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Tunneling assisted two-photon absorption: The nonlinear Franz-Keldysh effect
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The N-photon absorption coefficient of a direct gap semiconductor under the influence of a uniform electric
field perpendicular to the layer and neglecting excitonic effects is calculated. For N=2 we recover the familiar
results for the low-field regime. The system also shows the same universal behavior as for the N=1 case.
Below the E,/2 edge the absorption coefficient develops the exponential tail characteristic of N=1, but with a
different photon energy and electric field dependency while above the E,/2 edge Franz-Keldysh oscillations
with strong damping features are present. An analytical expression for the tunneling assisted two-photon
absorption coefficient is given. Our discussion gives suggestions for the use of the effect in the nonlinear
regime to characterize the critical point of otherwise forbidden transitions in semiconductors.
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I. INTRODUCTION

Systematic studies on the effect of a dc electric field in the
optical absorption of semiconductors in the nonlinear regime
are scarce, and only few papers have touched on the contri-
bution of strong electric fields on the nonlinear susceptibility,
in particular in the imaginary part of the susceptibility that is
related to the absorption coefficient. In this paper, we calcu-
late the nonlinear absorption coefficient for the case N=1 of
a semiconductor in a strong dc electric field parallel to the
propagation direction of the optical field, and give expres-
sions for N=2 in the strong dc-field regime above and below
the E,/2 edge. We show that the Franz-Keldysh'~ effect pos-
sesses a universal behavior that depends on a modified en-
ergy gap given by E,/N, where E, is the energy gap of the
semiconductor, and N in the number of photons absorbed in
the process. We propose to extend the modulation spectros-
copy technique to the nonlinear regime because of the uni-
versal behavior of the Franz-Keldysh effect

The effect of a dc electric field on the absorption coeffi-
cient of solids in the linear regime and particularly in semi-
conductors has been extensively studied.>® The main char-
acteristics of the effect includes the appearance of an
exponential tail below the band edge reminiscent of the tun-
neling effect and the development of an oscillatory behavior
(Franz-Keldysh oscillations) above the fundamental absorp-
tion edge E,."* Later work noted that any full description of
such an interband optical absorption should include the Cou-
lomb interaction of the electron and hole.>!” The conse-
quences of the interaction are an enhancement of the optical
absorption above the optical band gap with no applied field,
and a broadening and small shift to lower photon energy of
the resonance with applied field. Although this shift is rela-
tively small at low applied fields (<10% of the exciton bind-
ing energy), the theory provides a relatively full description
of electroabsorption, including excitonic effects, in bulk
semiconductors. This complex phenomenon has been used to
characterize the band structure and to identify critical points
in semiconductors.!"'? The technique, known as “modulation
spectroscopy,” uses the fact that the spectral shape of the
differential reflectance is proportional to the third derivative
of the primary spectrum with respect to the photon energy
E.13
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In the high-intensity optical field regime with no dc fields,
multiphoton absorption has been studied extensively.'*!> In
particular, two- and three-photon absorption have received
most of the attention for their role as a limiting factor in
photonics applications, particularly in photonic switching.
Several approaches have been used in the calculation of the
nonlinear absorption coefficient using either perturbation
theory or dressed state calculations. However, none of them
have included the effect of dc fields in the nonlinear absorp-
tion even though some of them have mentioned the contri-
bution of dc terms or quadrupole contributions to the nonlin-
ear absorption that results in a dc and ac Stark effect,
depending on the transitions involved!® when nondegenerate
two-photon processes are considered. This is not the case
here, because our calculation addresses the fully degenerate
case.

One of the many applications of two-photon absorption is
in spectroscopy. The use of two-photon absorption for spec-
troscopy studies has advantages over the single-photon pro-
cess because of the restriction on selection rules; e.g., when
one photon absorption is forbidden by selection rules, a
higher-order absorption process may be allowed.!” Another
advantage of two-photon absorption spectroscopy is the abil-
ity to study the properties truly characteristic of the crystal-
line volume because of the small values of the nonlinear
absorption coefficient.

In Sec. II of this paper, we will present the formal theory
of multiphoton electroabsorption in a bulk semiconductor,
neglecting Coulomb interaction in a linearly polarized case,
with an electric field applied in the direction parallel to the
propagation of the optical field. In Sec. III, we will present
illustrative examples for the N=1 and N=2 cases, and give
analytical expressions for the low and high dc field regimes
below and above the normalized E,/N band gap for N=2.
We will present our conclusions in Sec. IV.

II. NONLINEAR ELECTROABSORPTION
The general problem here is one in which a charged par-

ticle, in this case an electron initially bound in the valence
band, experiences a transition to the conduction band
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FIG. 1. (Color online) N-photon assisted tunneling in an electric
field perpendicular to the layer. The sloping lines represent the
valence- and conduction-band edges. A valence-band electron of
energy Eyp tunnels from its turning point Xyp to X,,, absorbs N
photons, and tunnels to Xcp, the turning point for a conduction
electron of energy Ecp=Eyp+Nhw.

through the action of an intense plane-wave electromagnetic
field as is shown in Fig. 1.

The S matrix to describe the transition can be written in
general as

Sji= lim (v, @), (1)

where W) is the final state of the system containing the
effect of the electromagnetic field and the crystal lattice po-
tential, while @; is the initial state of the unperturbed system
with no field present. An electron in a solid in the effective-
mass approximation has properties which resemble those of
free electrons.'®!>18 This is particularly true for conduction-
band electrons, which are not strongly localized to the
atomic sites of the crystal. Therefore it is assumed that after
the transition the conduction electron can be represented by a
Volkov-type wave function!® whose energy will be com-
pletely determined by the electromagnetic (EM) field. We
presume that the motion in the plane perpendicular to the
EM-field propagation is still described by plane-wave ap-
proximation. Our theoretical treatment adopts Keldysh’s
view in this regard with one modification: the effect of the dc
electric field on the hole and electron wave functions can be
expressed as

WEr 1) = Ug e P, (e MEea®r ()

where U;" is the usual Bloch wave function which has the
same periodicity as the lattice. As we mentioned before, the
effect of the optical field is only to modify the energy of the
electron in the final state of the system. It is worth mention-
ing that the dc-field direction only enters through the reduced
mass in the direction of the dc field and will only affect the
final result by a numerical factor but with the same func-
tional form. The envelope function ¢,(z) is given by

e(2) =a, A€, 3)

where
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is a solution of the Schrodinger equation in the effective
mass approximation,

R
- —xel? QDn(Z) = Ee’hQDn(Z), (4)
2m,, dz

where E, , are the energy of the electron and hole from their
respective band edges, Ai(z) are Airy functions,?® m, and m,,
correspond respectively to the electron and hole effective
masses, and the a’s are normalization constants given by

1L
(a;°) = lim —+\f B (5)

c,v

where L is the slab thickness and

2em,  F
Cc,U = h2 >

where F is the dc electric field. The Hamiltonian of the elec-
tron in the optical field can be expressed as

1 eA\?
H=—/I|p+—| +V(r),
2 c

o

where p is the electron momentum, e is the charge of the
electron, m,, is the free electron mass, A is the vector poten-
tial, and V(r) is the potential energy of the electron in the
solid. Therefore, the interaction Hamiltonian can be written
as

e e?A?
(p-A+A-p)+ 5
m,c 2m,c

H.

int= "~
2

where the last term can be ignored because it is small com-
pared to the other two terms. In the Coulomb gauge V-A
=0, and the first two terms commute, hence the interaction
Hamiltonian for the system can be expressed in the dipole
approximation as>!??

H,-m=—<L>A-p; A=ZA,cos wt. (6)
m,c

It should be noted that the (eA)? term nominally in the
H,;,, does not make any contributions to the transition rate in
the dipole approximation because even though it contains the
ordinary matrix element connecting the valence band and the
conduction band, it must be remembered that it represents an
electric quadrupole contribution to the transition rate and it
would be inconsistent to include it with the pure dipole rates.
Additionally it can be removed through a contact
transformation.'”'823 The effect of the optical field is to alter
the energy of the electrons and holes in the final and initial
states, respectively. The energies for the hole in the valence
band, and for the electron in the conduction band, are given
by!922
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(A el
E.=—ki+E,——k-A+E,
m, mgc
h2
E,=E,—- —k, (7)
2m,

where A is the vector potential of the propagating optical
field, and &k, is the momentum of the electron and hole per-
pendicular to the dc field and optical field. The interaction
term in Eq. (7) is obtained as follows: in the Coulomb gauge
the scalar potential is zero and the electric field is given by
E=-0A/dt. Therefore Eq. (7) can be transformed in the fol-
lowing way:

[p*.x]=2ifp,

and using the above result, we get

)

(A|x|B) = — imwx,p,

(Alpls)= <A BH,.x]
_ im(E, — Ep)
- h

and this is equivalent to the direct interaction Hamiltonian
provided that we replace

eA-p e OJA
- — —x-—=—¢ex-FE
mc c it

Now we prove that the contribution from this term to the
energy of the electron in the conduction band is equal to the
k-A term in Eq. (6). The fundamental assumption in the
Volkov approximation is that the optical field only modifies
the final energy of the electrons in the conduction band. The
energy of the system in first-order perturbation theory is

(nk| Hiyy|nk) = - i[zmA 0, (k)] = eA - v,(k),

where v,(k) is the group velocity associated with the state k
in the band n. For parabolic bands the group velocity is given
by v, (k)=fk/m,, and the contribution of the optical field to
the final energy of the electron in the conduction band is

eh
(nk|Hip|nky=——%k- A.
m.c

Cc

The transition rate can be expressed using Egs. (2), (3), and
(6) in Eq. (1),

i e
S=- P f dtd3xU;(k)e_’k"’QDn(Z)e(’/ﬁ)IOEv(k)dTA p
4 1 . t ’
) (m_c)e"‘ UK g (@) DI (g)

Grouping all the terms with spatial dependency, and simpli-
fying it in the spirit of the slow varying envelope approxi-
mation, we obtain
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A, .
[eh(Ee’Eh):( in )Pvcék kf (P,,(Z)Qon'(Z)dZ, (9)

where P, is the interband momentum matrix element. We
have made the assumption of a direct allowed transition with
negligible photon momentum and an interband matrix ele-
ment P,. independent of k. The last integral can easily be
evaluated using properties of the Airy functions* as

eA h2 1/3
L(E,E)=|-—2|P,.5 Ai
eh( e h) ( mc) v kL (2M F) l

2meF\'"*| E,+E .
><{-_ ( nﬂue ) [ e h]:}a;az,, (10)
eF eF

In the above equation, M=m_.+m,, and m “ the reduced mass
given by

1 1 1

_— —

m, m. m,

Redefining the argument of the Airy function as &,, sub-
stituting Eq. (10) into Eq. (8) and with the aid of the series
representation of the function cos(wr)e’® ™) in terms of
Bessel functions, we get

i( eA0>< m,wc )( h? )”3
S=-—|- Pvc
h mc /\ek-ZA,) \2MeF

<]
. C v
X f e(l/ﬁ)(Eki+Ekl+Eg_Eh+Eg)t5klkl
—0o0

ek - .
X 2 n]( A, ) noiAi(8,)asal,dt. (11)
m.wc

n=—0

Using the integral representation of the delta function and
simplifying, we arrive at the final value for the S matrix,

S=<27TiPucnjcw)( h? )1/3§njn(ek-fx40)
mk - Z 2MFe - m.wc

X5(E2L+E +E,— E, + E, — nho)Ai(5,)a,a

(12)

Using the following property of the delta function:*!
|6E-E"|*= iéS(E E")
C2ath '

The transition probability per unit time for the N-photon
absorption can be calculated from the S matrix as

|Pvc|2<2ﬂmch>2< h? )2/3
27h \ mk-Z 2MFe

k-t
% JN<e Ao )
m.wc

X 5(15,‘;L +E,’j,L +E,—E,+E, - Nhw). (13)

1
WV(k) = lim =[S =
T— T

[Ai(8,)aa, T

The transition rate (pert unit of volume) can be expressed as
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W =

o )222 fdkuW(N)(k) (14)

where we are summing over the electron-hole energy system.
We can change the summation over the electron-hole energy
to an integral over the density of states using the fact that
2 L E.,,|"” 1
n=——02m.eF)"?| -+ =% + -, 15
37Tﬁ( wef) 2 eF 4 (15)

so that the density of states in energy becomes

dn L[mCUL}m

dE.,, mh| eF

(16)

as L— oo, and the transition rate becomes

1 P |2N2(27Tmcw>2( w )(fcfv)”@<mcmv)”2
Qm)?" v m 27h)  h? (eF)?

A \13 (eF) (ek-ﬁAo) 2
X(ZM@F) fdk(k 2)? Iy m.wc

2m, eF 1/3<ﬁ2k2
Ai —”—) L+ E,~Nh
{(fzz(eF)3 2m @

To simplify the above expression, we used the lowest or-
der MacLaurin expansion term for the Bessel function
J,(x)=x"/2"n! for the case where x<<1. The amplitude of
the vector potential is related to the intensity in cgs units as
AZ=8mcl/nw?, where n is the linear index of refraction and /
is the irradiance of the optical field. In a solid, the electron
momentum is of the order of k= m/a, where a, is the unit
cell dimension a,~ 1009 m, w=1.77x10Y% s7!, and using
n=2.34 for CdS. Using the previous values for x<<1, we find
that the approximation is valid for optical field intensities /
<9.9 X 10* W/cm?. At this power level, it is practically pos-
sible to observe nonlinear effects as this corresponds to a
typical Nd:YAG (yttrium aluminum garnet) laser operating at
A=1.06 um, with a pulse width of 50 ps, repetition rate of
the order of 100 MHz with average power levels of less that
10 mW. The N-photon absorption coefficient can be ex-
pressed finally as

B0 = 2y, (18)

W =

2
X

(17)

where [ is the intensity of the optical field. Using the above
formalism, we find after a long calculation the N-photon ab-
sorption coefficient in the presence of a dc electric field to be

v _ /' | 87, N‘I{N(ZN—?))!!}(@&)N
22| nmlew® [(N=1)T |\ A2

X f e M1 Ai(e)Pde, (19)

o

where E,=(fi**F?/2m,)'"” is the characteristic energy of
the dc electrlc field, m,, is the reduced mass, n is the semi-
conductor index of refractlon and f, oy, and 8 ™) are given
by
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2eFm
f==

n*

87| Py f’e?
ay=—""—"7—
"7 e miw '

o _ Eg=Nho

0
E,

Equation (19) is the final result, the Nth-order absorption
coefficient, which is given as a integral equation over the
Airy function convoluted with an energy argument that de-
pends strongly on the characteristic energy of the system E,,.
One thing that should be mentioned is the fact that the effect
of the electric field in the N-photon absorption coefficient is
to replace the delta function obtained in the zero-field ex-
pression by a function of unit area but of finite width. As
Aspnes!? points out, the electric field averages or convolutes
the zero-field structure in the absorption coefficient and, of
course, in the dielectric constant.

III. ONE- AND TWO-PHOTON ABSORPTION

In this section we will use the above equation for N=1
and N=2. We use these two cases because the result is well
known in the zero-field limit. Our objective is to show that in
the zero-field limit the results should be equal. We will show
for the case of two photons that the system shows the same
general behavior of the linear Franz-Keldysh effect. This
characteristic gives the effect an universal character. This
universal character will be used to study some mathematical
consequences in future publications.

To verify the validity of Eq. (19), we calculate the elec-
troabsorption coefficient for N=1. In this particular case, we
get

BV (w) = me( ) f |Ai(e)|*de. (20)

Using integral properties of the Airy functions, this be-
comes

B0 = L AR AT EDF). 1)

This is the well-known result for the linear Franz-Keldysh
effect. Equation (21) possesses two limits. One is below the
band edge and large field limit, in which case Eq. (21) gives
the well-known result for Zener tunneling. The appearance
of an exponential tail can be understood as a photon-assisted
field-induced tunneling. Above the band edge and for low
field limits, the free carrier absorption coefficient is recov-
ered.

Next we take the case N=2. In this case, Eq. (19) be-
comes
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20, | 8we*E, || my, | [ .
B == — A (2)(8—822))|Al(8)|2d8-

(22)

The integral can be expressed as two integrals with solutions
given by?*

f x|Ai(x)[*dx = %[Ai’ (x)Ai(x) — x|Ai" (x)|* + x2|Ai(x)|*],

f |Ai(x)[2dx = x|Ai(x)|? - |Ai’ (x)|*. (23)

Expressing the dipole matrix elements in terms of E, ob-
tained by Ashkinadze et al.,”® P, /m.=3E,/4m,, based on a
Hartree-Fock calculation, we ﬁnd that the two photon ab-
sorption coefficient for a direct-gap semiconductor in the
presence of a strong dc electric field is given by

K(E,E,E)"?

507 22 ) KB D ot e e

- Ai(e,)Ai'(e,)}, (24)
where K is a material-independent constant,

227 ¢

= 5 \g”m—oc
which has a value of K=1940, E,=2|P,|*/m,~21 eV for
most semiconductors, and &,=(E,—2Aw)/E,. Using the
asymptotic expansion for the Airy function in the limit of
large negative and positive arguments given by Ref. 20,

2
sin(—x3/2 + 7—T> s
3 4

2°

lim Ai(- x) = —=
e V!

1/4
2 T

lim Ai'(-x) = —= cos(—x3/2 + —) ,

X—00 V7T 3 4

1 3 3¢y
lim Ai(x) = e @I (1— )
oo (x) 2V/7_Tx”4 2,32

L4
lim Ai' (x) = —=e~

X—0 A

23)632 21cy
(2/3) (1—10x3,2), (25)

where ¢;=15/216. Using Eq. (10), we recover the familiar
two-photon absorption coefficient in the absence of the dc
field" for large negative arguments (27w E,), given by

B(z)( ) ( ) EE 172

(
pme) 32
2% )S(Zﬁw—Eg) . (26)

In the large positive limit for Eq. (24), the energy of the
photon is below the two-photon absorption edge, and B®?
reduces to

| 12 2
BP(w,F) = ( V3 )K( o) Ey
’ 3:2") n*(2hw)’ (E,-2hw)’?
X o~H3(E; - Zﬁw/E#)yz‘ (27)
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FIG. 2. Two-photon absorption as a function of photon energy
for CdS for a dc electric field of F=2.0X 10° V/cm.

Equations (24) and (27) are the main results of this paper.
We call Eq. (27) two-photon assisted field-induced tunneling,
since it is reminiscent of the tunneling effect. However, there
are major differences between the two effects. For example,
the energy argument in the denominator of Eq. (27) has a
3/2-power dependency as compared to the single-photon
case where the energy has a linear dependency. Also, the
prefactor of the exponential for the case of single-photon
absorption depends linearly on the electric field, while in the
two-photon case the dependency in the prefactor is to the
power 4/3 as can be seen by the definition of E,,. However,
the exponential dependency of the absorption coefficient for
the single as well as the two-photon case shows the same
behavior as a function of the electric field. This can be un-
derstood in the sense that the exponential behavior depends
strictly on the overlap of the electron and hole wave func-
tion, which is completely determined by the dc electric field.
Above the band edge, the oscillatory behavior is less severe
for the two-photon process, and the oscillations decay faster
compared to the one-photon case as is shown in Fig. 3.

Figure 2 shows a plot of Eq. (24) for the case of CdS
using an electric field of the order of 2.0 X 10° V/cm. As can
be seen, below the E,/2 edge, the exponential tail is pre-
dominant, while above E,/2 the oscillatory behavior is less
pronounced as in the N=1 case. In Fig. 3 we plot the electro-
optic function, defined as the differential absorption in the
presence and in the absence of the electric field, and we can
see that the damping of the oscillations is more severe com-
pared to the N=1 case. Figure 4 shows the dependence of the
electroabsorption coefficient as a function of the electric
field, and we can see that as the electric field increases the
intensity of the oscillation also increases, but with a longer
period.

IV. CONCLUSIONS

In conclusion, we have shown that the N-photon absorp-
tion coefficient in the presence of a dc electric field shows
the same features as the single-photon process: exponential
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FIG. 3. Plot of the electro-optic function defined as AB?
X (w,F)=[BP(w,F)-B?(w,F=0)/BY(w,F=0)], for CdS in a F
=2.0X 10° V/cm dc electric field.

decay below the E,/N band edge, where N=1 is the funda-
mental edge, and oscillatory behavior above the E,/N band
edge. This scalability leads us to believe that there is a deep
connection between linear modulation spectroscopy and non-
linear spectroscopy. For example, Aspnes’s’ results relating
the third derivative of the fundamental absorption in the low-
field limit and large-energy broadening to the differential ab-
sorption modulation should be applied here. One aspect we
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Differential Absorption
for CdS,V=5-200 Volts
0.002 4 across a 1 um slab

0.000

Differential Nonlinear Absorption

-0.002

: : : : :
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FIG. 4. Differential absorption as a function of electric field for
CdS with V=5-200 V across a 1 um thickness sample.

are still exploring is the deep similarity of the third deriva-
tive of the nonlinear two-photon absorption in the presence
of the dc field [Eq. (9)] plotted as a function of photon en-
ergy shifted by iw and the differential one-photon absorp-
tion behavior.”® This may have important implications for
nonlinear spectroscopy. Experiments are under way to test
the theory.

ACKNOWLEDGMENT

The author thanks D. E. Aspnes and A. M. Johnson for
fruitful discussions.

*E-mail address: hgarcia@siue.edu

L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).

2W. Franz, Z. Naturforsch. A 13A, 484 (1958).

3K. Tharmalingan, Phys. Rev. 130, 2204 (1963).

4T. N. Morgan, Phys. Rev. 148, 890 (1966).

Y. Yacoby, Phys. Rev. 169, 610 (1968).

SB. T. French, Phys. Rev. 174, 991 (1968).

’D. E. Aspnes, Phys. Rev. 153, 972 (1967).

8R. Enderlein and R. Keiper, Phys. Status Solidi 19, 673 (1967).

°1. A. Merkulo and V. 1. Perel’, Phys. Lett. 45A, 83 (1973).

19] D. Dow and D. Redfield, Phys. Rev. B 1, 3358 (1970).

I'B. O. Seraphin and R. B. Hess, Phys. Rev. Lett. 14, 138 (1965).

12D. E. Aspnes, in Handbook of Semiconductors, edited by M. Ba-
kanski (North-Holland, Amsterdam 1980), Vol. 2, p. 109.

3D. E. Aspnes and J. E. Rowe, Solid State Commun. 8, 1145
(1970).

“H. D. Jones and H. R. Reiss, Phys. Rev. B 16, 2466 (1977).

ISH. R. Reiss, Phys. Rev. A 22, 1786 (1980).

16M. Sheik-Bahae, D. J. Hagan, and E. R. Van Stryland, Phys. Rev.

Lett. 65, 96 (1990).

17V, Nathan, A. H. Guenther, and S. S. Mitra, J. Opt. Soc. Am. B 2,
294 (1985).

8H. D. Jones, Phys. Rev. B 16, 2466 (1977).

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. R. Van
Stryland, IEEE J. Quantum Electron. 27, 1296 (1991).

20 Handbook of Mathematical Functions, edited by M. Abramowitz
and I. A. Stegun (National Bureau of Standards, Washington,
D.C., 1964).

21y, J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley,
New York, 1967), p. 190.

228, K. Ridley, Quantum Processes in Semiconductors, 2nd ed.
(Oxford University Press, New York, 1988), 55.

23H. S. Brandi and Cid. B. Araujo, J. Phys. C 16, 5929 (1983).

24]. R. Albright, J. Phys. A 4, 485 (1977).

2’B. M. Ashkinadze, S. M. Ryvkin, and D. I. Yaroshetskii, Sov.
Phys. Semicond. 2, 1285 (1969).

20H. Garcia (unpublished).

035212-6



