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Broad boron sheets and boron nanotubes: An ab initio study of structural, electronic, and

mechanical properties
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Based on a numerical ab initio study, we discuss a structure model for a broad boron sheet, which is the
analog of a single graphite sheet, and the precursor of boron nanotubes. The sheet has linear chains of sp
hybridized o bonds lying only along its armchair direction, a high stiffness, and anisotropic bonds properties.
The puckering of the sheet is explained as a mechanism to stabilize the sp o bonds. The anisotropic bond
properties of the boron sheet lead to a two-dimensional reference lattice structure, which is rectangular rather
than triangular. As a consequence the chiral angles of related boron nanotubes range from 0° to 90°. Given the
electronic properties of the boron sheets, we demonstrate that all of the related boron nanotubes are metallic,
irrespective of their radius and chiral angle, and we also postulate the existence of helical currents in ideal
chiral nanotubes. Furthermore, we show that the strain energy of boron nanotubes will depend on their radii, as
well as on their chiral angles. This is a rather unique property among nanotubular systems, and it could be the
basis of a different type of structure control within nanotechnology.
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I. INTRODUCTION

Boron is an electron deficient element! which has a rather
fascinating chemistry. Pure boron compounds neither have a
purely covalent nor a purely metallic character. This results
in a chemical versatility, which is unique among the elements
of the periodic table.

The classical bulk modifications of boron are based on
B, icosahedra. The simplest boron phase is rhombohedral
a-boron,” where boron icosahedra are centered on the edges
of a rhombohedral unit cell. A different picture arises for
boron clusters, where quasiplanar isomers turn out to be
more stable than their icosahedral counterparts. This is the
consequence of an Aufbau principle for elemental boron
clusters postulated by Boustani.? This Aufbau principle gen-
erally states that stable boron clusters can be constructed
from two basic units only: a pentagonal pyramidal B4 unit
and a hexagonal pyramidal B, unit,> and it implies
quasiplanar,4 tubular,>® convex, and spherical7 boron clus-
ters. The existence of quasiplanar clusters or “sheets” was
recently confirmed by experiment,® in perfect agreement
with earlier theoretical predictions.” Furthermore, the exis-
tence of quasiplanar boron clusters implies the formation of
boron nanotubes and/or boron fullerenes, because during
synthesis, a growing (quasi-)planar boron cluster tends to
remove dangling bonds by forming closed tubular or polyhe-
dral modifications. And indeed, recent experimental studies
demonstrate the existence of boron nanotubes.!%!!

Carbon nanotubes'? on the other hand are a structural
paradigm for all nanotubular materials and they can be seen
as cylindrical modifications of graphite, which may geo-
metrically be constructed by cutting a rectangular piece out
of a single graphene sheet and rolling it up to form a tube.
Almost all properties of carbon nanotubes can be derived
from the properties of a single graphene sheet, which means
that a profound understanding of graphite is the key to un-

1098-0121/2006/74(3)/035413(14)

035413-1

PACS number(s): 61.46.Fg, 73.63.Fg, 81.07.De, 31.15.Ar

derstand the basic properties of carbon nanotubes. The same
relation holds for boron sheets (BSs) and boron nanotubes
(BNTs): understanding the structure and the properties of
BSs will be crucial for our understanding of the basic prop-
erties of BNTs.

This paper builds on previous work!*!# to establish such a
basic connection between BSs and BNTSs, but it should be
pointed out that our previous reasoning was mainly based on
the individual structures of finite sized quasiplanar boron
clusters.*!>1% Using ab initio structural optimization meth-
ods for solid systems we could finally discriminate among
different structure models for layered boron compounds and
establish a simple model for a broad and stable BS.

After a detailed description of this search process, we will
analyze the properties of the most stable structure model.
Then we will show how these results may be used to explain
the structure, the stability, the electronic, and the mechanical
properties of BNTs. In particular the somewhat surprising
constriction of zigzag BNTs, which has been reported in a
recent publication,!” may now be clearly understood on the
basis of the elastic properties of BSs.

It must be pointed out that up to now, a broad BS, which
would be the analog of a single graphite sheet, could not be
found experimentally. But when writing up this paper we
became aware of an interesting work by Evans et al.,'® who
consider three BS models and five BNTs of small tube radii,
and the work of Cabria et al.'” who study two BS models
and three BNTs. Although our results are certainly based on
a more extensive search for stable BS and BNTs, our find-
ings for the stable BS are, from a structural and energetic
point of view, in excellent agreement with these authors.
Thus the present structure model could independently be
confirmed by three different groups. However, there is still
some disagreement about the ground state structures of
BNTs. Lau et al.,” for example, have recently reported about
structures for BS and BNTs, which are very different from
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the structure models of Evans et al. and Cabria et al., but the
present study is in clear favor of the latter.

II. METHODS

As pointed out by Pauling' elemental boron has a compli-
cated and rather versatile chemistry. Therefore the only reli-
able theoretical tools, which may allow for a proper descrip-
tion of boron chemistry, are first principles calculations.’

In order to carry out structural optimizations of BSs and
BNTs we used the VASP package, version 4.4.6.212 The lat-
ter is a density functional theory?® based ab initio code using
plane wave basis sets and a supercell approach to model
solid materials, surfaces, or clusters.?* During all of our
simulations, the electronic correlations were treated within
the local-density approximation (LDA) using the Perdew-
Zunger-Ceperley-Alder exchange-correlation functional,?>2
and the ionic cores of the system were represented by ultra-
soft pseudopotentials®’ as supplied by Kresse and Hafner.?®
The k-space integrations were carried out using the method
of Methfessel and Paxton? in first order, where we employed
a smearing width of 0.3 eV.

With the help of the VASP program, one can determine
interatomic forces, which may be used to relax the different
degrees of freedom for a given decorated unit cell. Eventu-
ally one will detect some atomic configurations, which cor-
respond to (local) minima on the total energy landscape. In
order to carry out those extensive structure optimizations in a
more effective way, we employed a conjugate gradient
algorithm,?* and we allowed all of the atomic coordinates to
relax, as well as all but one lattice parameter. This rigid
lattice parameter would fix the interlayer separation for BS
and the intertubular distance for BNTs at 6.4 A, which effec-
tively makes them stand-alone objects. The sizes of the
k-point meshes for different systems with different unit cells
were individually converged, such that changes in the total
energy were reduced to less than 3 meV/atom. In the course
of a structural optimization run, all interatomic forces were
finally reduced to less than 0.04 eV/A. The cutoff energy for
the expansion of the electronic wave functions in terms of
plane waves was 257.1 eV for the relaxation runs, and
321.4 eV for a final static calculation of the total energy.

The cohesive energies given in Tables I and II were cal-
culated from

Econ = Eping/n. (1)

E\;.q 1s the the atomic binding energy per unit cell and 7 is
the number of atoms per unit cell. Therefore in our definition
E.,, will be a positive number.

For band structures and the analysis of Fermi surfaces in
Sec. III B2 and Appendix B we used the Stuttgart TB-
LMTO-ASA package, which is a density-functional theory??
based code using short range’® linearized muffin-tin
orbitals®" within the atomic sphere approximation (ASA). It
allows static calculations of the electronic properties for pe-
riodic systems. We used the nonspin polarized LDA
exchange-correlation functional of Barth and Hedin®? and a
k-mesh of 30X 30X 3.
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TABLE 1. Detailed LDA description of the optimized lattice
structures of the flat (a) and puckered (b) boron sheets (see Figs. 2
and 3, their bond lengths, cohesive energies E, [Eq. (1)], and their
elastic moduli C,=C/; and Cy=C,, obtained after stretching a sheet
along the Cartesian x or y direction [Egs. (2) and (3)].

Sheet (a) Flat (b) Puckered

Lattice type Triangular (2D)  Orthorhombic (3D)

Lattice parameter (A)  A=1.69 A=2.82
B=1.60
C=arbitrary

Primitive vectors a =A(g , %) a,;=A(1,0,0)

a=A2,-1)  a,=B(0,1,0)

a;=C(0,0,1)

Atoms/unit cell 1 2

Atomic position (A)  R;=(0,0) R,=(0,0,0)
R,=(3A,1B,0.82)

Bond lengths (A) ag.p=1.69 ag 5=1.60
aiagonal _ | g

E.op (eV) 6.76 6.94

Elastic modulus C,=C,=0.75 C,=042

(TPa) €,=0.87

III. BORON SHEETS

A. Finding a structure model

Following the Aufbau principle® a BS is basically a qua-
siplanar arrangement of hexagonal pyramidal B, units. A pla-
nar projection of such a system will always form some kind
of triangular lattice (see Fig. 1). However, the out of plane
modulation (i.e., the puckering) remains unspecified by the
Aufbau principle. The latter has to be determined using ab
initio structural optimizations, after setting up a suitable su-
percell that will allow for a systematic generation of various
periodic puckering schemes.

The versatile chemistry of boron is reflected in a compli-
cated energy landscape, which is full of local minima. There-
fore the standard optimization techniques like the conjugate
gradients method used in this study are most likely to find
local minima, rather than global minima. Therefore we ex-
amined the energy landscape quite carefully by performing
many optimization runs, which started from quite diverse
initial configurations.

The basic puckering schemes were taken from the struc-
tures of B,,, Bs,, and Byg clusters, which are described in

FIG. 1. (Color online) Top view of a quasiplanar boron sheet. In
a planar projection the atoms form an almost perfect triangular lat-
tice. The basic structural unit is a hexagonal pyramidal B cluster,
as suggested by the Aufbau principle (Ref. 3) (see text).
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FIG. 2. (Color online) Different structure models for broad bo-
ron sheets. Each supercell (thin lines) contains 16 atoms. (a) A
simple flat sheet is metastable. (b) A simple up and down puckering
seems to be the most stable modulation. Structures (c) and (d) are
unstable. Models (b), (c), and (d) are periodic repetitions of struc-
tural motives taken from B,,, B, and B3, clusters, described in
Ref. 4.

Ref. 4. We repeated the puckering periodically in a triangular
supercell containing 16 atoms [see Figs. 2(b)-2(d)], and op-
timized the resulting structures. For the sake of comparison
we also examined a flat BS [see Fig. 2(a)].>* The flat boron
sheet (a) occupies a local minimum on the energy landscape
with a cohesive energy of 6.76 eV/atom, but small out-of-
plane elongations of individual atoms immediately cause a
puckering of the BS. This was confirmed by shifting one
atom 0.1, 0.2, and 0.4 A out of plane and reoptimizing the
resulting structures. Thus model (a) turns out to be meta-
stable (as also pointed out in Refs. 18 and 19); any thermal
vibration would lead to a permanent deformation of a flat
boron sheet. Models (c) and (d) are completely unstable, and
they both relax to structure (b). In order to scan the energy
landscape for other candidate structures we took sheet (a)
and shifted each of the 16 atoms out of the plane, employing
a random elongation Az between +0.4 and —0.4 A. Those
structures were reoptimized as before. It turns out that 8 out
of 11 optimizations led to model (b), while the remaining
three runs resulted in a metastable kinked structure with a
cohesive energy of 6.86 eV/atom (see Appendix C).

The fact that models (c¢) and (d) as well as 8 out of 11
randomly puckered sheets would relax to model (b) means
that structure (b) defines a rather pronounced minimum on
the energy landscape. The high structural stability of model
(b) is confirmed by its high cohesive energy of
6.94 eV/atom, which is the highest cohesive energy of all
BSs that we found. We thus conclude that the most suitable
structure model for a broad BS will be (b), being
0.18 eV/atom more stable (0.21 and 0.26 eV/atom in Refs.
19 and 18, respectively) than an unrealistic flat BS. The
puckering itself seems to be an important mechanism to sta-
bilize the BS,'® which will be examined in more detail in
Sec. III B.

In order to determine the lattice structures of (a) and (b)
we performed LDA calculations, where we would fix the unit
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cell of each system for a series of Cartesian lattice constants
A or B, whereas all of the internal (atomic) degrees of free-
dom were allowed to relax. The resulting total energies for a
given set of lattice constants were fitted to polynomial curves
E(A) and E(B), from which we determined the equilibrium
properties of the systems. The results are summarized in
Table 1. The diagonal elements of the elastic tensor C,=C/;
and C,=C, may be interpreted as a first approximation to a
macroscopic Young’s modulus. They were calculated as fol-
lows:

Ay L?ZE(A)>

Cx"Bh( aA* ], @
By dzE(B)>

Cy_Ah< B> /g’ ®)

h is the height of the BS, and it was defined as h=Az
+2R,qw; Az is the puckering height of the sheet and R, 4y is
the van der Waals radius.>* A, and B, are the equilibrium
lattice constants.

The optimized planar model (a) seems to form a triangu-
lar lattice with one atom per unit cell and a single lattice
constant A, which is in the range of a typical boron-boron
bond length A=ap 3 =1.69 A. But within the accuracy of the
given methods, we cannot really decide whether the lattice
structure is perfectly triangular or slightly less symmetric.
Assuming perfect triangular symmetry the two elastic moduli
C, and C, are equal, and they are surprisingly big: C,=C,
~750 GPa. Which means that even if the flat BS is meta-
stable compared to other model boron sheets, it nevertheless
has an extraordinary high stiffness. In Appendix B we will
analyze model (a) in more detail.

In Fig. 3 we depicted the unit cell of model (b). It consists
of two basis atoms, and its planar projection is almost trian-
gular, but not quite so. It is common to describe such a
system with a face centered rectangular unit cell with lattice
constants A and B. For A/B=3=1.732 a planar projection
of the system would be equivalent to a triangular system. In
our case A/B=1.76, which is a small, but noticeable depar-
ture from triangular symmetry. Due to a puckering height of
Az=0.82 A, such a system might best be described using a
three-dimensional orthorhombic unit cell. The corresponding
lattice parameters and bond lengths can be found in Table 1.5

B. Properties of the model boron sheet

In this section we will analyze the properties of model (b),
which turns out to be the most stable structure for broad BS.
Therefore, whenever we write “boron sheet” (BS) in the fol-
lowing, we will only refer to model (b).

In order to compare the BS with a known boron structure
we also calculated the cohesive energy of the a boron, which
turns out to be 7.51 eV/atom. This corresponds to an ener-
getic difference of 0.57 eV/atom (0.58 and 0.57 eV/atom in
Refs. 18 and 19, respectively), which is huge, but one has to
take into account that we are comparing a single boron sheet
with a bulk reference structure.
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FIG. 3. (Color online) The orthorhombic unit cell of model (b)
with two basis atoms (see Table I). In a xy-projection atom 1 is
located at the corners of a rectangular unit cell, while atom 2 is
located at the center of the unit cell. Along the z direction the boron
atoms will generate a simple up and down puckering, with pucker-
ing heights around Az=0.82 A.

1. Mechanical properties

The elastic modulus of model (b) strongly depends on the
stretching directions. In Table. I we roughly find that C,
~2C,. How can one explain those rather obvious anisotro-
pies?

To this end, let us have a look at the charge density of the
BS (see Fig. 4). We clearly observe some parallel linear
chains of o bonds lying along the armchair direction. Their
bond length is afz=1.60 A. At lower densities (p
<0.7 e/ A3, not displayed) a largely homogeneous distribu-
tion with a rather complex shape appears, which may be
assigned to multicenter bonding typical for boron materials.
An analysis of the electron localization function®® (ELF)
leads to similar results, such that we obtain the following
preliminary picture of the bonding: on a first level the sheet
is held together by homogeneous multicenter bonds, but on a
second level there are strong o bonds lying only along the
armchair direction.

Due to the strong o bonds, any stretching of the BS along
the armchair (=y) direction will be much harder than a simi-

zigzag

o-bonds

FIG. 4. (Color online) Orange (gray): charge density contours of
the boron sheet [model (b)] at 0.9 ¢/A3. One observes parallel lin-
ear chains of sp hybridized o bonds lying along the armchair
direction.
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FIG. 5. The band structure of the model BS. The fatness of the
bands indicates their sp character, and it shows that the o bonds in
Fig. 4 must be of sp type. The Fermi energy E lies at E=0, G is the
I' point.

lar stretching along its zigzag (=x) direction, where only the
slightly weaker multicenter bonds are involved. These results
are quite different from the results of Evans et al., who con-
jecture that the o bonds are strong but soft.'® But here we
clearly observe that the o bonds are strong and stiff. How-
ever, other basic findings of Evans et al. are in good agree-
ment with our results for flat and puckered BSs.

In general the elastic moduli involved are quite high; the
stiffness of the o bonds along the armchair direction is com-
parable to the stiffness of a graphene sheet. Furthermore, the
broken triangular symmetry of the BS’s 2D lattice structure,
as mentioned in Sec. III A, is another immediate conse-
quence of the anisotropic bond properties.

Evans et al. also found that BNTs of different chiralities
have different stiffnesses.'® This can be confirmed by our
bonding picture, although our results suggest that zigzag
BNTs should be somewhat stiffer than armchair BNTs, while
Evans et al. noted the opposite (the armchair and zigzag
direction are swapped in their and our treatment, see Appen-
dix A 1). We thus conclude that the relation between the
microscopic elastic modulus and the macroscopic Young’s
modulus must be rather complicated in the case of BS and
BNTs.

2. Electronic properties

The two-dimensional band structure of the BS EBS(kx,ky)
is plotted in Fig. 5 along lines of high symmetry. The BS is
metallic, as there are two bands crossing the Fermi energy,
which is in perfect agreement with earlier studies of BSs.!3!>

In order to find out about the hybridization of the o
bonds, we plotted the corresponding amount of s and p,
character indicated by the fatness of the bands.>” We do not
find individual dispersions of s or p bands, and the lowest
lying bands show dispersions which share s and p, character.
That means they are bands consisting of sp hybridized orbit-
als:

1
lspay=—=(s)+p,)).
V2

035413-4



BROAD BORON SHEETS AND BORON NANOTUBES: AN...

Y U

ky
=

X

FIG. 6. (Color online) The two-dimensional Fermi surface of the
boron sheet. It consists of two contours in red (black) and yellow
(gray), which correspond to the two bands crossing the Fermi en-
ergy in Fig. 5.

1
Ispy) = E('” -lpy).

The directional coincidence of the p, orbitals with the o
bonds in Fig. 4 identifies them to be of sp type. The strength
of the o bonds originates from the fact that the bands lie
5 to 15 eV below the Fermi energy.

The physical picture to describe the multicenter bonds
seems to be much more complicated and it is still under
investigation (see Appendix B). So far we tried to analyze
the multicenter bonds using a simple tight binding model,
which comprises the remaining p, and p, orbitals as basis
states. But it turned out that this treatment can only partially
reproduce the conduction bands in Fig. 5; probably a larger
basis set is needed.

In Sec. Il A we indicated that the puckering has a stabi-
lizing effect for the BS. Now we are in a good position to
explain this observation: any flattening of the BS would
cause p, orbitals to interfere with the o bonds and eventually
destroy them. An analysis of the charge density and ELF of a
flat BS (see Appendix B) indeed shows that there are no o
bonds involved, but only multicenter bonds.

The existence of sp rather than sp? hybridization in a
quasi-two-dimensional layered structure is somewhat sur-
prising. Earlier studies of quasiplanar boron clusters®!¢ still
presumed the presence of sp? hybridization. We think that
these assumptions should be reconsidered.

Finally we want to discuss the two-dimensional Fermi
surface Ex=E®S(k,,k,) of the BS in Fig. 6. It obviously con-
sists of two contours, which are dispersed throughout the
Brillouin zone. This clearly shows the metallic properties of
the BS.

PHYSICAL REVIEW B 74, 035413 (2006)

.08 9,0) ¢

FIG. 7. (Color online) The cross sections of different isomers of
a free standing (9,0) zigzag boron nanotube. The big spheres stand
for the upper atoms and the small ones for the lower atoms (with
respect to the direction of the tube axis). The a and y isomers are
the free standing counterparts of the (9,0)C and (9,0)B tubes in Ref.
17, respectively.

IV. BORON NANOTUBES

In Sec. IV B we will show that the structure of BNTs is
strongly related to the structure of the BS, such that the latter
may be seen as a direct precursor of BNTs. Therefore it will
be interesting to try to characterize BNTs simply by referring
to the BS. The mathematical details of such a relation are
discussed in Appendix A, and when proceeding along these
lines, a BNT may be characterized by two numbers (k,[)
with k,[=0.

For the ab initio simulation of BNTs we would start from
a series of initial structures with smooth surfaces, which
were optimized in a triangular BNT bundle (rope). Here the
strong tube-tube interactions (see Sec. IV A) distort the sur-
faces and naturally induce some puckering. The energy of
this configuration is Eor. In order to simulate free standing

coh *
(individual) BNTs we would then increase the intertubular

M.{MT

‘p
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0o @
N N

(10,0) @ (10,0 B

j““‘\.
TR
V%\—o Nm«‘

12,0) 12,00 B

FIG. 8. (Color online) Cross-sectional view of various isomers
of free standing (10,0) and (12,0) zigzag boron nanotubes. Again
the big spheres mark the upper atoms and the small ones mark the
lower atoms. The (10,0)a and (10,0)8 isomers are free standing
counterparts of the (10,0)B and (10,0)C structures in Ref. 17,
respectively.
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TABLE II. Structural data and energies of different isomers of free standing boron nanotubes: (k,1), (n,m), (i,j): different chiral indices

axial _diagonal

for the same tube type (see Appendix A 1); n: number of atoms per unit cell; Isom.: label of isomer; C;: rotational symmetry; ag g, ag g
agireamferential, 1oron-boron bond lengths in axial, diagonal, and circumferential direction of a nanotube the superscript o indicates that this

bond is a o bond, superscripts o,i and o, 0 refer to inner and outer rings, respectively; R+AR: mean radius of a nanotube [Eq. (4)] and

maximal radial variation [Eq. (5)]; E|

in¢ . cohesive energy of a free standing (individual) nanotube [Eq. (1)]; E-¢—

coh Coh this energy is gained

when the same nanotube is arranged in a bundle (rope). All energies are given in eV/atom and all lengths are given in A.

k) (em)Gj)  n Tsom. € alsl gdgend Greumierenta R=AR BN ES-EMS

(9,00  (9,00/(9,9) 18 a C; 161 1.77,1.83,1.86 3.86+1.09 6.93  +0.07
B C, 1617 167-1.87 6.92
y  C; 1617 181,1.82 3.83+0.51 691  +0.04
s Cy 1617 183 4.17£0.39 6.83
e C; 1.64° 1.67,181 439+029 6.78

(10,00 (10,0)/(10,10) 20 « C, 1.60° 1.79,1.81,1.82,1.87 384+1.97 691  +0.01
B C, 1617 1.82,1.83,1.84 4.08+1.18 690  +0.07
y Cp 1617 1.83 4.60£041 6.85

(12,00 (12,0)/(12,12) 24 a Cg 1.61° 1.73,1.83,1.85 505+0.65 690  +0.02
B Cp, 1617 1.82 548+041 687  +0.05

0,12)  (4,4)/(12,0) 24 a Cg 1.69 1.597,1.69,1.85 2.64+0.68 6.68  +0.3

(0,18)  (6,6)/(18,0) 36 a Cg 1.70,1.74 1.567,1.60%,1.71,1.75 4.48+0.57 674  +0.27
B Ci 1.75 1.537,1.76 474034 6.72

024) (8.8)/(24,00 48 a Cg 1.74,1.75 1.54%,1.5774 1.649°,1.72,1.74  5.99+0.58 6.81  +0.3

distance to 6.4 A, and optimize those configurations again
while keeping the intertubular distances fixed. The energy
here is EM. [E™ and E™ are defined after Eq. (1).3%]

All free standing BNTs are shown in Figs. 7, 8, and 11
and the structural data and energies are collected in Table II.

Besides their bond lengths and rotational symmetries we also

stated the geometrical mean radius of each tube R, as well as
the maximal radial variation AR, which were defined as

_ Rmin+Rmax
R=———, 4
. )
AR =R™ _ R =R — R™", ®)

where R™™ and R™* are the distances of the innermost and
the outermost atoms from the center of the nanotube, respec-
tively.

For many (k,/) BNTs we found more than just one iso-
mer. Therefore each BNT was also given a Greek index
which labels different isomers. The latter were ordered ac-
cording to their cohesive energies, i.e., (k,l)a will denote the
most stable isomer, (k,l)3 would be less stable, and so on.

A. Free standing nanotubes vs nanotube ropes

In Table II the “inter-tubular energy” EXPC—E™ is the
energetic difference between a free standing BNT and its
bundled counterpart. One can see that it varies significantly
from tube to tube. The intertubular energy seems to depend
quite strongly on the structure type, the relative orientations
of adjacent tubes in a rope, and the specific type of surface

puckering. Furthermore, the intertubular distance in different
bundles, which was defined as the minimal separation be-

tween two apex atoms on adjacent nanotubes, varies between
1.7 and 3.5 A in our simulations.

It is obvious that the tube-tube interaction in BNT bundles
(ropes) is completely different from what is known from car-
bon nanotubes, where the intertubular interaction is of van
der Waals type. The latter is certainly much weaker, indepen-
dent of the various structure types, and the intertubular dis-
tances are always around 3.4 A. BNTs on the other hand may
have covalent intertubular bonds,'”>° and this leads to a de-
cent intertubular bonding energy that depends quite strongly
on structural details.

It is interesting to note that the intertubular energy of (0,/)
BNTs (armchair types) is significantly higher than for (k,0)
BNTs (zigzag). In Sec. IV B 2 we will try to give an expla-
nation for this rather complex bonding scenario.

At this point, it will be worth noting that the original
motivation for this paper was a recent study by ourselves,
where we reported bundled zigzag BNTs that were somewhat
constricted"’ (we define the concept of constriction at the
end of Sec. IV B 1). We conjectured that this constriction
would most likely be caused by the arrangement of the tubes
in a bundle, where the tube-tube interactions will force the
tubes to have geometrical shapes different from free standing
BNTs. Now the free standing counterparts of the constricted
(9,0)C and (10,0)C BNTs from Ref. 17 are the (9,0)a* iso-
mer in Fig. 7 and (10,0)8 in Fig. 8. To our surprise the
constriction would not disappear after isolating the tube. And
even after substantially deforming the (9,0)a structure by
homogeneous shrinking, by blowing it up, or by randomly
elongating atoms out of their equilibrium position with a
maximum amplitude of 0.3 A, the free standing (9,0)a
BNTs would always relax to their constricted forms. This
finding is in clear contrast to our previous hypothesis, and it
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FIG. 9. (Color online) Zigzag boron nanotubes and the presence
of straight o bonds along their axial direction, which are indicated
by orange (gray) charge density contours at 0.9 e/ A3. Due to a lack
of stiff o bonds along the circumferential direction, this type of
nanotube might not be stable.

raises the important question where those constrictions fi-
nally come from. We will try to give an answer to this ques-
tion in Sec. IV C.

B. The structure of free standing boron nanotubes
1. Zigzag nanotubes

For zigzag BNTs we found various isomers. Any zigzag
BNT may be seen as a BS that was rolled up along its zigzag
direction (see Fig. 4 or 14). Thus the linear chains of o bonds
will lie along its axial direction and they will remain straight.
These basic bonding properties were typical for all zigzag
BNT that we studied so far. We just show two typical ex-
amples in Fig. 9. Here the bond length of the o bonds is quite
similar to the bond length in the BS, as a§ z=a>3=1.61 A
[the only exception we found was (9,0)e].

The tubes (9,0)6, (10,0)y, and (12,0)B are ideal BNTSs,
which denotes the fact that they were initially constructed by
a cut and paste procedure described in Appendix A 1, and
then reoptimized using ab initio methods. Their structure is
highly symmetric and we find two bond lengths, which are
almost identical to the bond length in the BS. The puckering
height Az=2AR=0.8 is also quite similar to the BS.

However, an ideal BNT does not seem to be the ground
state of a real zigzag BNT, and we found less symmetric
isomers that were higher in cohesive energy. It should be
noted that zigzag tubes with a smooth surface were not con-
sidered here because their cohesive energies are significantly
lower than those of puckered BNTs. As an example for the
complex shape of zigzag BNTs one may study (9,0)e, which
is the least stable isomer of all zigzag BNTs. (9,0)€ has a
hexagonal cross section, which probably arises from the tri-
angular supercell into which it was put. Its sides may be seen
as parts of a flat BS, whereas the corner pieces are parts of a
puckered BS. From Fig. 9 we notice that the o bonds along
the sides are slightly more delocalized than the ones located
at the corners. This means that any flattening would destabi-
lize the sigma bonds, and the whole tube is highly meta-
stable. [A similar but squarelike structure was found by
Evans et al.,'® which they labeled (i, j)=(6,6), but we think
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FIG. 10. (Color online) Three basic structure elements. The
cross sections of the most stable zigzag boron nanotubes in Figs. 7
and 8 may be composed using these elements, only.

that this structure is highly metastable as well.] Thus the
question will no longer be if zigzag BNTs are puckered, but
how they are puckered.

The cross sections of the isomers with a high cohesive
energy may be built from three basic structure elements that
are shown in Fig. 10. The three-atomic structure element is
directly related to the puckering of the BS (compare Fig. 4)
whereas the four- and five-atomic elements are just special
combinations of three-atomic structure elements. We see that
the structure of zigzag BNTs is strongly related to the local
structure of a simply puckered BS, but their general cross-
sectional geometries seem to be more complicated and less
symmetric than in the simple case of an ideal BNT. This loss
of symmetry can also be extracted from the spectrum of di-
agonal bond lengths, which are associated with multicenter
bonds. Those bond lengths are not equal to afiagonal of the BS
(see Table I), but span a whole range adBlf‘Bg(’"a ~1.7-19 A.

Some of the most interesting structures are (9,0)a,
(9,0)8, and (10,0)a, which have cross sections that are far
from being circular. Nonetheless they exhibit high cohesive
energies Because of the observed unusual shapes of zigzag
BNTs we assume that the multicenter bonds obviously pos-
sess a high directional flexibility, but at the same time they
are also very stiff (C,=0.42 TPa in Table I). Therefore it
seems as if these bonds have some jointlike properties, i.e.,
they are easy to turn, but hard to tear.

In the following we will call a zigzag BNT constricted, if
it is composed of several five-atomic structure elements. In
our work the (9,0)a and the (10,0)8 isomers are con-
stricted. A constricted zigzag BNT was also found by Evans
et al.'® There it is labeled as a (i,7)=(8,8) nanotube, and it
corresponds to our (10,0)8 structure without the two hori-
zontal three-atomic elements.

2. Armchair nanotubes

When rolling up a BS along its armchair direction, the
puckered sheet (see Fig. 4) will be transformed into a tube
that has inner and outer rings, and the o bonds will lie along
its circumferential direction. On the outer rings the length of
the o bonds will be increased and on the inner rings their
length will be reduced. In Fig. 11 we see that for three sys-
tems discussed in this study, the o bonds do really lie along
the circumferential direction, and for the (0,18) and (0,24)
systems an inner and an outer ring can clearly be identified.

In contrast to zigzag BNTs, for the armchair types we did
not find several isomers, and we just discuss one ideal BNT,
which is the (0, 18)3 isomer. In analogy to zigzag BNTs, we
found that this ideal BNT corresponds to a local energy mini-
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FIG. 11. (Color online) Top and side view of various free standing armchair boron nanotubes and the presence of o bonds, which are
indicated by orange (gray) charge density contours at 0.95 ¢/A3. All armchair nanotubes have bent o bonds along the circumferential
direction, which basically generate the strain energies of the tubes. The black bar on the right indicates the height of a supercell in axial
direction that was used for our simulations; for aesthetical reasons we actually displayed three identical units cells.

mum, and the (0,18)a isomer of lower symmetry is
0.02 eV/atom more stable.*! The latter has o bonds solely
along the inner rings, where the bond lengths are 1.56 and
1.60 A. Along the outer ring, where the B-B distances (1.71
and 1.75 A) are significantly longer, the curvature effect has
destroyed the o bonds.*?

The (0,24) system has similar properties, but here the cur-
vature is smaller, and there are six additional weak o bonds
along the outer rings with a bond length of 1.64 A. For even
larger radii we expect the outer rings of armchair BNTs to
develop o bonds between every single atom.

The radius of the (0,12) BNT is quite small, which makes
it extremely difficult for the structure to align its o bonds.
We see that this tube possesses a different geometry, and
even along the stiffer rings there are six instead of 12 o
bonds. It is obvious that for armchair BNTs with smaller and
smaller radii, the curvature effect will successively destroy
the circumferential o bonds. For the smallest possible BNTs
there will probably be no o bonds at all, and the surface of
the tube will become smooth. This agrees with earlier studies
by ourselves™!? and with the work of Evans et al.,'® where
some armchair BNTs of small radii were studied and found
to be smooth.

Any destruction of circumferential o bonds within arm-
chair BNTs of small radii will release electrons that can alter
their chemical properties. In Sec. IV A we observed that the
intertubular energy for armchair BNT ropes is much higher
than for zigzag BNT ropes. Now a possible explanation
would be that the released electrons in armchair BNTs in-
duce an enhanced reactivity. In a rope of BNTs, this en-
hanced reactivity will lead to strong intertubular bonding for
armchair BNTs of small radii. In zigzag BNTs the reactivity
is lower, as a maximum number of o bonds can always be
achieved, due to the fact that curvature effects will not be
able to weaken the axial o bonds. Therefore we hypothesize

that small sized armchair BNTs will have a higher reactivity
than zigzag BNTs, and that this reactivity will further de-
crease with increasing radii.

This reactivity, which leads to the formation of intertubu-
lar bonds in BNT ropes, could be very useful when trying to
embed BNTs into polymers,'® where strong chemical bonds
between the nanotubes and the polymer matrix are needed in
order to improve the mechanical properties of the composite.

C. Strain energy

Let us now compare the cohesive energy of every BNT
(E™ from Table II) with the cohesive energy of the puckered

coh

BS (EZ, from Table I). This energy difference will be called

0|
strain energy:

Egrain(k, 1) = Eoy — Ens (k. 1). (6)

It is the amount of energy that is needed to roll up a BS into
a BNT. The microscopic origin of the strain energy in nano-
tubes are bent o bonds along the circumferential direction of
the tubes. These bonds have a strong tendency to jump back
into a straight orientation, which generates a tension that
may be quantified by the strain energy of the systems. Such
a tension will stabilize the tubular shape, or to put it more
clearly: it will make the nanotube round.

The strain energies of different (k,/) BNTs as a function
of their mean radii [Eq. (4)] is plotted in Fig. 12. For the sake
of comparison we also show the universal strain energy
curve for carbon nanotubes. We call it universal because the
strain energy only depends on the radius, but not on the
chiral angle (chirality) of the nanotubes: ES i =ES ... (R).

As the BNTs are all puckered, there is some variability in
the proper choice of a mean tubular radius. Since the strain
energy is related to the position of the o bonds, it makes
sense to define the mean radius of armchair BNTs as
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FIG. 12. (Color online) The strain energy of a isomers as a
function of the mean radius R [Eq. (4)]; for armchair boron nano-
tubes we used R, [Eq. (7)]. In orange (gray) we show the universal
strain energy curve for carbon nanotubes ((J); the energy obviously
depends on their radii, but not on their chiral angles. For armchair
boron nanotubes (<) we find a similar curve, but those boron tubes
have more strain energy. For zigzag boron nanotubes (A) we cannot
really plot a strain energy curve, as different nanotubes of different
radii are almost isoenergetic. Ideal zigzag boron nanotubes (O)
have less strain energy than their armchair counterparts, but they are
metastable.

min max
_Ry 4R,

Ry > )

Here R™" and R™ are the distances of the innermost and the
outermost atoms sharing o bonds, which is measured from
the center of the nanotube.

In earlier works we studied the elasticity of armchair
BNTs with a tight-binding method'® and reported a typical
strain energy curve lying below the one of carbon
nanotubes.*> Now, using an ab initio method, we also found
that armchair BNTs have strain energy, but it is higher than
for carbon nanotubes.

Different ideal zigzag BNTs in Fig. 12 have rather low
strain energies. Here none of the o bonds has to be bent, and
the strain energy should only come from the multicenter
bonds. But those ideal BNTSs are metastable, and isomers of
lower symmetry have higher cohesive energies. Thus for the
zigzag « isomers no strain energy curve may be plotted as
they are more or less isoenergetic. It seems that zigzag BNTs
can release some or all of their strain energy by lowering
their symmetry and undergo internal deformations (see also
Ref. 18), possibly mediated by the jointlike properties of the
multicenter bonds.

In summary we see that the strain energy in BNTs is
mainly caused by bent o bonds lying entirely (armchair) or
only partially (chiral BNTs) along the circumferential direc-
tion. The multicenter bonds are always present, but they
seem to have no serious effect on this. The apparent absence
of strain energy in zigzag BNTs is caused by the fact that the
linear o bonds lie along the axial direction, only. But without

PHYSICAL REVIEW B 74, 035413 (2006)

smoothing bonding strains, the zigzag tubes are free to take a
multitude of cross-sectional morphologies. This explains the
number of different isomers that we found for (9,0), (10,0),
and (12,0) zigzag BNTs and their bizarre shapes. The con-
striction of zigzag BNT, first reported in Ref. 17, is a clear
consequence of the absence of strained bonds within zigzag
BNTs. Armchair BNTs in turn, which are geometrically sta-
bilized by their strain energy, do not seem to have this kind
of isomerism.

Chiral BNTs may be thought of as a certain combination
of structural elements from armchair and zigzag tubes de-
fined by a certain chiral angle. Therefore we suppose that
there will be a separate strain energy curve for every chiral
angle lying in-between the armchair and the zigzag curves.
The strain energies themselves will depend on the radii and
on the chiral angle of a BNT: E5 . =E® . (R, 6). This seems
to be a unique property among all nanotubular materials re-
ported so far.

But it remains open whether the strain energy of zigzag
BNT will be completely absent, or just significantly smaller
than for armchair BNTs. The present results are in favor of
the former hypothesis. As carbon nanotubes with large diam-
eters (and very small strain energies) are susceptible to a
structural collapse,*** it is possible that without a significant
amount of strain energy the zigzag nanotubes could be geo-
metrically unstable. Given some thermal fluctuations or
strain they might collapse just like big diameter carbon nano-
tubes. However, such a collapse might also be prevented by
a possible energy barrier, which should be proven to be ab-
sent in order to support this collapse hypothesis.

Finally we want to point out that the constriction of zig-
zag BNTs could be an important intermediate mechanism
during the possible collapse of a zigzag BNT, which might
allow for the formation of B, icosahedra, that are the basic
building blocks of all previously known bulk boron struc-
tures. The five-atomic element (see Fig. 10) forms part of an
imaginary zigzag 6-ring, similar to the six apex atoms of a
B, icosahedron, as seen along each of its threefold axes.!”

V. SUMMARY AND CONCLUSIONS

In this paper we studied a number of different structure
models for broad boron sheets (BSs). All of them are metal-
lic, and we found that for a 16 atom supercell, the model
with a simple up-and-down puckering will be the most stable
one. Large quasiplanar boron clusters with a similar structure
[By,,* Bug,"” and Byg'®] were already reported before. They
may now be understood as a first indication for the onset of
periodicity in finite layered boron systems, and thus they are
an independent confirmation of the current structure model.

A flat BS has a rather high stiffness, and it seems to be
held together primarily by multicenter bonds (see Appendix
B). Although the sheet is less stable than previously known
bulk phases of boron, as shown here and elsewhere,'3!° the
model sheet could be the ideal theoretical tool for studying
complex multicenter bonds.

After describing the lattice structure of the stable BS, we
have analyzed its band structure, the corresponding charge
densities, and the electron localization function. This would

035413-9



JENS KUNSTMANN AND ALEXANDER QUANDT

lead to the following preliminary picture of the chemical
bonding: on the one hand the sheet is held together by ho-
mogeneous multicenter bonds, on the other hand there are
linear sp hybridized o bonds exclusively lying along the
armchair direction of the sheet. The existence of sp hybrid-
ization in quasiplanar BS is somewhat surprising given the
fact that earlier studies would always claim sp” hybridiza-
tion. The rather anisotropic bond properties of the sheets lead
to different elastic moduli C, and C, for stretching the BS in
the x and in the y direction. Furthermore, puckering of the
BS, which breaks the triangular symmetry, may be under-
stood as a key mechanism to stabilize the sp o bonds. Our
results indicate that the sheet analyzed in this study is the
boron analog of a single graphene sheet, a possible precursor
of boron nanotubes (BNTs), and we wonder whether broad
BSs might exist in nature.

Constructing BNTs from the BSs by a cut and paste pro-
cedure will generate ideal BNTs (see Appendix A). Because
the underlying two-dimensional lattice structure is rectangu-
lar rather than triangular or hexagonal, it follows that the
chiral angle 6 ranges from 0° to 90° (6=0°: zigzag, 6=90°:
armchair), and that chiral BNTs do not have an axial trans-
lational symmetry. We therefore predict the existence of he-
lical currents in ideal chiral BNTs (Appendix A 2). Further-
more, we presented a band theory for ideal BNTs, employing
their helical symmetry, and showed that all ideal BNTs are
metallic, irrespective of their radius and chiral angle (Appen-
dix A 3). BNTs could therefore be perfect nanowires, supe-
rior to carbon nanotubes.

In an independent study of armchair and zigzag BNTs we
found that ideal BNTs do not form the ground state of BNTs,
and we identified structures of lower symmetry, which are
higher in cohesive energy. The symmetries of real BNTSs still
remain to be determined, and the ideal BNTs may be seen as
rather close approximants to real BNTs.

We also found that all BNTs, except small radius armchair
types, had puckered surfaces, and o bonds along the arm-
chair direction of the primitive lattice. The existence and
mutual orientation of these o bonds is crucial to understand
the basic mechanical and energetic properties of BNTs be-
cause the strain energy of the tube is mainly generated by
bending those o bonds. The multicenter bonds seem to have
no real effect on the strain energy. They are likely to have
jointlike properties (they are easy to turn but hard to tear),
which allows for a certain flexibility of these bonds, and any
bonding strain could immediately be released through inter-
nal relaxations.!®

We showed that armchair BNTs, where the o bonds lie
along the circumferential direction, will have rather high
strain energies, whereas zigzag BNTs, where the o bonds
will lie along their axial directions, will have nearly vanish-
ing strain energies. Thus BNTs have a strain energy that
depends on the nanotube’s radius R as well as on the chiral
angle 0: E5_. =E> . (R, 6). We suppose that there will be an
individual strain energy curve for every chiral angle lying
between the armchair and the zigzag curves. This is a unique
property among all nanotubular materials reported so far.

This intriguing feature could even allow for some struc-
ture control in nanotechnology. For carbon nanotubes, the

. . . e qes C
strain energies do not depend on their chiralities [Eg,,;,
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=ES .(R)], and thus the experimentalists may control the
radius, but not the chirality of carbon nanotubes, although
the latter will determine the electronic properties of such
materials. With the experimental techniques at hand today
one might be able to walk along the energy axis by tuning
the reaction conditions, and along the radius axis by synthe-
sizing nanotubes within porous templates with well-defined
pores sizes. This way it could be possible to synthesize BNTs
of a specific type only. The connection to carbon nanotubes
may occur via intramolecular junctions,*® allowing for a con-
trolled layout of carbon nanotubes as well.

The rather low strain energies in zigzag BNTs lead to a
whole bunch of possible structural isomers, as a nanotube
without any significant amount of strain energy will not be
able to maintain a circular cross section. This can lead to a
certain constriction of zigzag BNTs,!” and we even hypoth-
esize that zigzag BNTs could be too unstable to really exist
out in nature, provided that there will be no significant en-
ergy barrier left to prevent a collapse.

Armchair BNTs on the other hand are geometrically sta-
bilized by their strain energies, but for armchair BNTs of
rather small radii, the BNTs are unable to maintain a puck-
ered structure necessary to align the circumferential o bonds.
In agreement with earlier studies>!'>!® we expect them to
flatten out and build up a smooth surface. Furthermore, we
hypothesize an enhanced reactivity of small radius armchair
BNTs in comparison to zigzag BNTs, which could be useful
for embedding BNTs into polymers.'8
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APPENDIX A: THE MATHEMATICAL DESCRIPTION OF
IDEAL BORON NANOTUBES

1. Wrapping vector

The geometrical construction of BNTs from BSs is similar
to the construction of carbon nanotubes from a graphene
sheet:3 the basic tubular structure is characterized by a
wrapping vector W that defines a rectangular area on the BS,
which is rolled up to a cylinder such that W becomes the
circumference of the nanotube and its radius will be R
=|W|/2m (see Fig. 14). We will call any BNT, whose struc-
ture may be described by such a construction, an ideal boron
nanotube.

Due to the fact that a proper structure model for BS was
missing for a long time, there remains some confusion in the
literature about a proper reference lattice structure. In the
work of Cabria et al.'® and in earlier works by us'>!7 (and in
full analogy to the construction of carbon nanotubes) the
BNTs are related to a honeycomb lattice and defined the
wrapping vector W" as
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W = (n,m) = na® + ma5, (A1)
a?gz are the primitive vectors of a honeycomb lattice and n,m
are integers. Here each unit cell has one additional atom at
the center of the honeycombs, thus consisting of three rather
than two atoms (see Fig. 13). Gindulyte et al.,® Evans et
al.,'® and some earlier work of ours!? relate their BNTS to the
simple triangular lattice, having only one atom per unit cell:

W'=(i,j) = ia} + ja5, (A2)
atL2 are the primitive vectors of a triangular lattice, and i,j
are integers. W" and W' can be transformed into each other
by using*®

(n,m)— (i,j) = (n+2m,n—m), (A3)

(ir]) > (nm) = %(i +2ji-)). (A4)

From Fig. 13 we see that both definitions are based on primi-
tive vectors, which have different orientations.*® This leads
to the rather unsatisfactory situation that armchair and zigzag
directions are swapped in both descriptions (see Table II for
example). Cabria er al. found that all (n,0) zigzag and all
(2n,2n) armchair BNTs have puckered surfaces, while the
(2n+1,2n+1) armchair tubes shall be smooth due to the fact
that an odd number of boron rows along the tube surfaces
does not allow for the formation of the simple up and down
puckering.'” We think that these results are not an intrinsic
property of BNTs, but rather a consequence of an unsuitable
reference lattice system that is unable to properly describe
the puckering of the boron sheet, see Fig. 13. Furthermore,
the puckering will break the hexagonal symmetry underlying
the honeycomb and the triangular lattice.

Therefore we convinced ourselves that these descriptions
are not really appropriate to classify BNTs. On the basis of
the current BS model we would like to put forward a differ-
ent way of describing BNTs, based on a rectangular lattice
underlying the two-dimensional structure of the BS.

We define the wrapping vector W' as

W' = (k,]) = ka'| + la}, (A5)
k,l are integers, and a|=A(1,0) and a5=B(0,1) are the
primitive vectors of the rectangular lattice (see Figs. 13 and
3); A and B are the lattice constants from Table I. In analogy
to the Dresselhaus construction for carbon nanotubes,>® we
define the chiral angle € as the angle between the vectors W*
and a}, i.e., 6 is measured with respect to the zigzag direction
coinciding with @] (see Fig. 14).

The categorization of BNTs will be different from other
classification schemes because the reduced symmetry of a
BS increases the number of possible types of nanotubes, as
the range for the chiral angle will be 0° < #<90°, and for
the chiral indices (k,l) we find that k,/=0. Zigzag BNTs
will now correspond to #=0° and (k,l)=(k,0), and armchair
BNTs will correspond to #=90° and (k,1)=(0,1).
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W" and W' cannot directly be converted to W', as they are
defined for lattices with different symmetries. For the achiral
types, on may use the following analogy (for examples see
Table II):

zigzag: (k,0)" < (k,0)"
— (k’ k)t’
armchair: (0,0)" < (1/3,1/3)"

—(1,0)". (A6)

2. Translational vector

The tubular unit cell of an ideal BNT, being the red (gray)
area in Fig. 14, may be defined properly by a wrapping vec-
tor W' [Eq. (A5)] and the so-called translational vector T,
which is perpendicular to W™

T=(t,1)) =t,a| + t,a;,

. —numerator(f) : k#0
e 1 L k=0,
denominator(f) : k # 0

Ih=
? 0 k=0,

2

=red — .
f=re uce(kA2>

t,,t, are integers and reduce (r) should indicate that the frac-
tion » must be reduced before determining its numerator and
denominator.

Let us consider the length of the translational vector 7.
For the achiral BNTs |T] is particularly small: for all (k,0)
zigzag types we have T=(0,1), and for (0,/) armchair BNTs
T=(1,0). For the chiral types T depends on the ratio B>/A?
[see the last line of Eq. (A7)]. Using A=2.819 and B
=1.602 we obtain reduce (B2/A%)=2566404/7 946 761.
Therefore the coefficients #; and ¢, are really huge numbers,
which means that |T| becomes macroscopically large. For A
and B chosen as above, the estimated length of T for all
chiral BNTs will be in the mm range. Imposing some addi-
tional symmetry constraints by relating the lattice constants
will immediately remedy this problem. For example by
choosing A= 3B, fraction (B?/A%?)=1/3, i.e., |T| will be re-

(A7)

FIG. 13. (Color online) The triangular (t), the rectangular (r),
and the honeycomb-derived (h) primitive cells that are used to char-
acterize boron nanotubes. They contain one, two, and three atoms,
respectively. Only the rectangular cell may properly describe the
puckering of the boron sheet (indicated by black and gray atoms in
the background).
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armchair

FIG. 14. (Color online) The geometrical construction of an ideal
boron nanotube from a boron sheet: the red (gray) area is cut and
rolled up such that W™ will become the circumference of the nano-
tube. O is the origin, W' is the wrapping vector, T is the transla-
tional vector, 6 is the chiral angle measured with respect to the
zigzag direction, a,, are the primitive vectors of the underlying
rectangular lattice, and A and B are the lattice constants (see text).
The puckering of the boron sheet is indicated by black and gray
atoms in the background. The zigzag and the armchair directions
are perpendicular to each other. This figure corresponds to W'
=(5,3) and A/B=1/3, which implies T=(~1,5).

duced to just a few lattice constants (this case was used to
generate Figs. 14 and 15). So for the chiral BNTs the specific
ratio B?/A? determines the length of the translational vector.

Boron compounds usually have a whole set of different
B-B bond lengths, which means that boron does not neces-
sarily favor highly symmetric arrangements. The bond
lengths are more flexible than for typical covalent elements
like carbon, and the lattice constants A and B of the BS
cannot really be seen as fixed parameters; they will have
slightly different values in BNTs. Furthermore, the broken
planar triangular symmetry of the BS is rather typical for
boron, and we should expect that for ideal chiral BNTs, even
with different values of A and B, the translational vector
might still be large.

To summarize: any departure from triangular symmetry in
the BS will create chiral BNTs, which have macroscopically
large translational vectors, and achiral types, where |T] is of
the order of the lattice constants. Thus achiral BNTs (arm-
chair and zigzag) have a one-dimensional translational sym-
metry along the tube’s axis, which is not present in chiral
BNTs. For the latter it might be better to think in terms of
helical (chiral) symmetries, only. Therefore we predict the
existence of helical currents in ideal chiral BNTs. Such cur-
rents could lead to very interesting physical effects such as
strong magnetic fields® and self-inductance effects leading
to an inductive reactance’! of chiral BNTs.

3. Band structure

Within the limit of large nanotube radii, where curvature
effects are small, one may derive the one-dimensional band
structure of an ideal BNT E, (k') by a zone-folding
technique,® starting from the two-dimensional band struc-
ture of a BS EPS(k,,k,). Given the absence of translational
symmetry in ideal chiral BNTs, we have to base our zone-
folding theory on the helical symmetry of BNTs.32>3
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FIG. 15. (Color online) Two different ways of “building up” a
nanotube: the fubular unit cell in light gray (see also Fig. 14) is
repeated along the nanotube’s axis, which lies parallel to T. The
helical unit cell in red (dark gray) is translated along spirals (rep-
resented by the dotted lines) on the surface of the nanotube; it is
defined by the helical vector H and vector K. It holds W'=K+L.
Here H=(0,1), K=(2,0), and L=(0,9), and therefore W'=(2,9).
The length of T=(~3,2) was artificially reduced by choosing A/B
=3.

Figure 15 illustrates that besides constructing a BNT by
repeating a tubular unit cell one can also build a nanotube by
repeating a helical unit cell along a spiral winding around the
surface of the tube. The direction of this spiral is given by
the helical vector H>>>3 (in Ref. 35 it is called the symmetry
vector R), which, when uncoiled into a plane, defines the
direction of a translational symmetry [see Eq. (A8) and
thereafter]. The helical unit cell is specified by H and the
vector K 1 H. Furthermore, we define a vector LIIH, such
that W'=(k,l)=K+L (see Fig. 15).

The helical wave functions are restricted by the following
criteria:

W (r+H) =W . (r)exp(ik'[HI), (A8)

k!

\I,,u,k’(r"_ W)z\lf’uk/(r). (A9)

Equation (AS8) defines a one-dimensional Bloch state with
—m/|H|<k' < m/|H| and imposes the condition that k" has to
be parallel to the reciprocal vector of H. Equation (A9) is the
tubular boundary condition. In order to construct the helical
wave functions W ;- we have to use the wave functions of
the BS W25(r) which have the Bloch property:

\I’,]:’S(r +R) =exp(ik - R)‘I’,]?S(r), (A10)

where R is a vector of the Bravais lattice formed by a) and
a;. Since the vectors H and W' are also elements of such a
Bravais lattice, Eq. (A8) will automatically be satisfied, and
Eq. (A9) together with Eq. (A10) will yield

1 =expli(k-W"]. (A11)
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FIG. 16. (Color online) Properties of a flat boron sheet: (a) The
two-dimensional band structure. (b) Black lines indicate the trian-
gular unit cells, black spheres are boron atoms, and the orange
(gray) contours show the electron localization function (ELF) at
contours of 0.7. We observe a simple network of two- and three-
center bonds.

In order to proceed, we now have to define the direction
of H, which may be any Bravais lattice vector.>* By choos-
ing H=T we recover the case of a tubular unit cell, as de-
scribed above and in Ref. 35. But in order to make the cal-
culation as simple as possible we assign H=a5=(0,1). Then
it follows that K=(k,0) and L=(0,l) (see Fig. 15). As Hlly
we have to choose k'=k,. After inserting Eq. (All) into
EBS(kx,ky) we finally obtain the zone-folded band structure
of ideal (k,l) (k#0) BNTs as

21 IB
E(k,l) k/ =EBS<_ __k,,k,),
w k) kA" kA
o o
——<k/<—,
B B
w=0,... k-1. (A12)

Equation (A12) will break down for (0,/) armchair BNTS,
due to a chiral index k=0. But as mentioned before, we are
free to choose the direction of H, and in such a case we use
H=a,=(1,0) and have k'=k,. We thus obtain

0,)) 7.1\ _ BS /E@
EOk) =E (k, )

| B
v v
——<k <,
A A

w=0,...,1-1. (A13)

Unfortunately we do not have an analytical band structure
of the BS EBS(kX,ky), yet. But to decide whether a certain
ideal BNT is metallic or not we can simply zone-fold the
BS’s Fermi surface given in Fig. 6. We did so and found that
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FIG. 17. (Color online) A kinked boron sheet based on a super-

cell (thin lines) that contains 16 atoms (see text). Apart from the
kink its surface is slightly puckered.

all ideal BNTs are indeed metallic, irrespective of their ra-
dius and chiral angle. The only ideal BNTs that are not me-
tallic are the (0,1) and the (0,2) types. But these structures
are highly unrealistic and we can safely rule them out, as
they are not even covered by the Aufbau principle.?

APPENDIX B: A FLAT BORON SHEET

The lattice structure, the cohesive energy, and the elastic
moduli of the flat boron sheet—model (a)—can be found in
Table I. The elastic modulus of Cy;=750 GPa is comparable
to graphite. The electronic charge density is nearly uniform
in the interstitial region, and the band structure [see Fig.
16(a)] is similar to the band structure of a free electron gas.
These results seem to indicate some metallic bonding, as
pointed out by Evans et al.,'8 but such a picture cannot really
account for the planarity and the high elastic modulus of the
flat BS. A different qualitative picture of the chemical bond-
ing is obtained after looking at the electron localization
function®® (ELF) in Fig. 16(b). Here we observe a simple
network of two- and three-center bonds being less localized
(ELF=0.7) than typical sigma bonds (ELF~0.9), which are
absent here. Thus the flat BS seems to be held together pre-
dominantly by multicenter bonds similar to the ones found in
pure boron compounds. The chemical understanding of these
multicenter bonds is still very limited. We think that, despite
of its apparent metastability, model (a) could be an ideal
theoretical tool to extend our present understanding of the
nature of multicenter bonding in boron.

APPENDIX C: A KINKED BORON SHEET

In Sec. III A we described the optimization of randomly
puckered BSs. It is surprising that despite the high complex-
ity of the boron energy landscape for small boron clusters,
which are known to have many local minima, these runs
seem to have only two possible “attractors.” One is model
(b)—a simply puckered BS—the other is the kinked BS dis-
played in Fig. 17. The kinked BS has a metallic density of
states and a cohesive energy of 6.86 eV/atom, which is
somewhat intermediate between model (a) and model (b).
We think that this structure is likely to be an artifact of the
finite size of the supercell that we used for the simulation
runs, but being an “attractor” of the optimization runs it is
still interesting enough to be mentioned here.
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