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Evolution of wave-function statistics from closed quantum billiards up to the open quantum dot
limit: Application to the measurement of dynamical properties through imaging experiments
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We discuss the evolution of the electronic and scattering properties of a square billiard connected to the
outside either by tunneling barriers or by progressively higher-conductance leads. The slightest connection

already induces features of chaotic dynamics in the otherwise regular system. In the absence of large ensembles
for energy level statistics or power spectrum analysis, we propose the distribution of the local densities to
inspect the character of the underlying dynamics of a scattering state. We show that the wave-function statistics
in wide open chaotic billiards strongly deviates from available predictions. The precursors of scarred wave
functions are found in wave-function vortices that are tuned by the lead width.
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I. INTRODUCTION

The evolution of a quantum state connected to the envi-
ronment, which is eventually a classical system, is one of the
most basic questions in quantum mechanics. Tracing this
evolution in mesoscopic systems has become a real possibil-
ity since the well-known conductivity measurements in semi-
conductor-based stadiums, revealing features of the underly-
ing classical dynamics of the system.' In the past decade,
semiconductor ballistic quantum dots with controlled con-
nection to reservoirs have been used for investigations on the
quantum to classical correspondence.’

Open quantum dots (OQDs) with a high number N of
transmitting channels® are systems where the single-electron
charging effects are not relevant and single-particle reso-
nances should be robust with respect to electron-electron
interactions.* These OQDs are candidates for wave-function
mapping based either on resonance energy shifts> or on con-
ductance shifts,® induced by atomic force microscope tips.
This last procedure has been experimentally applied to im-
aging of quantum billiard states.” Therefore one could envis-
age the investigation of the statistical properties of wave
functions in chaotic semiconductor-based mesoscopic
billiards.® This possibility is highly desirable, since energy
level statistics (successful in the Coulomb blockade regime”)
are not applicable to OQDs and there is not a univocal rela-
tion between the fluctuations in the conductance and each
billiard state. One the other hand, a conductance-fluctuation
power spectrum analysis searching for periodic orbits!® may
also be misleading in grasping the dynamic features of
0OQDs, for the highly conducting leads could smear out im-
portant features in the Fourier transform of the conductance
and therefore valuable information about periodic orbits
could be lost. The development of wave-function imaging in
quantum dots,'! for the purpose of studying wave-function
statistics,!? could bring real OQDs to the status of reliable
experimental testing tools for theories of quantum chaos.
Such theories have been tested mainly in analogous systems,
like microwave cavities.'3

The probability distribution of probability densities (local
density of states) of a given eigenstate, P(¥?), in closed
chaotic cavities follows the Porter-Thomas (PT) distribution.
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In open cavities this behavior changes to the so-called gen-
eralized PT distribution (see Ref. 12). These statistical fea-
tures have been investigated experimentally in closed and
open microwave cavities, but with the restriction to few, N
<10, transmission channels. The aim of the present work is
to numerically investigate the evolution of the wave-function
statistics from closed quantum billiards up to the OQD limit,
defined as dots connected to leads of large conductance, i.e.,
G>2¢%/h, or N> 1, in the context of a possible measure-
ment of dynamical properties through imaging experiments.
We choose a square billiard, a well-studied system'#!> that is
completely regular when closed but presents chaotic features
as soon as it is connected to the outside by tunneling barriers,
showing a clear classical limit at N> 1. The present system
is solely tuned by the opening width and not by changing an
applied magnetic field'® or the internal structure of the
device.!”

The numerical approach follows previous works: in order
to get the conductance spectra of the OQD, transmission
probabilities are calculated using recursive Green’s function
methods.'®!? The local densities of states (LDOSs), in order
to map |W?|, are also obtained within a Green’s function
approach.?0?

II. THE CONDUCTANCE SPECTRUM

Our system is defined on a square lattice of tight-binding
s-like orbitals, as described elsewhere.’ In the present energy
scale, the lattice model emulates a system in the effective
mass approximation (such as a semiconductor-based low-
dimensional system). In all cases shown here, the OQD size
is L,=L,=101a=0.2 pm. The quantum point contacts
(QPCs) are L=25a (500 A) long and the width is varied
from w=1a (20 A) (tunneling limit) to w=51a (1000 A)
(wide open dots).

In Fig. 1 we present the conductance for a small energy
range, varying the width w of the QPCs. For w=1a, all the
structures are tunneling resonances (lower panel). For w
=5a, we can see fluctuations on the second conductance pla-
teau, while for wider leads, w=31a and 51a, the resonances
are on the N=13 and 21 conductance plateaus, respectively.
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FIG. 1. Conductance for open square quantum dots for different
lead widths w in a small energy range. Some of the resonances are
labeled. The inset shows the open square quantum dot with the
probability density (local density of states) at the energy of the E,
resonance for wide leads, w=>51a (upper panel), and very thin leads,
w=1la (lower panel).

By inspecting the probability density at the resonant ener-
gies, we are able to identify and follow each feature of the
conductance as a function of QPC width. With increasing
number of conductance channels, the resonances tend to be-
come broader, associated with a diminution in the number of
conductance fluctuations related to these resonances. Never-
theless, the line shape of several resonances can be followed,
as a function of lead width w, and a nontrivial evolution can
be seen. In particular, three examples are pointed out, E,
(associated with a scarred wave function, inset of Fig. 1), E,,
[related to a bouncing ball orbit; see inset in Fig. 2(b)], and
E. [another case of localization of the eigenfunction around
a classically allowed periodic orbit; see inset in Figs.
3(a)-3(d)]. It is interesting to notice that the E, resonance
corresponds to a completely regular single quantum state in
the tunneling regime. For wide QPCs, this resonance evolves
to an unstable periodic orbit associated with a clearly scarred
wave function.

The energy range in Fig. 1 corresponds to a de Broglie
wavelength approximately 20 times shorter than the lateral
billiard dimension, L=~20\;, ;g the figure of merit for
the semiclassical limit. Also a resonance at =0.2 eV corre-
sponds (for a closed square billiard with a side L=10la
=0.2 um and considering the electronic GaAs effective
mass) to energies that would be the upper limit of ensembles
of more than 700 eigenstates. It should be mentioned that the
number of grid points used in the simulations is still ad-
equate to correctly describe the nodes and antinodes of the
eigenfunctions in this energy range. This is far inside the
range in which the semiclassical limit would manifest itself.
On the other hand, classical square billiards show strictly
regular dynamics. Although rigorous analytical approaches
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FIG. 2. (a) Probability distribution of probability densities asso-
ciated with resonances of the slightly connected, w=1a, square bil-
liard. Filled circles for the regular state R in Fig. 1 (corresponding
probability density pattern in the left inset). Open circles for the E.
resonance in Fig. 1, following a PT distribution (continuous line),
with the scarred pattern in the right inset. (b) Probability distribu-
tion of the probability density associated with a bouncing-ball-like
resonance (E, in Fig. 1) for wide leads, w=>51a. Corresponding
probability density pattern in the inset.
in the semiclassical limit are well understood,!*! associa-
tions between square billiard quantum solutions and classical
periodic orbits have also been obtained by heuristic wave-

FIG. 3. As Fig. 2 for the resonance labeled E.. in Fig. 1 for wider
connecting leads: w=(a) 5a, (b) 11a, (c) 31a, and (d) 51a.
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function superposition,”! while quantum chaotic features

may be introduced in a closed square billiard by ripplelike
shape perturbations.?? By attaching the structures to leads the
square billiard gets chaotic dynamics in this classical limit.?3
Since we are looking in a small energy interval, the number
of resonances is not sufficient to proceed with a statistical
analysis of energy spacings or from the power spectrum of
the conductance, the usual tools in experimental investiga-
tions of chaotic behavior in the semiclassical and quantum
limits. Therefore, we refer to the potential application of
quantum state imaging as a tool for mapping the scattering
state itself and label the corresponding dynamic behavior by
means of a probability density distribution analysis, instead
of current statistics,2* which would be more involved from
an experimental point of view.

III. BOTTLENECK OPENING OF SQUARE
QUANTUM DOTS

Closed square billiards present a regular classical dynam-
ics which is reflected in the quantum limit in a specific
P(W?) behavior: all eigenfunctions collapse on a single
curve, illustrated by the filled circles in Fig. 2(a). With a
proper shape perturbation, the square billiard starts to reveal
a chaotic behavior,2? which can be related to a PT distri-
bution!? for the wave-function intensity, the continuous line
in Fig. 2(a). Here this shape perturbation is given by opening
the square quantum dots, which also may induce chaos in the
dynamics, as pointed out in previous work.?® Three different
opening regimes can be established: (i) Opening by tunnel-
ing, (ii) low conductance, and (iii) the commonly known
OQDs connected by large conductance leads. From an ex-
perimental point of view, only the last regime—large con-
ductance—can be well described by a single-electron model.
However, the description of the two other regimes, within a
single-particle framework, is important from the heuristic
point of view, as well as for understanding the dynamics in
related systems, like microwave cavities.

In the tunneling regime (thin leads, w=1a), the opening
effects on the individual states are dramatically different, as
can be seen in Fig. 2(a). The P(W?) for the resonance indi-
cated as R in Fig. 1 shows the closed system pattern [filled
circles in Fig. 2(a)]. On the other hand, an almost overlap-
ping resonance E,. shows already a strong mixing with a
P(W?) (open circles) following a generalized PT distribution
(continuous line). This difference is clearly manifested in the
corresponding probability density landscapes. The regular
probability density pattern of the R resonance is depicted in
the left inset of Fig. 2(a), while in the right inset we can see
clear signatures of the formation of scars associated with the
E, structure in the conductance.

IV. WIDE OPEN SQUARE DOTS

Next we introduce low-conductance openings, namely, a
few-channel lead connection G= Gy=2¢/h. With this con-
nection, strong fluctuations can be seen on the conductance
plateau, related to the billiard eigenstates turning into reso-
nances. We will focus now on the E, resonance, associated
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FIG. 4. Probability density plots at the E, resonances in the
presence of a potential bump at the indicated position (black
squares). Left (right) column for narrow (wide) connecting leads,
w=1la (51a). Perturbation potential of V=(a) 0.05, (b) 0.1, and (c)
0.2 eV.

with bouncing ball orbits, which are not expected to follow a
PT-like distribution for the probability density intensities.>
However, an important general effect on P(¥?) can be ob-
served: the progressive opening of the dot leads to a suppres-
sion of the probability for low probability densities with the
eventual appearance of a threshold for sufficiently wide
QPCs [Fig. 2(b)] (E, for w=51). In other words, these states
reveal an almost ergodically spread-out probability density.
The case shown in Fig. 2(b) cannot be satisfactorily fitted by
either the P(W?) for regular systems, or the generalized PT
one for chaotic systems.

One should also follow the evolution of the E,. resonance,
with a pattern that evolves into a clear scar of periodic orbit
for wide QPCs. The P(W?) at the energy of the E, resonance
can be seen in Fig. 3. For w=5a and N=2 there is negligible
local density of states at the leads [Fig. 3(a)]. A chessboard
scar pattern is present (see inset), as well as a vortex
landscape,?? also seen for other resonances not shown here,
suggesting this vortex pattern as a precursor of unstable pe-
riodic orbit patterns. The P(W?) depicted can still be de-
scribed by a generalized PT distribution.

A dramatic change occurs in the limit of several open
channels, i.e., a truly OQD with G/Gy> 1, as in the conduc-
tance curve for w=51a in Fig. 1. Now the E. resonance
becomes a very wide one at this energy scale and the corre-
sponding probability density is ergodically spread out over
the entire system. Nevertheless, a faint structure in the con-
ductance is present and a scarred wave function around a
periodic orbit characteristic of the geometry of the open
square can be clearly seen. The surprise comes with the
probability density distribution, completely different from a
generalized PT distribution. In the inset of Fig. 3(d) we see
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the probability density at the energy of the E, resonance for
w=>51a. The corresponding P(W¥?) shows a clear threshold at
a finite intensity (characteristic for ergodicity), a smooth
maximum at a finite value for the probability density, and an
asymmetric tail. This asymmetric tail seems to be the re-
maining hint of a chaotic dynamics. The shape of the peri-
odic orbit is stable against the opening of the contacts: the
chessboard pattern continues to evolve until w=25, after
which the pattern remains essentially unchanged. Figures
3(b) and 3(c) show some intermediate situations, where the
formation of a finite threshold for P(¥?) can be followed.
Furthermore, in Fig. 3 it is interesting to observe the evolu-
tion of the vortexlike patterns. The probability density land-
scapes may suggest that the typical dimension of such vor-
texlike structures scales with the lead width w, eventually
generating a scar pattern for wider contacts.

V. FINAL COMMENTS ON IMAGING

A completely different tuning of the system would be ob-
tained by a potential spike at some position of the billiard,
emulating the effect of an atomic force microscope tip for
wave-function imaging purposes. The corresponding reso-
nance at E, in Fig. 1(a) (upper curve) presents an energy shift
proportional to the probability density at the spike position
(not shown here), which constitutes the imaging procedure
described elsewhere.> Here we focus on the progressive
breakdown of the periodic orbit with a potential spike (a
5a X 35a square) at the indicated position (Fig. 4). The peri-
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odic orbit is robust for low-potential spikes and for the
present case this orbit can still be clearly identified for a
potential spike of V=0.05 eV [Fig. 4(a)]. A breakdown of the
orbit, evolving to a scarred wave function with lower sym-
metry, occurs for higher-voltage spikes [Figs. 4(b) (V
=0.1 eV) and 4(c) (V=0.2 eV)], specially for the wider-lead
cases (right panel): now the potential spike acts like an ef-
fectively tunable barrier.!” For thinner leads, the symmetry
breaking is not so evident and evidences of self-similarity in
the vortex pattern7 are present.

A closed quantum system—a hard wall square billiard—
starts to show chaotic features at the slightest opening to an
external environment, which eventually lead to a clear clas-
sical limit, evidenced by robust periodic orbit scars in the
local density of states. For high conductance and very short
de Broglie wavelengths, the wave-function distribution sta-
tistics present completely different aspects that can only be
reconciled to established analytical results at strict proper
limits. Further work is necessary to properly describe the
modification of the PT distribution for N>1. In this sce-
nario, the present results suggest an investigation tool for the
underlying dynamics in mesoscopic systems based on the
imaging of probability densities from conductance spectros-
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