
�,	

g�−	�4t� . �31�

The sum in �31� can be evaluated by using the identity

�
x,y

fx−y =
1

�2��d�
�− �,��d

f̂�k���
x

e−ikx�2
dk , �32�

which takes place if x and y vary within the same domain. In
particular, for parallelepiped �xi=0,Li−1�

��
x

e−ikx� = �
i=1

d sin
kiLi

2

sin
ki

2

. �33�

In case of even L the sums in �31� and �32� are connected by
the identity ��,�= 1

2�x,y.
For flip-flop pairs we can obtain explicit expression by

using the formula �time arguments are omitted�

SL
ff = ��n�00��n�00�� +

4

L
�
m=1

L−1

�L − m���n�m0��n�00��

+
4

L2 �
m=1

L−1

�L − m�2��n�mm��n�00��

+
8

L2 �
m=2

L−1

�
l=1

m−1

�L − m��L − l���n�ml��n�00�� . �34�

Thus, from �30� it follows

SL
ff�t� =

4

L
q3 exp�− q−3t� . �35�

This expression does not depend on c at level q3. The total
correlation function is given by

SL = SL
ev + SL

ff. �36�

To analyze the contribution of flip-flop jumps to fluctua-
tions it should be noted that SL

ff is a decreasing function of
size L. This point may be easily understood by the observa-
tion that displacements of only border particles �whose total
number is proportional to L� determine fluctuations of �N.
Relative contribution of flip-flop jumps to SL is shown in
Fig. 13, from which it follows that this contribution is neg-
ligibly small when ��2.5 �see also Fig. 14�. This result
agrees well with the calculations shown in Fig. 8. Having
zero topological charge, flip-flop pairs contribute insignifi-
cantly to the correlation function at times of the order or
longer than q3. On the other hand, Fig. 13 shows the ad-
equacy and good accuracy of our approach. The main short-
coming of �35�, that becomes apparent for small � in Fig. 13,
originates from the crude underestimation of concentration
of flip-flop pairs in �7�.

For large values of interaction parameter ���2.5� the
motion of monomers gives dominant contribution. It was
shown in Ref. 5 that in the case of large times the generation-
recombination processes of monomers should also be taken
into account. These processes are responsible for establishing
local equilibrium in the defect system and determine the dis-
sipation of smooth spatiotemporal inhomogeneities of the
particle density and their fluctuations. Bringing together the
approach of the present paper, which provides adequate de-
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scription of the system at kinetic scales �the characteristic
length is of the order of lattice constant and the characteristic
time is of the order of defect living time in a given site�, with
that developed in Ref. 5 for hydrodynamic scales we get a
description of fluctuations at any time, both short and long.
Thus, it becomes possible to compare theoretical data with
the results of MC simulations in the whole range of com-
puter simulations, Fig. 14. A good agreement between the
two can be seen.

VIII. DISCUSSIONS

A very simple physical picture explaining the nature of
dynamic correlations in the ordered c�2�2� phase may be
outlined from this analysis. In the case of sufficiently strong
particle-particle interaction ���2.5 or T�0.7Tc� and half
filling ��c−1/2��q� the dominant contribution to the dy-
namic correlation function is due to random walks of two
types of structural defects: excess particle monomers and va-
cancy monomers, which have concentrations q2. At the same
time, another two processes must be accounted for accurate
description of the correlation function: �1� at short times—
additional fluctuations caused by flip-flop pairs with concen-
tration 2q3; �2� at long times—faster decay of correlations
due to generation-recombination of monomers, O�q4�. If
�c−1/2��q then one of two types of monomers is in major-
ity with concentration �2c−1�, and its random walking deter-
mines the correlation function. In this case dimers with con-
centration �2c−1�2 must also be accounted, which decrease
the collective diffusion coefficient.

The decay of correlations is described by several charac-
teristic times. First of all, it is the living time of flip-flop pair
�Fig. 12�b��, which is of the order of q3. Two other charac-
teristic times are connected with the duration of monomer
jumps �q3 for excess particles and q2 for vacancies�. They are
equal to living times of transient configurations �Figs. 11�b�
and 11�c�� formed in the course of two-step defect displace-
ments. The relative contribution of these transient configura-
tions is of the order of q4. At this time scale all other short-

living configurations snapshotted in Fig. 2 also decay. At
moderate times only monomers �and their groups� are essen-
tial. The corresponding characteristic times are q for excess
particle monomers and 1 for vacancy monomers, which are
time intervals between their successive jumps. Random walk
of monomers results in power-law decay of correlations, t−1

as t→. At very long times generation-recombination pro-
cesses become essential. They speed up the decay of corre-
lations though the asymptotic behavior of the correlation
function is still t−1. This is in full accordance with some
rigorous lower estimates �Ref. 9 and references therein� and
with long-time asymptotics of relaxation of concentration
fluctuations in A+B↔C reversible diffusion-limited reaction
considered in Ref. 24 �see also Refs. 25 and 26 for details�.

Summarizing, the proposed method of essential configu-
rations makes it possible to describe the evolution of struc-

FIG. 13. Relative contribution of fluctuations due to flip-flop
jumps for �=2.7 �top� and 3.0 �bottom�, L=6. Circles and dia-
monds are MC data, while full lines are theoretical calculations.

FIG. 14. Correlation function of fluctuations in probe area per
site vs MC steps for �=2.70, c=0.5, L is indicated. 1 MCS corre-
sponds to time �4�1+e���1+e2���−1. Circles are MC data. The solid
line at short times is the correlation function of fluctuations due to
random walk of monomers only given by Eq. �31�. The dash line
�merging with solid at 20 MCs� is the same quantity with flip-flop
jumps accounted as well �Eq. �36��. The solid line at long times is
the correlation function of fluctuations from the diffusion and re-
combination of monomers from Ref. 5.
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tural defects and to obtain the dynamic correlation function
for a lattice gas with nearest neighbor repulsion in the or-
dered c�2�2� phase. Our calculations explain MC simula-
tions reported in Ref. 5 at short times and show the range of
times where the diffusional approach developed in Refs. 5–7
is not applicable.

Further development of the present work includes the ex-
tension of the method to n2 level, that is necessary for accu-
rate description of generation-recombination processes. The
main complication is that we must proceed from one-particle
description to a many-particle one.

In conclusion, our consideration shows that for known
particle-particle interaction and jump rate mechanisms, the
correlation function of particle number fluctuations in small
probe areas can be calculated for the specific model of the

ordered lattice gas. Hence the comparison of the analytical
and experimental data concerning short time correlations be-
comes possible. In principle, the information about indi-
vidual particle jumps or complex jumps accompanied with
the defect displacements may be extracted from such com-
parison. This paper may be considered as an attempt to get a
better understanding of short-time correlations in ordered
systems.
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