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The excitonic and vibronic spectra of a molecular chain and of a crystal of NN�-dimetyl 3,4,9,10-perylene
tetracarboxylic diimide �MePTCDI� are studied in the case when: �i� a Frenkel exciton �FE� and charge transfer
excitons �CTEs� mix strongly; and �ii� two mechanisms of coupling between these mixed excitons and in-
tramolecular vibrations, notably linear and quadratic coupling, are acting. Using a convenient canonical trans-
formation and the Green function method, we calculate the linear optical susceptibility: �a� in the exciton
region taking into account the contribution of the transition dipoles of FE; and �b� in one-phonon vibronic
regime. The spectra of linear absorption in the excitonic and vibronic regions have been calculated introducing
the exciton parameters of MePTCDI. These spectra exhibit: �i� a relative separation of vibronics of FE and
CTEs; �ii� a stronger impact of the linear coupling on the intensity of the excitonic and vibronic spectra; and
�iii� the appearance of a spectral doublet of vibronics of the CTEs—its splitting depends on the parameters of
linear and quadratic exciton–phonon coupling in the neutral excited molecule and ions. Moreover, in the case
of weak linear exciton–phonon coupling the vibronic line of FE, being wide and flat, lies in many-particle
continuum while in the case of intermediate and strong linear coupling the linear absorption is dominated by
the bound exciton–phonon states and their narrow Lorentzian maxima depend strongly on the quadratic
coupling.
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I. INTRODUCTION

In the previous study,1 we investigated the excitonic
and vibronic spectra of MePTCDI and 3,4,9,10-perylene
tetracarboxylic dianhydride �PTCDA� crystals in the case of
mixing of Frenkel excitons �FEs� and the lowest charge
transfer excitons �CTEs�. The features of the model which
allow us to find an exact solution to the many-particle prob-
lem with complicated FE–CTEs–phonon coupling are as fol-
lows: �i� the molecules in these crystals are ordered in quasi-
one-dimensional stacks; �ii� the lowest excitonic excitation
appears as a result of mixing of a FE and first CTEs and that
excitation is separated from the second CTEs state; �iii� the
intramolecular vibration preserves its properties �frequency�
in the nonexcited and excited molecule as well as in the ion;
and �iv� the transfer integrals of FE, the hole, and the elec-
tron between neighbor molecules have relatively small val-
ues compared with the vibrational frequency.

In this paper, we investigate again the linear absorption
and preserve the main features �i�–�iv� of the above-
mentioned model �with a possible exception of item �iii�� but
we expand it in several directions, namely: �a� we consider
two mechanisms of exciton–phonon coupling—the linear
coupling �see Refs. 1–4� and the quadratic coupling which
causes changes of the vibrational frequency in the molecule
with FE5,6 and in the ionized molecule;7 and �b� although
using data for the mobility of FE and CTEs in a MePTCDI
crystal, we do hope to find other substances in which the
model of vibronics for the case of linear and quadratic
exciton–phonon coupling may be applied. Thus we calculate
the excitonic absorption in the case of more significant
change of the vibrational frequency in the excited molecule.

The organization of this paper is as follows: in Sec. II we
find the vibronic Hamiltonian in the one-dimensional chain
in the case of linear and quadratic exciton �FE and CTEs�–

phonon coupling. We use the canonical transformation which
generalizes the transformation in the case of vibronics of
pure FE.5,6 Section III contains the main analytical results on
the linear optical susceptibility of the one-dimensional chain
in excitonic and vibronic regions. Section IV deals with the
calculations of the linear absorption spectra in the same fre-
quency regions using the exciton data for the MePTCDI
crystal. We also study the absorption in a more hypothetical
case of a significant change of the vibrational frequency in
the excited molecule. Section V contains conclusions on the
manifestation of excitons and their vibronics in the linear
processes. Two Appendices are devoted to some details of
the canonical transformation.

II. FE–CTES–PHONON HAMILTONIAN

As in other papers on excitonic and vibronic spectra in
PTCDA and MePTCDI crystals1,3,4,8,9 we consider excita-
tions in a linear chain of regularly ordered molecules n
=1,2 , . . . ,N. It corresponds to stacks in which the molecules
are situated closer than their neighbors in the perpendicular
plane.

The initial Hamiltonian consists of three parts:

Ĥ = Ĥex + Ĥphon + Ĥex–phon, �1�

where Ĥex is the well-known Hamiltonian of mixed FE and
CTEs:1,8,9

Ĥex = �
n

EF�Bn
+Bn + �

n,n�

L���n�,n+1 + �n�,n−1�Bn
+Bn�

+ �
n,�=1,2

Ec�Cn�
+ Cn� + �

n,�
�e��Bn

+Cn� + H.c.�

+ �
n

�h��Bn
+Cn+1,2 + Bn

+Cn−1,1 + H.c.� . �2�
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Here, Bn �Bn
+� is the annihilation �creation� operator of Fren-

kel exciton on the molecule n, EF� and L� are correspondingly
the excitation energy of FE and its transfer integral between
the neighbor molecules n and n±1, Cn� is the annihilation
operator of CTEs whose hole is based on site n and the
electron is located on site n+1 �CTE �=1� or on site n−1
�CTE �=2�, Ec� is the excitation energy of CTEs. We con-
sider the degenerate case Ec1� =Ec2� =Ec� that is a consequence
of the inversion symmetry of the chain and neglect the trans-
fer of CTEs as a whole. The quantities �e� and �h� represent
charge transfer integrals of the electron and the hole from the
molecule n with a Frenkel exciton to its neighbors.

We consider the vibronic spectra with one intramolecular

vibrational mode only and express the phonon’s part Ĥphon as
follows:

Ĥphon = �
n

� �0an
+an, �3�

where �0 is the vibrational frequency in the nonexcited mol-
ecule and an is the annihilation operator of one vibrational
quantum on molecule n.

The operator of exciton–phonon coupling Ĥex–phon con-
tains linear and quadratic terms of the dimensionless phonon
normal coordinate Xn:

Xn = an + an
+. �4�

That operator can be split into three parts:

Ĥex–phon
�1� = �

n

��0Bn
+Bn�dXn + eXn

2� , �5a�

Ĥex–phon
�2� = �

n,�=1,2
��0Cn�

+ Cn��d+Xn + e+Xn
2� , �5b�

Ĥex–phon
�3� = �

n,�=1,2
��0Cn�

+ Cn��d−Xn+�1
+ e−Xn+�1

2 � , �5c�

where

�1 = + 1 if � = 1; �1 = − 1 for � = 2.

The dimensionless quantities d, d+, d− describe the dis-
placement of the nuclei’s equilibrium positions in a molecule
with FE, in a positive �d+� and a negative �d−� ion, respec-
tively. Quantities e, e+, e− are introduced to describe the
changes of the parabolic potential of vibrating nuclei in an
electronically excited molecule and they express the qua-
dratic exciton–phonon coupling in the same molecule and
ions.

The operator Ĥex–phon can be eliminated by using the fol-
lowing canonical transformation:5,7

Ĥ1 = eQĤe−Q, �6�

where

Q = �
n,�

��Bn
+Bn�an

2 − �an
+�2 + ��an − an

+��

+ �1Cn�
+ Cn��an

2 − �an
+�2 + �1�an − an

+��

+ �2Cn�
+ Cn��an+�1

2 − �an+�1

+ �2 + �2�an+�1
− an+�1

+ ��� .

�7�

We treat here a linear problem with one exciton. Thus the
eigenvalues of the operators Bn

+Bn and Cn�
+ Cn� are 0 or 1 and

the following relations hold:

Bn
+BnBn1

+ Bn1
= Bn

+Bn�nn1
,

Cn�
+ Cn�Cn1��

+ Cn1�� = Cn�
+ Cn��nn1

����,

�8�
Bn

+BnCn1�
+ Cn1� = 0,

�
n,�

�Bn
+Bn + Cn�

+ Cn�� = 1. �9�

We eliminate terms �5� of the linear and quadratic
exciton–phonon coupling by applying transformation �6�
with the following values of the quantities �, �1, �2, �, �1, �2
�on using relations �8� and �9��:

e−4� = �1 + 4e, e−4�1 = �1 + 4e+, e−4�2 = �1 + 4e−;

�10�

� = −
2d

�1 + 4e��exp�2�� − 1�
,

�1 = −
2d+

�1 + 4e+��exp�2�1� − 1�
,

�2 = −
2d−

�1 + 4e−��exp�2�2� − 1�
. �11�

Using relations �6�–�11� we obtain the following Hamil-
tonian �for details see Appendix B�:

Ĥ1 = �
n

EFBn
+Bn + �

n,�
EcCn�

+ Cn� + �
n

� �0an
+an

+ �
n

� ��Bn
+Bnan

+an + �
n,�

� ��+Cn�
+ Cn�an

+an

+ �
n,�

� ��−Cn�
+ Cn�an+�1

+ an+�1
+ Ĥint �12�

with

Ĥint = �
n,n�

L���n�,n+1 + �n�,n−1�Vn�
+ Vn + �

n,�
�e��Vn

+Un� + H.c.�

+ �
n

�h��Vn
+Un+1,2 + Vn

+Un−1,1 + H.c.� , �13�

where

EF = EF� −
d2

1 + 4e
��0 +

�

2
�� , �14a�
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Ec = Ec� − 	 �d+�2

1 + 4e+ +
�d−�2

1 + 4e−
 ��0 +
�

2
���+ + ��−� ,

�14b�

�� = �0��1 + 4e − 1�, ��± = �0��1 + 4e± − 1� ,

�14c�

Vn = eQBne−Q, �14d�

Un� = eQCn�e−Q. �14e�

Relations �10�–�14� are exact and we can study the vi-
bronics in the case of simultaneous action of the linear and
quadratic coupling. Further calculations have been per-
formed by making the following assumptions.

�1� The parameters of the exciton–phonon coupling in the
positive and negative ions have been taken to be equal, i.e.,

d+ = d− and e+ = e− �15�

�but the parameters of the exciton–phonon coupling in the
excited neutral molecule being different, d+�d, e+�e�. This
is a usual approximation in the studies of vibronics of the
MePTCDI and PTCDA crystals3,4 and it is not a principal
limitation.

�2� We suppose the energy ��0 of the vibrational quantum
to be larger than the exciton transfer integrals,

��0 	 �L��, ��e��, ��h�� . �16�

Inequality �16� is similar to the basic assumption ��0	 �L��
of the so-called dynamical theory of the vibronics of FE.
According to that theory �see Ref. 5� all terms in the Hamil-
tonian which do not conserve the number of phonons can be
eliminated. Following the same approach, we preserve in
operator �13� only those terms which commutate with the
operator of the total phonon numbers

N̂phon = �
n

an
+an, �17�

and find the following expression for the exciton mobility
part �13� of the Hamiltonian �see the Appendix B�:

Ĥint = �
n,n�

L��n�,n+1 + �n�,n−1�Bn�
+ Bn


�1 + �1�an�
+ ane2� − �an�

+ an� + an
+an� + an

+an�e
−2���

+ �
n,�

�e�Bn
+Cn��1 − �4an

+an + �3�an
+an+�1

+ an+�1

+ ane−2��

− �2an+�1

+ an+�1
� + H.c.� + �

n,�
�h�Bn

+Cn−�1,�


�1 − �4an
+an + �3�an

+an−�1
+ an−�1

+ ane−2��

− �2an−�1

+ an−�1
� + H.c.� , �18�

where

L = L� exp�2�1�, �e = �e� exp W, �h = �h� exp W ,

�19�

�1 = d1
2 exp�− 2��/cosh2�2�� , �20�

�2 = d2
2 exp�− 2�1�/cosh2�2�1� ,

�3 = �d1 − d2�d2 exp�− 2�1�/�cosh�2�� − �1��cosh�2�1�� ,

�21�

�4 = �d1 − d2�2 exp�− 2�� + �1��/cosh2�2�� − �1�� , �22�

d1 = d/�1 + 4e�, d2 = d+/�1 + 4e+� , �23�

exp�2�1� = exp�− 2d1
2/�1 + exp�4����/cosh�2�� , �24�

W = −
1

2
ln�cosh�2�� − �1��cosh�2�1�� − �d1 − d2�2


exp�− 4�1�/�1 + exp�4�� − �1��� − d2
2/�1 + exp�4�1�� .

�25�

The reduction of exciton mobility part �13� of the Hamil-
tonian to the operator �18� allows us to find out exact solu-
tions for the vibronic spectra and for the linear optical sus-
ceptibilities �see also Refs. 5 and 6�. The other
approximation, notably that with the entire term �13�, will be
used in subsequent papers.

III. LINEAR OPTICAL SUSCEPTIBILITY IN EXCITONIC
AND VIBRONIC REGIONS

We perform the calculations of the linear optical suscep-
tibility �ij using the expression:1,7,10

�ij = lim
→0

�−
1

2 � V
��ij�� + i� + �ij�− � + i�� , �26�

with

�ij = − i��t��0�Pi�t�Pj�0� + Pj�t�Pi�0��0� , �27�

P̂ = �
n

P̂n, �28�

where P̂n is the operator of the electric �transition� dipole
moment of the excitons on site n. The Green function �27�
has been calculated as average over the ground state �0� tak-
ing into account the large values of the energy of the excitons
and vibrational quantum: EF, Ec, ��0��T. The operator
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P̂1 = �
n

P̂n = �
n
�PF�Bn

+ + Bn�

+ PCT



1
�2

�Cn1 + Cn2 + Cn1
+ + Cn2

+ �� �29�

is transformed into the following operator:

P̂ = eQP̂1e−Q = �
n,�

�PF�Vn + Vn
+� + �PCT/�2��Un� + Un�

+ �� ,

�30�

where PF is the electric transition dipole of the Frenkel ex-
citon, and PCT is the electric transition dipole of the sym-
metrical CTE’s state �1/�2��Cn1

+ +Cn2
+ � �0� �the antisymmetri-

cal combination �1/�2��Cn1
+ −Cn2

+ � �0� does not mix with FE
due to symmetry reasons8,9�.

In this paper, we study the linear absorption spectra in the
excitonic and one-phonon vibronic regions using the larger
part of the transition dipoles �30� associated with Frenkel
excitons only:8,9,11

P̂FE = P̂Fe�1�
n

�Bn + Bn
+ + f�Bnan + Bn

+an
+�� , �31�

where

f = d1/cosh�2�� �32�

�see Appendix B�.
We calculate Green functions �27� using the standard pro-

cedure of differentiation with respect to time of the corre-
sponding functions. The excitonic and one-phonon vibronic
contributions to the linear susceptibility �ij can be expressed
as follows:

�ij = − exp�2�1�PF
i PF

j �G�k = 0� + f2S0���� . �33�

The formula which yields the excitonic Green function G�k
=0�, corresponding to the center k=0 of the Brillouin zone in
momentum space, has the form:

G�k = 0� = ��� − EF − 2L − 2��e + �h�2/��� − Ec��−1.

�34�

Function S0��� in Eq. �33� expresses the contribution of
the one-phonon vibronic spectrum to the linear susceptibility
and the calculations performed with Hamiltonians �12� and
�18� give the following result:

S0��� =
1

2LD
���t� −

��1�t�
1 + �2

� , �35�

where

��t� =
1

N
�

k

1

t − cos ka
, �1�t� = t��t� − 1, �36�

t = �� − � − 2�1�/�2�1 + �2�� , �37�

� = ���� − �0� − Ec�/L , �38�

� = �EF − Ec�/L , �39�

�1 = ��e1
2 + �h1

2 �/�, �2 = 2�e1�h1/� , �40�

�e1 = �e/L, �h1 = �h/L , �41�

D = 1 + �2 − ���t� − �1�t��2� + �t + ��2 − ���/�1 + �2��

− ����/�2L�����t� − ��1�t�/�1 + �2�� , �42�

� = − �1 + �1��3�1 − �2 + �1 − �4�e−2��

+ �2���3
2e−2� + �1 − �2��1 − �4�� − �2, �43�

� = �1e2� + �1���3
2 + �1 − �4�2� − �1 + 2�2��3�1 − �4� ,

�44�

� = �1e−2� + �1���3
2e−4� + �1 − �2�2� − �1 + 2�2��3�1 − �2� ,

�45�

�1� = ��e1
2 + �h1

2 �/�� − � ��+/L� , �46�

�2� = 2�e1�h1/�� − � ��+/L� .

Sum �36� spreads over all values of the wave number k in
the Brillouin zone:

k = �0, ± 1, . . . , ± N/2�2�/�aN� , �47�

in which a is the distance between neighbor equivalent units
in the stack. Sum �36� depends on the quantity � which can
be presented as

� = y1 + i� , �48�

where y1 is a real quantity, and i� is a small imaginary part
that describes excitons’ and phonons’ damping. Notably the
imaginary part i�L yields the width of the excitonic and vi-
bronic levels.

TABLE I. Exciton parameters for a MePTCDI crystal.

Quantity Z EF Ec �=EF−Ec L �e �h ��0

Value of Z �eV� 2.23 2.15 0.08 0.044 −0.047 −0.017 0.17

Value of Z /L 1.83 1 −1.07 −0.39 3.86
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The vibronic spectrum consists of two well-known types of exciton–phonon states, namely:
�a� Many-particle �MP� states which correspond to values �t � �1 �see Eq. �37��. In the nearest-neighbors approximation

function ��t� takes the form:

��t� = �
1

�t2 − 1
sgn t1, �t1� 	 1,

−
i

�1 − t2
sgn�y2 + 2�e1�h1�2y − �� + 2��e1

2 + �h1
2 �� , �t1� � 1,

�49�

where

t1 =
y2 − y� − 2��e1

2 + �h1
2 �

2�y + 2�e1�h1�
. �50�

The values of �=y+ i�, which correspond to �t1 � �1, form
two continua.

�b� Bound exciton–phonon states �BS�. Their levels are
the discrete poles ��t1 � 	1� of the function S0��� outside the
above-mentioned MP continua.

IV. LINEAR ABSORPTION SPECTRA

In this section, we model the absorption spectra calculat-
ing the imaginary part of functions �34� and �35� in which
the exciton parameters of the MePTCDI crystal8 are intro-
duced.

The unit cell of this crystal contains two nonequivalent
molecules3,8 that build two types A and B of one-dimensional
stacks. We calculate, as in Ref. 1, the linear optical suscep-
tibility in an oriented gas model. In this way, we neglect the
possible transfer of FE and CTEs between the molecules of
different stacks A and B, and, correspondingly, we ignore the
Davydov splitting of the excitonic and vibronic spectra. The
interstack transfer is beyond our basic Hamiltonian �1� and
�2�. We mention here another reason for our restriction on the
oriented gas model. The intermolecular distance inside the
stacks of perylene derivatives �a�3.5 Å� is several times
smaller than the distances between the molecules of different
orientations which are located in a plane perpendicular to the
stacks’ axis. Thus the interstacks exciton transfer would be
less probable than the transfer inside a stack.

Following Ref. 8, we define the FE plane on which tran-
sition dipoles PF

A and PF
B ��PF

A � = �PF
B � = PF� are situated. The x

axis coincides with the direction of the sum PF
A+PF

B, the y
axis also is lying on the FE plane, and � is the angle between
the two transition dipoles ��=36.8°, see Ref. 8�.

The linear optical susceptibility of a crystal with N2 pairs
of stacks �A, B� can be represented as

�xx = − Ae2�1�G�k = 0� + f2S0����cos2��/2� , �51a�

�yy = − Ae2�1�G�k = 0� + f2S0����sin2��/2� , �51b�

where

A = 2PF
2NN2/�VL� . �52�

We take the exciton parameters of the MePTCDI crystal
according to Refs. 8 and 9 �see Table I, in which all quanti-
ties of interest �Z� are normalized with respect to L�.

In the calculation of Im��xx / �A cos2�� /2��� we introduce
the imaginary part of the dimensionless frequency �48�, �
=0.01, which corresponds to L� as a proper width of the
exciton and phonon lines.

A. Excitonic region

In calculating the excitonic absorption governed by the
quantity −exp�2�1�G�k=0�, the parameters of exciton–
phonon coupling enter the quantity �1 only and do not shift
the position of excitonic maxima. Figures 1–12 contain the
absorption curves calculated as the imaginary part of the
function

�xx/�A cos2��/2�� = − exp�2�1��G�k = 0� + f2S0���� .

�53�

Two Lorentzian maxima appear at the frequencies of the
poles of function �34�. The repulsion of the levels caused by
the FE–CTEs mixing and expressed through charge-transfer
integrals �e and �h shifts the absorption peaks which can be
assigned as renormalized CTEs levels ��CTEs=2.110 eV and
a FE level ��FE=2.358 eV.

The different values of the parameters of exciton–phonon
coupling can change the magnitudes of the excitonic maxima
�but not their position�.

B. One-phonon vibronic region

The vibronic spectrum is governed by the quantity
−exp�2�1�f2S0��� and strongly depends on the parameters d,
d+, e, e+ of the exciton–phonon coupling. Direct data for the
linear and quadratic exciton–phonon coupling are not avail-
able and thus we model the vibronic spectra using various
sets of parameters.

We introduce the following values for the parameter d of
FE–vibration coupling: �i� d=1 that corresponds to an inter-
mediate linear coupling; �ii� d=0.8 describing a weak cou-
pling �but close to the probable values for a molecule in a
MePTCDI crystal�; and �iii� d=1.2 which models a relatively
strong coupling.

The magnitudes of the parameter e of quadratic coupling
are correlated with the relative frequency shift �� /�0 of the

VIBRONIC SPECTRA OF MIXED FRENKEL AND ¼ PHYSICAL REVIEW B 74, 035403 �2006�

035403-5



vibration in an electronically excited molecule. According to
formula �14c�,

��/�0 � 2e, �e� � 1. �54�

For the crystal under consideration the most probable are
small relative shifts, �� /�0�−0.01 �or even smaller�. We
illustrate the role of the quadratic coupling by taking the
following values: �i� e=−0.015; �ii� e=0; �iii� e= +0.015;
and �iv� e=−0.05. A positive value of e is a rather curious
case.

The probable values of the parameters for the exciton–
phonon coupling in the ions of the MePTCDI crystal �the
parameters for positive and negative ions have been assumed
to be equal, see Eq. �15�� are supposed to be as follows:

�1� d+=d, as a simple case �see Ref. 3�;
�2� d+=d /�2 �see Refs. 3 and 4�—in this case the vi-

brational relaxation energy d2��0 of the Frenkel exciton and
that of the CTE ��d+�2+ �d−�2���0 are equal;

�3� e+=e, again an even simpler case; and
�4� e+=2e, supposing a more stronger change of the

vibrational frequency in ions than in the neutral electroni-
cally excited molecule.

1. Case d+=d

The one-phonon vibronic lines are positioned near ��
�2.3 eV and around ���2.5 to 2.6 eV. The combination of
CTEs excitonic line ��=2.110 eV and the spectral struc-
tures near ���2.3 eV creates an excitonic and first vibronic
replica of CTEs whereas the combination of the FE line
��=2.358 eV and the structures near and above ��
=2.5 eV can be treated as a FE and its first vibronic. We
stress again on the necessity of a very careful assignment of
the absorption lines �see Ref. 1�.

In the case of weak exciton–phonon coupling, d+=d
=0.8 �Fig. 1�, the vibronics of CTEs near 2.3 eV form non-
intensive and narrow Lorentzian curves. The quadratic
exciton–phonon coupling, e+=e, shifts their positions to the
lower energies �e�0� or in opposite direction at e	0. A
weak upper component of absorption line near 2.3 eV would
be practically nonobservable. The vibronics of FE near ��
�2.5 eV create a wide and flat absorption maximum of big-
ger integral intensity than the maxima of CTEs vibronics. It
corresponds to the excitation of two unbound
quasiparticles—one exciton and one phonon—and the sum
of their energies forms a relatively wide continuum called
many-particle band �MP�. Irrespective of its big spectral
density, the absorption line would be structureless and very
wide. We note two other details.

�a� The vibronic lines of CTEs near 2.3 eV de-
scribe the bound state �BS� of the CTE and the vibrational
quantum. The spectral width of the bound states’ lines is
equal to the width of the excitonic lines �in our calculations
it is very close to the quantity L��.

�b� The stronger quadratic coupling e=−0.05,
which corresponds to a relative frequency change �� /�0
�−0.1 in the excited molecule, modulates very strongly the
vibronic absorption in the MP continuum near 2.5 eV. The
absorption line is narrowed and it describes a quasibound
exciton–phonon state �see curve 4 in Fig. 1�.

The intermediate linear coupling, d+=d=1 �Fig. 2�, was
called the molecular vibron case.4,8 In the absence of qua-
dratic coupling the absorption is caused by nonseparable
bound exciton–phonon states and two Lorentzian maxima
appear at e=0 �see curve 2 in Fig. 2� as vibronics of CTEs
and FE. The quadratic coupling shifts the position of the
CTEs vibronic line near 2.3 eV but does not change its
shape. However, even a small quadratic coupling, e
= ±0.015 destroys the molecular vibron state near 2.5 eV.
Figure 2 illustrates the possible drastic change in the line
shape depending on the sign of e. In the case of d+=d=1 and
stronger quadratic coupling, e=−0.05 �curve 4 in Fig. 2�, a
bound state above the MP continuum concentrates the ab-
sorption intensity near ��=2.56 eV.

In the case of strong linear exciton–phonon coupling �Fig.
3� the vibronic absorption in both regions ���2.3 eV �vi-

FIG. 1. Linear absorption spectra of the MePTCDI crystal �see
the exciton parameters in Table I�. The values of the para-
meters of exciton–phonon coupling are d+=d=0.8, e+=e. For curve
1 e=−0.015, curve 2 e=0, curve 3 e= +0.015, and for curve
4 e=−0.05. The absorption lines at ��=2.110 and 2.358 eV corre-
spond to pure excitonic absorption of mixed FE+CTEs. The two
vibronic replicas are positioned near ���2.3 and 2.5 eV,
respectively.

FIG. 2. The same as Fig. 1 with d+=d=1 �intermediate case�.
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bronics of CTEs� and ���2.5–2.7 eV �vibronics of FE�
consists of Lorentzian maxima and exhibits predominantly
bound states. The quadratic coupling shifts the vibronic lines
of CTEs and FE in opposite directions. Obviously the shift-
ing of the FE vibronic line near ���2.6 eV is rather bigger
than the shifting of the CTEs vibronic line near 2.3 eV.

Figures 4 and 5 illustrate the case d+=d and e+=2e. The
larger quadratic coupling in ions changes the quantity ��+

�see Eq. �14c�� which enters quantities �46� through the dif-
ference

� − � ��+/L = ���� − �0� − Ec − � ��+�/L . �55�

Since the value ��0+Ec=2.32 eV is much closer to the
CTEs vibronic line at ���2.3 eV than to the FE vibronic
line around ���2.5–2.7 eV, even small values of ��+ shift
the position of CTEs vibronic and do not influence the posi-
tion of the FE vibronic line. The most sensitive change of the
absorption line near 2.3 eV in Fig. 4 is the appearance of a
spectral doublet at e= +0.0015. The splitting of the doublet’s

components is �1�0.005 eV. This value corresponds very
well to the quantity

��0�2e+ − 2e� � � ��+ − � ��

at e+=2e=0.03. So, two types of bound exciton–phonon
states can be observed in this case: �i� the vibrational quan-
tum is excited on ions, and �ii� the vibrational quantum exists
on the neutral molecule which is electronically excited �the
lower component of the doublet near 2.3 eV�. The case of
strong coupling �Fig. 5� illustrates the appearance of similar
doublets in the absorption near 2.3 eV �at e�0�, but not near
the vibronic structure of FE above 2.5 eV, where the absorp-
tion spectra are very close to those in Fig. 3.

2. Case d+=d /�2

This assumption makes the calculations of absorption
spectra more complicated �see Eqs. �20�–�22�, �42�–�45��,
but the general structure of the spectra is preserved.

The case of weak exciton–phonon coupling �Fig. 6� ex-
hibits the same spectral structures as Fig. 1. The vibronic
replica of FE is positioned in the MP continuum and the

FIG. 3. The same as Fig. 1 with d+=d=1.2 �strong
coupling�.

FIG. 4. Linear absorption spectra with d+=d=0.8, e+=2e. For
curve 1 e=−0.015, curve 2 e=0, curve 3 e= +0.015.

FIG. 5. The same as Fig. 4 with d+=d=1.2, e+=2e.

FIG. 6. Linear absorption spectra with d=0.8, d+=d /�2, e+=e.
For curve 1 e=−0.015, curve 2 e=0, and curve 3 e= +0.015.
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quadratic coupling can modulate its shape �see curve 3 in
Fig. 6�. Two components of the doublets near 2.3 eV have
comparable intensities �Fig. 7�. The position of the higher
components depends very weakly on the quadratic coupling
whereas the lower component is shifted with different values
of the parameter of quadratic coupling e.

The intermediate coupling �Fig. 8� causes similar absorp-
tion. But the simultaneous action of the linear and quadratic
coupling binds the exciton and phonon at e=−0.015 and the
narrow and intensive maximum near 2.52 eV can be ob-
served as a demonstration of the quasibound state.

The strong coupling �Fig. 9� creates intensive bound
exciton–phonon states and the absorption spectra are close to
those in Fig. 3. The doublet near 2.3 eV possesses two non-
equal components.

Figures 10 and 11 illustrate the possible differences in
absorption spectra caused by a two-times increasing of the
quadratic coupling parameter e+ �compare curves 1 and 2 in
Fig. 10, the other parameters of the exciton–phonon coupling
preserve their values�. Whereas the absorption near ��
�2.5 eV remains nonchanged, the doublets near ��
�2.3 eV slightly shift their positions. As a general conclu-
sion we can estimate the impact of e+ on absorption as a
relatively weak one.

The stronger impact of various values of the constant for
linear coupling d+=d and d+=d /�2 is illustrated in Fig. 12.
The absorption near 2.3 eV exhibits a single Lorentzian
maximum at d+=d; in the case of d+=d /�2 it splits into two
maxima. The MP continuum near 2.5 eV is modulated and it
has quite a different shape and maximal values of the absorp-
tion lines in these two cases.

3. Case ��0

We turn now to a hypothetical case of reversed order of
the levels of FE and CTEs. We put the same values of all
other quantities as in the previous calculations except the
value of EF �see Table I�. We suppose that EF=2.07 eV, and
hence �=−0.08 eV. This case does not follow the original
parametrization of the excitons in the MePTCDI crystal �see
Refs. 8 and 9� and may be available for other crystals with a
different sequence of the excitonic levels.

The absorption spectra represented in Figs. 13–15 show
the position of pure excitonic levels at ��=2.065 eV and
��=2.246 eV. The mixing of FE and CTEs is stronger than
the corresponding mixing at �	0 and thus these two ab-
sorption maxima possess nearly equal intensities.

FIG. 7. Linear absorption spectra of CTEs’ vibronics. For the
other spectra see Fig. 6.

FIG. 8. The same as Fig. 6 with d=1.

FIG. 9. The same as Fig. 6 with d=1.2.

FIG. 10. Linear absorption with d=0.8, d+=d /�2, e=−0.015.
For curve 1 e+=e, curve 2 e+=2e.
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The other structures in the absorption spectra in Figs.
13–15 correspond to one-phonon vibronics and their mani-
festation is similar to the case of �	0 �Figs. 1–12�. In the
case ��0, the vibronic doublet near ���2.25 eV is posi-
tioned in the same spectral region as the absorption maxi-
mum of the mixed excitons FE+CTEs. The splitting of the
two components of the doublet is better expressed in the case
d+=d /�2. The splitting and intensity of the doublet are big-
ger in the case ��0 than in the opposite case �	0. An MP
band appears near ���2.4 eV �see Figs. 13 and 14� which
is the analog of the MP band near ���2.5 eV in Figs. 1, 2,
6, and 8. In the case of strong exciton–phonon coupling �Fig.
15� an intensive Lorentzian maximum appears above that
band as a demonstration of the bound exciton–phonon state.

V. CONCLUSIONS

In this paper, we have investigated the excitonic and vi-
bronic spectra of mixed Frenkel and charge-transfer excitons.
We used the model and exciton parameters of the MePTCDI
crystal having the intention to obtain more general results on

the structure as well as a demonstration of excitons and vi-
bronics in other subjects, too. The studies of excitons via the
linear absorption and excitonic photoluminescence12–15 con-
firm the necessity of a detailed knowledge of the coupling
between FE and CTEs and their vibronic satellites. Thus the
simultaneous treatment of linear and quadratic exciton–
phonon coupling can be important from a theoretical point of
view and in the interpretation of the spectra of other crystals
as well.

We consider as the most interesting conclusions the fol-
lowing.

1. The vibronics of mixed FE and CTEs create two spec-
tral structures and the corresponding frequency regions are
relatively separated. We can consider, not in absolute mean-
ing, as two separate combinations the excitonic line of CTEs
and their first vibronic, and on the other hand, the excitonic
line of the FE and its vibronic.

2. The vibronics of CTEs form a spectral doublet of nar-
row Lorentzian maxima associated with two transferring
mechanisms, notably the hoppings of CTE’s electron and
hole. This doublet structure is clearly expressed in the case

FIG. 11. The same as Fig. 10 with e= +0.015.

FIG. 12. Linear absorption with d=1, e+=e=−0.015. For curve
1 d+=d, curve 2 d+=d /�2.

FIG. 13. Absorption spectra at Ec=2.15 eV, EF=2.07 eV with
d=0.8, e+=e=−0.015. For curve 1 d+=d, while for curve 2 d+

=d /�2. The absorption maxima ��=2.065 and 2.246 eV corre-
spond to pure excitonic levels.

FIG. 14. The same as Fig. 13 with d=1.
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of nonequal values of the parameters of FE–phonon and
CTEs–phonon couplings �d+�d and e+�e in Eqs. �5��.

3. We establish the stronger impact of the linear exciton–
phonon coupling on the linear absorption compared with the
influence of the quadratic coupling.

4. In the case of weak linear coupling, in the model of
excitons in a MePTCDI crystal, the vibronics of FE create a
wide and flat absorption line appearing in the continuum of
the MP states. But a strong quadratic coupling could narrow
the vibronic line of FE. In the case of weak linear exciton–
phonon coupling the vibronics of FE and CTEs manifest
comparable intensities in the linear absorption.

5. In the case of intermediate linear coupling, �d � =1, the
quadratic coupling can change drastically the line shapes of
vibronics of FE which would be no longer narrow Lorentzian
maxima �as it is at e+=e=0, see Ref. 1� rather than becoming
wide and flat continua. However, a strong quadratic coupling
can create a Lorentzian maximum above those continua �see
Fig. 2�.

6. In the case of strong linear coupling ��d � 	1� the vi-
bronic’s linear absorption exhibits predominantly bound
exciton–phonon states. The position of narrow absorption
maxima depends strongly on the parameters of quadratic
exciton–phonon coupling which shifts the vibronic levels of
CTEs and FE in opposite directions. In this case, the absorp-
tion intensity of the FE vibronics is considerably bigger than
the intensity of CTEs vibronics.

The knowledge of the structure and details of vibronic
spectra of molecular crystals can be very useful in estimating
the parameters of exciton–phonon coupling—both linear and
quadratic—which govern the linear absorption as well as the
nonlinear optical properties of these promising for the or-
ganic electronics materials.

APPENDIX A

We find the following operator relation:

F��� = exp���a2 − a+2 + ��a − a+���

= exp��1a+2�exp��2a+�exp��3a+a�exp��4a�


exp��5a2�exp��� , �A1�

where a and a+ are boson annihilation and creation opera-
tors, � is a scalar argument, � is a numerical parameter, and
�i �i=1–5�, � are the following scalar functions of �:

�1 = − �5 = − �1/2�tanh�2�� , �A2�

�2 =
�

2

1 − exp�2��
cosh�2��

, �A3�

�4 =
�

2

1 − exp�−2��
cosh�2��

, �A4�

�3 = − ln cosh�2�� , �A5�

exp��� =
1

�cosh�2��
exp��1/4��2

„1/cosh�2�� − 1…� .

�A6�

The differentiation of Eq. �A1� with respect to � yields

dF

d�
= F�a2 − a+2 + ��a − a+��

=
d�1

d�
exp��1a+2�a+2 exp��2a+�exp��3a+a� ¯

+
d�2

d�
exp��1a+2�exp��2a+�a+ exp��3a+a�exp��4a�¯

�A7�

�the other terms with the derivatives d�3 /d�, d�4 /d�,
d�5 /d�, d� /d� are similar to the first two terms on the right-
hand side of Eq. �A7��.

It is easy to establish the following commutative relations:

a+ exp��a� = exp��a��a+ − �� , �A8�

a+ exp��a2� = exp��a2��a+ − 2�a� , �A9�

a+ exp��a+a� = exp�−��exp��a+a�a+ �A10�

and their Hermitian analogs. Using these relations we obtain
a set of six differential equations which contain six unknown
functions �i, � and their derivatives. We write down here
three equations:

�d�1/d��exp�−2�3� = − 1, �A11�

− 4�5
2 − 2�5�d�3/d�� + d�5/d� = 1, �A12�

d�3/d� = − 4�5. �A13�

Their solutions �see Eqs. �A2�–�A6�� vanish at �=0 since
F�0�=1.

APPENDIX B

We take into account relations �7� and �8� and find the
following expressions:

FIG. 15. The same as Fig. 13 with d=1.2.
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eQ = 1 + �
n

Bn
+Bn�exp���n� − 1�

+ �
n,�=1,2

Cn�
+ Cn��exp��1�1n�exp��1�2,n+�1

� − 1� ,

�B1�

where

�n = an
2 − an

+2 + ��an − an
+� , �B2�

�i,n = an
2 − an

+2 + �i�an − an
+�, i = 1,2. �B3�

The operators bn1

+ and bn1
listed below appear as a result

of the canonical transformation �6�:

bn1

+ = eQan1

+ e−Q, bn1
= eQan1

e−Q. �B4�

On using commutative relations �A8�–�A10�, relations �8�
which are valid in the linear case with one exciton only, and
relation �A1�, we obtain the following expressions �see Ref.
5 for the case of vibronics of pure Frenkel excitons�:

bn1
= an1

+ Bn1

+ Bn1
�an1

�cosh�2�� − 1� + an1

+ sinh�2�� + ��/2�


�exp�2�� − 1�� + �Cn1,1
+ Cn1,1 + Cn1,2

+ Cn1,2�


�an1
�cosh�2�1� − 1� + an1

+ sinh�2�1� + ��1/2�


�exp�2�1� − 1�� + �Cn1−1,1
+ Cn1−1,1 + Cn1+1,2

+ Cn1+1,2�


 �an1
�cosh�2�2� − 1� + an1

+ sinh�2�2� + ��2/2�


�exp�2�2� − 1�� �B5�

�plus its Hermitian conjugated relation for bn1

+ �.
Now we express the phonon normal coordinate Xn �see

Eq. �4�� and operators �5� of exciton–phonon coupling, as
well as the phonon part �3� via operators bn1

and bn1

+ . Then
the problem of elimination of operators �5� is reduced to
three independent subproblems, namely: elimination of op-

erator �5a� of exciton–phonon coupling in a molecule with
FE, elimination of operator �5b� of exciton–phonon coupling
in a positive ion, and finally, elimination of �5c� which con-
cerns a negative ion. The proper choice of the parameters �,
�1, �2, �, �1, and �2 �see relations �10� and �11�� simplifies
the exciton–phonon part of the Hamiltonian �12�.

Operator �13� which describes FE and CTEs transfer can
be transformed by preserving these terms only in the expan-
sion of the exponent’s operator exp Q which contains one
operator of creation and one operator of annihilation of the
vibrational quantum. Notably this part of operator �13� of
exciton transfer commutates with the operator �17� of total
phonon numbers and it is the most essential for the one-
phonon vibronic spectra.

In the linear case with small excitons’ density the exci-
tonic operators Bn, Bn

+, Cn�, Cn�
+ fulfill the commutative re-

lations for boson operators. Thus we use expression �B1� and
commutative relation �A10� and find the following expres-
sions:

Vn = eQBne−Q = Bn exp�−��n� , �B6�

Un� = eQCn�e−Q = Cn� exp�−��1�1,n + �2�2,n+�1
�� �B7�

�plus their Hermitian analogs�. The exponents in Eqs. �B6�
and �B7� can be presented by using relation �A1� and ex-
panding them up to the terms linear with respect to the pho-
non operators an and an

+. In this way we obtain

Vn � Bne��1 + �2�−��an
+��1 + �4�−��an� , �B8�

Vn
+ � Bn

+e��1 + �2���an
+��1 + �4���an� , �B9�

as well as similar expressions for the CTEs’ operators Un�

and Un�
+ . We put Eqs. �B8� and �B9� �and the similar formu-

las for Un� and Un�
+ � in the operator �13� of exciton transfer

according to the rule to preserve the terms with one phonon
creation and one phonon annihilation operator. In such a
way, after some algebraic transformations, one obtains the
operator �18�.
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