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We have calculated the conductance for two kinds of open periodic structures, using the lattice Green’s
function method. It is found that �n-2�-fold resonant splitting appears at energies slightly higher than the first
threshold energy, while resonant peaks satisfying the �n-1�-fold splitting rule exist in the low-energy region of
the conductance profile. The �n-2�-fold resonant splitting peaks are induced by high quasibound states in which
electrons are mainly localized in the constrictions rather than in the stubs or junctions of the open structures.
To this kind of quasibound state, the stub or junction acts as a potential barrier rather than a well, which is the
inverse of the case of the quasibound states corresponding to the �n-1�-fold splitting peaks. It is also found that
the number of high quasibound states existing in each constriction is related to the constriction length. In order
to observe the �n-2�-fold resonant splitting, the constrictions between stubs or junctions in the open structure
should be sufficiently long.
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I. INTRODUCTION

Technological advances in microfabrication techniques
now allow the manufacture of various kinds of low-
dimensional periodic quantum structures.1–5 Superlattices, as
typical periodic quantum structures, have attracted consider-
able attention from both theoretical and experimental re-
searchers, due to the importance of understanding the phys-
ics of quantum phenomena and their great technological
potential.6–10 It is well known that, for an electric or mag-
netic superlattice consisting of n identical potential or mag-
netic barriers, �n-1�-fold resonant splitting exists in the con-
ductance as a function of electron energy.7,10 These resonant
splitting peaks correspond to the quantum bound states
whose wave functions are localized in the wells. While the
�n-1�-fold resonant peak splitting rule is also found in the
open periodic structure,11–14 in an open periodic structure
such as a periodic multiwaveguide structure, there are no
potential barriers in the quantum channel. A periodic multi-
waveguide structure can be formed by cascading uniform
waveguide sections of alternating widths, in which the nar-
row section is a constriction while the wide region between
two constrictions is called a stub.11 Studies of the transport
properties of such structures have indicated that there exists a
general �n-1�-fold resonant peak splitting for ballistic con-
ductance when the structure consists of n constrictions.11,12

The n-1 peaks are induced by quasibound states whose wave
functions are mainly confined in the stubs.11,12 In analogy
with the electric or magnetic superlattice, the stub in an open
structure is usually regarded as a well while the constriction
is a barrier. Accordingly, a periodic multiwaveguide structure
consisting of n constrictions is usually regarded as an electric
superlattice with n potential barriers. However, the constric-
tions in open periodic structures are not real potential barri-
ers after all. In some cases, the electrons in the quantum
states of open structure can be confined in the constrictions.15

Thus the open periodic structure possesses some exotic
transport properties different from those of the electric or
magnetic superlattice.

In this paper, we first study the transport properties of a
periodic multiwaveguide structure as shown in Fig. 1�a�. It is
interesting to find that there is �n-2�-fold resonant splitting at
energies slightly higher than the first threshold energy, except
for the �n-1�-fold resonant splitting in the lower-energy re-
gion of conductance. The origination of the �n-2�-fold split-
ting is analyzed using the quasibound states and effective
mass picture. In the higher-energy region, the negative effec-
tive mass reverses the sign of the potential and thus each stub
in the open structure acts as a potential barrier rather than a
well. The n-2 split peaks are induced by high quasibound
states whose wave functions are mainly localized in the con-
strictions. The influence of the constriction length on the

FIG. 1. �a� Schematic view of the periodic multiwaveguide
structure, where a finite superlattice is connected to two leads with
width W. The basic cell consists of a stub, with length L and width
W, connected to a constriction of length Lc and width Wc. �b� Sche-
matic view of the antidot arrays, where confined arrays are con-
nected to two leads with width W. The length and width of the
longitudinal constriction between two transverse antidots are L1 and
W1, respectively, while the length and width of the transverse con-
striction between two longitudinal antidots are L2 and W2,
respectively.
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number of high quasibound states is discussed. Our calcula-
tions indicate that more quasibound states will exist in a
constriction between two stubs as the constriction length in-
creases. We also study the resonant splitting of a confined
antidot array as shown in Fig. 1�b�. Except for the resonant
peaks obtained via the quasibound states localized in the
junctions, the �n-2�-fold resonant splitting rule is found in
the higher-energy region of conductance again. As in the
case of the periodic multiwaveguide structure, the quasi-
bound states corresponding to n-2 resonant peaks are mainly
localized in the constrictions of antidot arrays.

II. MODEL AND METHOD

Let us consider two open periodic quantum structures as
shown in Fig. 1. A periodic multiwaveguide structure is dis-
played in Fig. 1�a� where a finite superlattice is connected to
two leads of width W. The finite superlattice consists of con-
strictions with size Wc�Lc and stubs with size W�L. While
Fig. 1�b� shows finite-antidot arrays in confined geometries
which are connected to two leads of width W. The antidots
�black square areas� have been modeled by squarelike poten-
tial barriers with infinite height. The length and width of the
longitudinal constriction between two transverse antidots are
L1 and W1, respectively, while the length and width of the
transverse constriction between two longitudinal antidots are
L2 and W2. To calculate the transport properties of the two
quantum structures, one can use the lattice Green’s function
�LGF� method.16–18 In terms of the LGF scheme, the system
is divided into a set of effective square lattices with lattice
constant a. Hard wall boundaries are simply simulated by the
absence of sites. To describe the electronic properties of the
effective discretized system of a square lattice, one can de-
fine the tight-binding Hamiltonian16

H = �
i,j

��i,j + Pi,j��i, j�i, j� + �
i,j

V��i, j��i, j + 1� + H . c . �

+ �
i,j

V��i + 1, j��i, j� + H . c . � , �1�

where �i,j is the site energy, Pi,j is the additional potential at
the �i , j� site, and V is the hopping matrix element between
the nearest-neighboring sites. Generally, �i,j =−4V and V
=−�2 /2m*a2 �m*=0.067m0�. We rewrite the Hamiltonian in
units of the column cell as

H = �
i

Hi + �
i

�Hi,i+1 + Hi+1,i� , �2�

where Hi is the Hamiltonian of the ith isolated column cell,
and Hi,i+1 and Hi+1,i are the intercell Hamiltonians between
the ith and �i+1�th column cells with

Hi+1,i = H̃i,i+1
* . �3�

So the first two terms of Eq. �1� correspond to the first term
of Eq. �2� and the last term of Eq. �1� corresponds to the
second term of Eq. �2�.

In terms of the definition of the Green’s function G= �E
−H�−1 �E in units of −V is the electron energy�, the Green’s

function of each column and the Green’s functions between
two columns can be found. Using the recursive Green’s func-
tion scheme,16,17 one can obtain the Green’s function of the
system, which allows us to calculate the transmission coeffi-
cient T of the two-terminal system. Then conductance G is
represented by the Landauer-Buttiker formula

G =
2e2

h
T . �4�

To calculate the eigenenergy E of a structure and the cor-
responding wave function �, one can write the Hamiltonian
of the system as

H = H0 + � , �5�

where H0 is the Hamiltonian of the structure without leads,
and � is the total self-energy of the two leads. Solving the
eigenequation H�=E�, one can obtain the eigenenergy E
and wave function �. In general, the eigenvalue is a com-
plex whose imaginary part is associated with the lifetime of
the eigenstate.18

III. RESULTS AND DISCUSSION

In Fig. 2, we show the calculated conductance as a func-
tion of electron energy for a periodic multiwaveguide struc-
ture which includes n constrictions and n-1 stubs. At the
lower energies, one can see that n-1 resonant peaks appear in
the conductance profiles. These peaks are induced by low
quasibound states. The inset in Fig. 2�a� displays the prob-
ability density of the quasibound state corresponding to the
peak in Fig. 2�a�. It is obvious that the electrons in the state

FIG. 2. �Color online� Conductance versus electron energy for a
period multiwaveguide structure as shown in Fig. 1�a� with n con-
strictions. n= �a� 2, �b� 3, �c� 4, and �d� 5. Results are for the case
W=16a ,L=8a ,Wc=6a ,Lc=10a. Inset of �a�: Contour plot of prob-
ability density of the quasibound state corresponding to the resonant
peak in �a�. The innermost contour curve represents the highest
probability density and the contour curves in the two leads are not
depicted.
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are confined in the stub. As the structure consists of n con-
strictions, the coupling among the n-1 lower quasibound
states in the stubs generates �n-1�-fold split states. Accord-
ingly, n-1 split peaks from the split states appear in the con-
ductance. For the low quasibound states, each stub is re-
garded as a well while each constriction is a barrier. Thus the
periodic structure including n constrictions is equivalent to
an electric superlattice with n potential barriers. However, at
energies slightly higher than the first threshold energy, there
are n-2 resonant peaks in the conductance profiles. These
peaks originate from the high quasibound states in the peri-
odic structure. To explain this point, we first display in Fig.
3�a� the probability density of the second eigenstate
�eigenenergy E=0.17� of the simplest multiwaveguide struc-
ture with two constrictions, i.e., n=2. In the longitudinal
direction, it is found that the electrons in the eigenstate are
mainly localized in the constrictions rather than in the stub.
Due to the finite length of the constrictions, the eigenstate
will couple with the continuum states in the lead; conse-
quently the electrons in the eigenstate will escape to the lead.
Our calculations also indicate that the lifetime of the state is
very short, i.e., the eigenstate is not a quasibound state. Thus
there is no resonant peak around E=0.17 in Fig. 2�a�. As the
structure includes n=3 constrictions, however, a high quasi-
bound state will exist in the structure because of the coupling
of the two adjacent eigenstates. Figure 3�b� shows the prob-
ability density of the quasibound state corresponding to the
peak with energy E=0.17 in Fig. 2�b�. One can see that, in
the longitudinal direction, the electrons in the state are
mainly localized in the middle constriction rather than in the
stubs. As the number of constrictions increases to n=4, the
symmetric and antisymmetric superpositions of the two qua-
sibound states, respectively localized in the two middle con-
strictions, generate two splitting states. The plots of probabil-

ity density of the two states corresponding to the fourth and
the fifth split peaks in Fig. 2�c� are depicted in Figs. 3�c� and
3�d�, respectively. With further increase of the period, n-2
split peaks from the n-2 high quasibound states will appear
in the conductance profiles.

Compared with the low quasibound states confined in
the stubs, the high quasibound states corresponding to the
�n-2�-fold splitting are mainly localized in the constrictions.
So the stubs of the high quasibound states are equivalent to
potential barriers rather than wells, which is the inverse of
the case of the low states. Why does the stub’s effect change
from well to barrier? This can be simply explained by the
effective mass picture. Associated with Eq. �1�, the
Schrödinger equation for a discretized system is

�i,j��xi,yj� + V���xi−1,yj� + ��xi+1,yj�� + V���xi,yj−1�

+ ��xi,yj+1�� = E��xi,yj� , �6�

where ��xi ,yj� is the wave function at the �i , j� site. For a
channel of constant width D= �m+1�a �m sites in the trans-
verse direction�, the wave function can be expressed as
��x ,y�=��k��x�sin k�y

�m+1�a �k represents the index of the sub-

band�. At the lowest point of the energy band �band mini-
mum�, the effective mass is positive and the longitudinal
wave function ��x� varies smoothly from point to point, i.e.,
the envelope ���=���xi� � i�. Then, expanding � in a Taylor
series, for the lowest subband k=1, Eq. �6� becomes

	�i,j − 4�V� +
�2�V�

�m + 1�2 + ¯ 
��1��xi� − a2�V����1��xi�

= E��1��xi� . �7�

So it seems reasonable that a constriction �a decrease in m�
would act as a potential bump, while a stub would act as an
attractive well. However, at the high-energy point �band
maximum�, due to the envelope satisfying ���=���xi�
��−1�i � i�, the approximate effective mass equation becomes

	�i,j +
�2�V�

�m + 1�2 + ¯ 
��1��xi� + a2�V����1��xi� = E��1��xi� .

�8�

This indicates that the longitudinal effective mass is nega-
tive, which essentially reverses the sign of the potential, in-
cluding both �i,j and the pseudopotential term due to the
transverse motion. Hence the constrictions become attractive
wells while the stubs become repulsive barriers. In this case,
an open periodic structure consisting of n-1 stubs �n constric-
tions� is equivalent to an electric superlattice consisting of
n-1 potential barriers. This is the reason why �n-2�-fold reso-
nant splitting appears in the high-energy region of the con-
ductance.

In Fig. 4�a�, the conductance as a function of electron
energy for the structure in the inset is calculated. The struc-
ture includes two stubs and three constrictions. We discuss
the effect of the length Lcm of the middle constriction on the
high quasibound states in the constriction. The solid, dashed,
and dotted lines, respectively, represent the conductance
curves at Lcm=10a, 26a, and 42a. One can see that the num-

FIG. 3. �Color online� Contour plots of probability density of �a�
the second eigenstate �eigenenergy E=0.17� of the multiwaveguide
structure with two constrictions, �b� the quasibound state corre-
sponding to the third resonant peak in Fig. 2�b�, �c� the quasibound
state corresponding to the fourth resonant peak in Fig. 2�c�, and
�d� the quasibound state corresponding to the fifth resonant peak in
Fig. 2�c�.
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ber of resonant peaks increases with the length, i.e., the num-
ber of high quasibound states in the constriction also in-
creases with length. The electron probability densities of the
two quasibound states corresponding to the two resonant
peaks of the dashed line in Fig. 4�a� are shown, respectively,
in Figs. 4�b� and 4�c�. In the longitudinal direction, the two
states are mainly localized in the middle constriction, and the
wave functions of the two states are respectively even and
odd symmetric with respect to the center line of the middle
constriction. This is similar to the case of a quasi-one-
dimensional double-barrier structure. It further indicates that,
to the high quasibound states, the stubs are equivalent to
potential barriers. Moreover, one expects that the quasibound
states in the constrictions will disappear when the constric-
tion length is short. Hence, in order to observe the �n-2�-fold
splitting rule, the constrictions should be sufficiently long.

We then consider the resonant splitting in the conductance
of a confined antidot arrays as shown in Fig. 1�b�. In Fig. 5,
the calculated conductance as a function of electron energy
for an antidot arrays including 3 �row��n �column� antidots
is presented. As n=2, the structure includes two crossed
junctions in the transverse direction. In each junction there
exists a lower quasibound state. The transverse coupling be-
tween the two quasibound states in the junctions will lead to
two split peaks in the lower-energy region of the conduc-
tance �see Fig. 5�a��. With the periodic number increasing,
each peak splits into n-1 peaks. So there are 2� �n-1� reso-
nant peaks in the lower-energy region of the conductance
curves in Fig. 5. These peaks correspond to 2� �n-1� quasi-
bound states whose wave functions are mainly localized in
the crossed junctions. Except for peaks satisfying the
�n-1�-fold splitting rule, �n-2�-fold split peaks appear in the
higher-energy region around E=0.178. As in the case of the
periodic multiwaveguide structure, these peaks are induced
by higher-energy quasibound states in which electrons are
mainly localized in the constrictions rather than in the junc-
tions. Figure 6�a� displays the probability density of the qua-
sibound state corresponding to the resonant peak with energy
E=0.178 in Fig. 5�b�. To this kind of high state, the constric-
tions are equivalent to wells rather than barriers. In addition,

in Fig. 5 one can see that some resonant peaks exist in the
conductance curves around E=0.1524. The number of these
peaks should be n-1. Figure 6�b� shows the electron prob-
ability density of the quasibound state corresponding to the
third peak in Fig. 5�a�. It is found that the wave function of
the quasibound state is tightly localized in the transverse
constrictions. As the structure includes more periods, the lon-
gitudinal coupling between these states becomes very weak.
Thus the energy difference of the split states is very small,
and consequently the number of peaks induced by these
states becomes uncountable.

IV. CONCLUSIONS

Using the LGF method, we calculated the conductance of
two typical open periodic structures. For a periodic multi-
waveguide structure including n constrictions, �n-1�-fold

FIG. 4. �Color online� �a� Conductance versus
electron energy for the structure in the inset with
different lengths Lcm of the middle constriction.
The solid, dashed, and dotted lines represent
Lcm=10a, 26a, and 42a, respectively. Other pa-
rameters are the same as in Fig. 2. Inset: Similar
structure as in Fig. 1�a� with three constrictions;
only the length of the middle constriction is rep-
resent by Lcm. �b�, �c� Contour plots of the prob-
ability density of the quasibound states corre-
sponding to the two peaks of the dashed line in
�a�: �b� the first and �c� the second resonant peak.

FIG. 5. Conductance versus electron energy for an antidot arrays
as shown in Fig. 1�b� including 3 �row��n �column� antidots. n=
�a� 2, �b� 3, �c� 4, and �d� 5. Results are for the case L1=10a ,W1

=6a ,L2=8a ,W2=10a, W=42a.
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split peaks appear at low energies of conductance while
�n-2�-fold split peaks appear at high energies. The former
resonant peaks are induced by quasibound states mainly lo-
calized in the stubs, while the latter peaks originate from

high quasibound states mainly localized in the constrictions.
To the high quasibound states, the stubs act as potential bar-
riers rather than wells, which is explained by the effective
mass picture. More quasibound states will exist in the
constriction between two stubs as the length of the constric-
tion increases. For a periodic antidot arrays including
3 �row��n �column� antidots, 2� �n-1� resonant peaks are
found in the lower-energy region of the conductance. As in
the case of the periodic multiwaveguide structure, the
�n-2�-fold splitting rule exists around the first threshold en-
ergy. The quasibound states corresponding to n-2 peaks are
mainly localized in the constrictions of the antidot arrays. In
addition, quasibound states tightly localized in the transverse
constrictions are also found.
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