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Steady-state current flow through a nonuniform medium generally alters the local carrier density. In particu-
lar, driving conventional high-mobility charge carriers through a region in which they collapse into low-
mobility small polarons propels the small-polaron density beyond its equilibrium value. There are two contri-
butions to the local augmentation of the small-polaron density. These contributions are proportional to the
ratios of the rate governing intersite motion of a conventional high-mobility carrier Rf to �i� the �relatively
slow� rate governing intersite hopping of a small polaron R, and to �ii� the �even slower� rate governing
conversion of a carrier between being quasifree and being a small polaron, r. As a result of the very large
values of these ratios, Rf /R and R /r�1, large increases in the small-polaron density can be obtained with
accessible electric-field strengths, �106 V/cm. However, upon being driven to a sufficiently high density,
small polarons become unstable with respect to conversion into nonpolaronic carriers. As a result, currents
beyond a threshold value can convert a small-polaron semiconductor to a high-mobility semiconductor. Re-
ducing the current permits the material’s carriers to relax back to being small polarons. This phenomenon may
account for the threshold switching that is observed in materials in which equilibrated carriers appear to form
small polarons �e.g., amorphous boron, transition-metal oxide glasses, and chalcogenide glasses�.
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I. INTRODUCTION

Driving a large current through some materials with
low electrical conductivity can induce them to switch into
a high-conductivity state. The material remains in a high-
conductivity state provided current flow is maintained
above some minimum value, the holding current. If the cur-
rent drops below the holding value, the material reverts to its
low-conductivity electronic transport. This behavior de-
scribes the operation of a threshold switch.1–3 Threshold
switching is an electronic process. Indeed, switching of
small samples is accompanied by very little heating. How-
ever, mechanisms for threshold switching are not well
established.1–3

In some instances, maintaining switched material in its
high-conductivity state produces a structural phase transition.
After this phase transformation the high-conductivity state
persists even in the absence of a holding current. This pro-
cedure can result in electronically induced crystallization of
an amorphous semiconductor. Then the heating and subse-
quent rapid cooling that accompanies a suitably engineered
current pulse applied to the crystallized material can return a
significant portion of it to the amorphous state with its con-
comitant low conductivity. Such behavior describes the op-
eration of a memory switch.1–3

Observation of switching behavior began with studies of
amorphous boron almost a century ago.4–7 Switching of
transition-metal oxides and organic materials has also been
studied.8 However, most efforts have been directed toward
chalcogenide glasses because of their utility in practical
devices.1–3,9

Studies of steady-state electronic transport of the low-
conductivity states of these materials indicate unconven-
tional transport. The predominant charge carriers have been
described as small-polarons that move by thermally assisted
hopping. In particular, the charge carriers hop between the

twelve-atom icosahedral units that comprise amorphous
boron,10 between transition-metal cations in transition-metal
oxides,11 and between lone-pair orbitals on chalcogen atoms
�S, Se, and Te� in chalcogenide glasses.12–16

Small polarons are distinguished by their hopping trans-
port. As expected for small polarons, Hall mobilities in
amorphous As2Te3, As2Se3, and Sb2Te3 are very low, ther-
mally activated, and anomalously signed.12,13,15–17 Further-
more, the mobility � that enters into the electrical conduc-
tivity is typically considerably smaller than the small-polaron
Hall mobility �Hall: ���Hall exp�−2WHall /kT�, where WHall

is the Hall mobility activation energy and kT is the thermal
energy.18,19 Measured values for chalcogenide glasses, in-
cluding the widely utilized switching material Ge2Sb2Te5,
�Hall�0.1 cm2/Vs and WHall�0.05 eV, yield �
�10−3 cm2/Vs at 300 K.13,16,20 Thus, electronic currents in
these materials are carried by a high density of low-mobility
carriers rather than by a low density of high-mobility carri-
ers.

One may ask: Is threshold switching in these materials
associated with their charge carriers being small polarons?
Here a mechanism is proposed through which materials with
small polarons undergo switching.

The mechanism is based on the small-polaron hopping
mobility being orders of magnitude smaller than that of a
quasifree carrier of a conventional semiconductor or conduc-
tor. Electrical contact to the low-mobility material is made
with materials whose carriers have a conventionally high
mobility. Steady-state flow then drives an inhomogeneous
accumulation of small polarons. The magnitude of this effect
increases with the current. With parameters characteristic of
threshold switching the small-polaron density of many mate-
rials can be pushed high enough to destabilize the small po-
larons with respect to their conversion into conventional
high-mobility carriers. It is this current-driven conversion
that is proposed to underlie threshold switching in materials
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whose equilibrated charge carriers form small polarons.
For clarity a two-state model is used to describe the ma-

terial that switches. In particular, the material’s charge carri-
ers are either quasifree and move with a high-mobility or
they form small polarons and execute hopping motion with
the concomitant very low mobility. Indeed, charge carriers in
covalent systems are understood to manifest such dichoto-
mous behavior.21–25

Detailed considerations address a linear chain of m con-
tiguous sites between which carriers move by small-polaron
hopping. As illustrated in Fig. 1, quasifree transport occurs in
two regions of n sites that bracket the m-member chains:
N=2n+m.

Three rates enter into this model. Quasifree carriers move
between adjacent sites of the n-member chains with the rate
Rf. For thermalized free carriers Rf ��WkT�1/2 /h, where W is
the carrier’s electronic bandwidth and h is Planck’s constant.
Small polarons hop between adjacent sites of the m-member
chain with the rate R. For adiabatic small-polaron hopping
Rf �� exp�−WH /kT�, where � is the characteristic atom-
vibration frequency and WH is the hopping activation energy.
At the interfaces between regions carriers are slowly con-
verted between being quasifree and being small polarons
with the rate r. The maximum value of this rate is
r�� exp�−Eb /kT�, where Eb is the small-polaron binding
energy with Eb�2WH.26 Near room temperature, where
switches typically operate, one generally has �WkT�1/2�h�
with W being several eV and h� being �0.1 eV. As a result,
the three pertinent rates customarily satisfy the relationships
Rf �R�r.

A steady-state is achieved as an applied electric field
drives carriers along the chain. The large disparity in the
above-described transition rates ensures that the applied field
drives the nonuniform accumulation of small polarons. With
a weak field the small-polaron density peaks near where car-
riers enter the m-member chain. However, with a strong field
the peak in the small-polaron density shifts to where small
polarons exit the m-member chain. At the electric-field
strengths characterizing room-temperature switching
�105–106 V/cm� the peak fractional enhancement of the
small-polaron density is very large, comparable to Rf /r.

Current flow can drive an already high small-polaron den-
sity so high that destructive interference between the atomic
displacements of different small-polarons can destabilize

them with respect to their conversion into quasifree
carriers.23 Above a critical electric field small-polaron-
supporting sites along the m-member chain abruptly shrink
to a remnant few as chain sites are sequentially destabilized.
Thus, a sufficiently strong current can switch a small-polaron
semiconductor into a high-conductivity state. The low-
conductivity state returns when the current is reduced and
carriers relax to form small polarons. These features re-
semble those of a threshold switch.1–3

The bulk of the paper begins in Sec. II with the develop-
ment of formalism with which to treat non-Ohmic transport
and current-driven spatial redistribution of charge carriers
along a chain of sites. In Sec. III this formalism is utilized to
calculate the electric-field-driven current and spatial redistri-
bution of small polarons along a chain that is connected to
two chains whose carriers are quasifree. Numerical estimates
of the carrier mobilities and current-driven enhancements of
the small-polaron density are given in Sec. IV. In Sec. V the
density-driven destabilization of small polarons is explained.
Section VI describes how current-driven destabilization of
small-polarons produces a threshold switch. Section VII in-
dicates how a structural �e.g., amorphous to crystalline�
phase transformation driven by threshold switching results in
a memory switch. The paper concludes in Sec. VIII with a
summary of the paper’s principal arguments and mention of
some remaining issues.

II. FORMALISM

Consider charge carriers with charge q moving along a
linear chain. The probability of site i being occupied by a
carrier is denoted by f i. Charge transfer occurs between ad-
jacent sites of the chain, where Ri,i+1 represents the rate with
which a carrier can jump from site i to site i+1. For simplic-
ity, repulsion between carriers is ignored. Then the current
between a pair of sites can be written:

Ii,i+1/q = f iRi,i+1 − f i+1Ri+1,i

= �exp�− ���i − �i��exp�− ���i+1 − �i�/2�

− exp�− ���i+1 − �i+1��

�exp�− ���i − �i+1�/2�� � R0�	�i+1 − �i	�

= R0�	�i+1 − �i	�exp�− ���i + �i+1�/2��Fi − Fi+1� .

�1�

In the second line of these equations, the site-occupation
factor for site i is expressed

f i = exp�− ���i − �i�� , �2�

where � is the reciprocal of the thermal energy 1/kT. Here k
is the Boltzmann constant and T is the absolute temperature.
The energy associated with a carrier occupying site i is de-
noted by �i. The site-occupation factor is governed by the
quasi-electrochemical potential �i, the electrochemical po-
tential in the presence of steady-state current flow. In addi-
tion, the rate with which a carrier jumps from site i to site
i+1 is described with the general expression �Ref. 27�:

FIG. 1. �Color online� The model envisions a linear chain of m
sites upon which carriers self-trap as small polarons. Quasifree car-
riers enter and exit this chain through two n-member chains. In the
absence of a driving electric field, independent small polarons hop
between adjacent sites of their chain with the rate R. The field-free
rate characterizing quasifree carriers moving between adjacent sites
of their n-member chains is denoted by Rf. The rate r characterizes
the conversion of a charge carrier between being quasifree and be-
ing a small polaron at the boundaries between the two types of
chains. The relative magnitudes of these three rates are described by
the inequalities: Rf �R�r.
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Ri,i+1 = exp�− ���i+1 − �i�/2�R0�	�i+1 − �i	� . �3�

The quasifugacity

Fi 
 exp���i� �4�

is introduced in the final equality of Eq. �1�.
It is now expeditious to exploit the fact that the net dif-

ference of the quasifugacity between the ends of the chain
can be written as the sum of differences between adjacent
pairs of sites. Using this identity along with the above ex-
pression for the current between sites i and i+1 yields:

F1 − FN = �
i=1

N−1

�Fi − Fi+1� = �
i=1

N−1
Ii,i+1

q

exp����i + �i+1�/2�
R0�	�i+1 − �i	�

=
I

q
�
i=1

N−1
exp����i + �i+1�/2�

R0�	�i+1 − �i	�
. �5�

The final expression is obtained upon imposing the steady-
state condition that the current be constant, Ii,i+1= I for all i.

The generalized impedance for the chain of N–1 nearest-
neighbor linkages can be defined:

Z�m,N� 

1

�q2 �
i=1

N−1
exp����i + �i+1�/2�

R0�	�i+1 − �i	�
. �6�

In the low-field limit, F→0, the generalized impedance re-
duces to just the sum of N–1 �electric-field-independent� re-
sistances in series.

The steady-state condition, that there be no net flow of
carriers to any site, is now utilized to determine the quasi-
fugacities for sites along the chain. Equating the currents
flowing through adjacent pairs of sites yields the relation:

�Fi−1 − Fi�
�Fi − Fi+1�

=
exp�− ��i+1/2�R0�	�i+1 − �i	�
exp�− ��i−1/2�R0�	�i − �i−1	�


 ai. �7�

The fact that the right-hand side of the equation is positive
indicates that the quasifugacity always varies monotonically
with position, the site index i. However, the magnitude of the
change of quasifugacity with position about site i depends on
the magnitude of ai. For example, �Fi−1−Fi�� �Fi−Fi+1�
when ai�1. Furthermore, Eq. �1� indicates that the magni-
tude of the changes in quasifugacity with position �the site
index i� increases with the magnitude of the steady-state cur-
rent, I.

The quasifugacities along the chain can be computed in a
straight-forward manner. In particular, Eq. �7� describes a set
of linear relations that link the quasifugacity at a site, Fi, to
the quasifugacities at neighboring sites, Fi−1 and Fi+1. There
are N–2 such equations for a chain of N sites. In addition,
boundary conditions establish the quasifugacities at the sites
at the two ends of the chain, F1 and FN.

Here an algebraic identity is exploited to obtain an ex-
pression for the quasifugacity at site s, Fs:

Fs − FN = �
i=s

N−1

�Fi − Fi+1� = �1 + �
i=s

N−2


j=i

N−2

aj+1��FN−1 − FN�

=

�1 + �
i=s

N−2


j=i

N−2

aj+1�
�1 + �

i=1

N−2


j=i

N−2

aj+1� �F1 − FN� . �8�

The quasifugacity at site s is then written as follows:

Fs =
F1G�s� + FN�G�1� − G�s��

G�1�
, �9�

where

Gs 
 1 + �
i=s

N−2


j=i

N−2

aj+1, �10�

and boundary conditions set the values of F1 and FN.
The density of carriers at site s is then given by

ns = exp�− ��s�Fs. �11�

Application of an electric field alters �s while the attendant
current flow alters Fs. Electric-field-induced charge accretion
and depletion occurs when these two effects fail to cancel
one another. In particular, charge accretion and depletion
generally occurs near the boundaries between regions with
disparate charge transport. The electric-field-induced carrier
redistribution associated with a steady-state electric current
passing between regions with quasifree carriers and self-
trapped carriers is addressed below.

III. TWO-STATE MODEL

Charge transport along the linear chain described by Fig.
1 is now addressed. The chain of Fig. 1 comprises three
components. Charge carriers self-trap to form small polarons
on the m-member central portion of the chain. Quasifree
charge carriers enter and exit the m-member chain from the
two n-member chains that adjoin it. Thus the total linear
chain comprises N
m+2n sites.

To focus on the essentials of the switching process, non-
essential energetic variations are ignored. In particular, ener-
getic disorder among each of the two classes of site is disre-
garded. Thus, the energy associated with each site at which
self-trapping occurs is −Eb−qFa�i−1�, where Eb is the
small-polaron binding energy and q denotes a carrier’s
charge while F and a denote the strength of the applied
electric field and the intersite separation, respectively.
Analogously, the energy associated with each site at which
self-trapping does not occur is −Ef −qFa�i−1�, when Ef is
the lowering of an untrapped carrier’s energy associated
with its transfer to adjacent sites. It is convenient to define
	
Ef −Eb.

There are three different charge transfer processes. These
processes are each characterized by a different rate function
R0 as introduced in Eq. �3�. For intersite transfer among sites
with self-trapping this rate function is defined by R0
R. For
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quasifree motion between sites the rate function is defined by
R0
Rf. The rate function for transitions between the self-
trapped and quasifree states is described by R0
r.

The coefficients defined by the condition of steady-state
flow in Eq. �7� can now be expressed in terms of the
parameters of the two-state model. Within this model
the value of as at a site bounded by sites with identical
charge transport is A
exp��qFa�. For a site supporting
quasifree transport that borders a site supporting self-
trapping for i�s, as=AB, where B
exp�−�	 /2��r /Rf�.
At the adjacent site which supports self-trapping, as=AC,
where C
exp�−�	 /2� �R /r�. For a self-trapping site s that
borders a region which supports free-carrier transport for
i�s, as=A /C. At the adjacent site, the quasifree site along
the border as=A /B. Thus, a bilayer characterizes each inter-
face between the region of self-trapped transport and each of
the two regions of quasifree transport that surround it.

A. The generalized impedance

The electric-field dependence of the steady-state current
can be obtained by evaluating the generalized impedance.
The summation in the expression for the generalized imped-
ance can be evaluated for this model with the aid of the
algebraic formula

�
j=0

M−1

bj =
1 − bM

1 − b
. �12�

After straightforward but lengthy manipulations, the general-
ized impedance can be written as the sum of five contribu-
tions that are each associated with successive regions along
the chain. Region 1 supports quasifree transport. Region 2
comprises the passage from a site identified with quasifree
transport to one identified with small-polaron hopping.
Transport in region 3 is by small-polaron hopping. Region 4
denotes the transition from a site that supports small-polaron
formation to the adjacent site that is associated with quasi-
free motion. Region 5 is a region with quasifree transport.
The generalized impedance is:

Z�m,N� =
1

2�q2 sinh��qFa/2�
�L1 + L2 + L3 + L4 + L5� ,

�13�

where

L1 

exp�− �Ef�

Rf
�1 − exp�− �qFa�n − 1��� , �14�

L2 

�− ��Eb + Ef�/2�

r
�1 − exp�− �qFa��exp�− �qFa�n − 1�� ,

�15�

L3 

exp�− �Eb�

R
�exp�− �qFan� − exp�− �qFa�n + m − 1��� ,

�16�

L4 

�− ��Eb + Ef�/2�

r
�1 − exp�− �qFa��

�exp�− �qFa�n + m − 1�� , �17�

and

L5 

exp�− �Ef�

Rf
�exp�− �qFa�n + m��

− exp�− �qFa�N − 1��� . �18�

When small polarons’ slow motion provides the limiting
contribution to the generalized impedance the predominant
contribution comes from L3. Then, the generalized imped-
ance of the chain becomes

Z�m,N� = exp�− �qFan�
exp�− �Eb�

2�q2R sinh��qFa/2�

��1 − exp�− �qFa�m − 1��� . �19�

The generalized impedance �i� falls with increasing electric-
field strength, �ii� rises non-linearly with m, and �iii� depends
on the position of the m-site small-polaron subchain �labeled
by n� within the N-site chain. The factor exp�−�qFan� is
associated with accumulation of carriers about the interface
at which carriers enter the region with small-polaron trans-
port. In the customary situation n→0 as the applied electric
field is taken to be applied only over the sites of the m-site
chain.

In the limit of small electric field, the generalized imped-
ance reduces to the impedance associated with ohmic con-
duction. In particular, the impedance then becomes �1� inde-
pendent of the electric-field strength, �2� simply proportional
to the number of equivalent links of the small-polaron por-
tion of the chain, m−1, and �3� independent of the position
of the m-site small-polaron subchain within the N-site chain:

Z�m,N� →
exp�− �Eb�

�q2R
�m − 1� . �20�

Equation �20� gives the established result for ohmic small-
polaron hopping on a chain of m−1 equivalent links.26 In the
nonohmic high-field regime the electric field dependence of
the current is proportional to that of the inverse generalized
impedance: I
1/Z�m ,N� 
 sinh��qFa /2�. For simplicity,
the dependence of R on the electric-field strength has been
ignored since it is relatively weak. For example, since R

exp�−��qFa�2 /8Eb� for high-temperature small-polaron
hopping, the electric-field dependence of R is much weaker
than that of exp�−�qFa� when qFa�Eb, as assumed
herein.26

The contributions to the generalized impedance from the
interfaces between regions with quasifree transport and
small-polaron transport are associated with L2 and L4:

Zinterfacial�m,N� =
�− ��Eb + Ef�/2�

�q2r
�1 + exp�− �qFam��

�exp�− �qFa�n − 1/2�� . �21�

The generalized impedance from the two interfaces depends
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upon their locations along the N-member chain and upon the
electric-field strength, F. However, in the low-field limit, F
→0, where conduction becomes ohmic, the net interfacial
impedance reduces to just the sum of that from two equiva-
lent interfaces:

Zinterfacial�m,N� = 2
�− ��Eb + Ef�/2�

�q2r
. �22�

B. Quasifugacity

The quasifugacity at a site along the chain can be obtained
for the two-state model. To begin, the function G�s� of Eq.
�10� is evaluated. Considerable straightforward algebraic ma-
nipulation yields the following results. In the region with
quasifree carriers, N�s�n+m+2:

G�s� =
1 − AN−s

1 − A
. �23�

At site n+m+1, the interface between the region with qua-
sifree carriers and self-trapped carriers:

G�n + m + 1� =
1 − AN−n−m−2

1 − A
+

AN−n−m−2

B
. �24�

In the region with self-trapped carriers, n+m�s�n+2 with
m�2:

G�s� =
1 − AN−n−m−2

1 − A
+

AN−n−m−2

B
+

AN−n−m−1

BC

1 − An+m+1−s

1 − A
.

�25�

At site n+1, the interface between regions with self-trapped
carriers and quasifree carriers:

G�n + 1� =
1 − AN−n−m−2

1 − A
+

AN−n−m−2

B
+

AN−n−m−1

BC

1 − Am−1

1 − A

+
AN−n−2

B
. �26�

Finally, in the region with quasifree carriers, n�s�1:

G�s� =
1 − AN−n−m−2

1 − A
+

AN−n−m−2

B
+

AN−n−m−1

BC

1 − Am−1

1 − A

+
AN−n−2

B
+ AN−n−11 − An−s+1

1 − A
. �27�

In the limit of a uniform chain, B=C=1, G�s� reduces to
a simple form:

G�s� =
1 − AN−s

1 − A
�28�

for N�s�1. Inserting this expression into that for the quas-
ifugacity, Eq. �9�, with imposition of the boundary condi-
tions,F1=1 and FN=A1−N, yields

Fs = A1−N�1 +
AN−s − 1

AN−1 − 1
�AN−1 − 1�� = A1−s. �29�

As described by Eq. �11�, the electric-field dependence of the
carrier density is the product of that of the quasifugacity, A1−s

and that of exp�−��s�, proportional to exp��qFa�s−1��
=As−1. Thus, these formulae confirm that the local carrier
density is independent of the electric-field strength for
steady-state flow along a uniform chain.

C. Flow induced carrier redistribution

Current flow induces a redistribution of charge carriers
along a nonuniform chain. In particular, the occupation prob-
ability for small-polarons at site s relative to its electric-field-
free �A=1� value is given by

gs = As−1Fs = As−1F1G�s� + FN�G�1� − G�s��
G�1�

= As−1G�s� + A1−N�G�1� − G�s��
G�1�

, �30�

upon imposition of the boundary conditions, F1=1 and FN
=A1−N. As above, the electric-field dependent contribution to
the energy of a small-polaron at site s is given by A1−s. It is
easily verified that the charge redistribution induced by
steady-state current flow vanishes �gs=1 for all s� in the ab-
sence of an applied electric field �A=1�.

The relative occupation probabilities in the region in
which carriers self-trap, between site n+1 and site n+m, for
the two-state model are obtained by combining
Eqs.�25�–�27� and �30�:

gn+1 =

1 − A2n−2 +
A2n−2

B
�1 + Am��1 − A� +

A2n−1

BC
�1 − Am−1�

1 − An−2 +
An−2

B
�1 + Am��1 − A� +

An−1

BC
�1 − Am−1� + An+m−1�1 − An�

, �31�

and
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gs =

As−n−1 − As+n−3 +
As+n−3

B
�1 − A��1 + A1−2n� +

1

BC
�1 − As−n−2 + As+n−2 − A2n+m−1�

1 − An−2 +
An−2

B
�1 + Am��1 − A� +

An−1

BC
�1 − Am−1� + An+m−1�1 − An�

�32�

for n+m�s�n+1. Straightforward algebraic evaluation
confirms that gn+1=1 and gs=1 when B=C=1 and that
gn+1→1 and gs→1 as A→1.

To eliminate effects arising from proximity of the
m-member chain to the most-distant edges of the n-member
chains, proceed to the limit of a finite-size chain of m sites
symmetrically embedded within an arbitrarily long chain of
2n+m sites �n→��. The relative occupation probability for
site u along the m-member chain then becomes:

fu = � 1

B
−

1

BC
��1 − A−1�u,1 + � 1

B
− 1��1 − A−1�Au−m−1

+ � 1

BC
− 1��1 − Au−m−1� , �33�

where u
s−n with m�u�1, fu
gn+u−1 in the limit that
n→�, and u,1 is the Kronecker delta, unity for u=1 and
zero otherwise. The flow-induced enhancement of the small-
polaron density given by Eq. �33� vanishes as the driving
field vanishes �fu→0 as A→1� and saturates as the driving
field becomes arbitrarily large �fu→1/BC−1 as A→��. In
addition, the second contribution to the r.h.s. of Eq. �33�
peaks at �1/B−1� /4 when u=m and A=2. This contribution
will be seen to be of paramount importance for switching.

In the presence of a driving field, A�1, carriers accumu-
late, f1�1, as they enter the chain at u=1 since 1/B�1 and
1/BC�1, the conditions that are relevant to this problem.
After the u=1 entry site Eq. �33� can manifest two qualita-
tively different dependencies of fu on u–m. These differ-
ences are highlighted by considering the derivative of the
relative site probability with respect to u–m:

�fu

��u − m�
= �� 1

B
− 1��1 − e−�qFa� − � 1

BC
− 1��

�e�u−m−1���qFa���qFa� , �34�

where it has been recalled that A
exp��qFa�. In the low-
field limit, F→0, the second term in the square brackets
dominates. Then, with 1/BC�1, fu falls with increasing u
and decreasing m. By contrast, the first term in the square
brackets can dominate with a sufficiently strong electric
field. Then, with 1/B�1, fu rises with increasing u and de-
creasing m. In particular, charge accumulations on chain sites
then increase with decreasing m, �fu /�m�0, provided that

1 − e−�qFa �

� 1

BC
− 1�

� 1

B
− 1� . �35�

Upon introducing the definitions of B
exp�−�	 /2��r /Rf�
and C
exp�−�	 /2� �R /r�, and noting the relevant physical
conditions �see below in Sec. IV�, Rf �R�r and 	�0, it
becomes evident that the condition of Eq. �35� can be satis-
fied at high fields if r is sufficiently small:

1 �
r

R
e�	/2. �36�

When this condition is fulfilled current-induced charge
redistribution shifts from being bulk limited to being inter-
face limited as the strength of the current-driving electric
field is increased. As illustrated in Fig. 2, there is a concomi-
tant qualitative shift in the pattern of charge accumulation at

FIG. 2. �Color online� Steady-state flow of carriers from the left
drives nonuniform accumulation of small polarons within their
m-member chain. With low currents the small-polaron accumulation
tends to fall with distance from the site at which carriers enter the
small-polaron chain. High currents drive the accumulation to peak
where carriers exit the m-member chain. This accumulation typi-
cally increases the small-polaron density by a factor ��Rf /r� be-
yond its equilibrium value. The function fu denotes the current-
driven increase of the small-polaron density at site u on the m-site
chain divided by its equilibrium value. This function, as given by
Eq. �33�, divided by �1/B−1� is plotted against u for lnA=0.1 and
1.0 with �1/BC−1� / �1/B−1�=1/4 for a 10-site chain. The param-
eters A, B, and C are defined in terms of the three intersite transition
rates in the introductory paragraph of Sec. III.
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sites along the m-member chain. In the low-field regime,
current-induced charge accumulation occurs most markedly
at the site at which carriers enter the region where transport
is governed by small-polaron hopping. The steady-state
charge accumulation then falls with the distance into the
m-member chain, u. In the high-field regime, current-induced
charge accumulation occurs most markedly at the site at
which carriers exit the region where transport is governed by
small-polaron hopping. The steady-state charge accumula-
tion then increases with the distance into the m-member
chain, u.

IV. NUMERICAL ESTIMATES

The current-induced increase in carrier density can be-
come quite large. Consider first the bulk contribution to the
fractional current-induced enhancement of the local carrier
density, the third contribution on the r.h.s. of Eq. �33�. This
contribution rises with the ratio of the rate characterizing
nearest-neighbor intersite motion of quasifree carriers, Rf, to
the rate characterizing nearest-neighbor hopping of small po-
larons, R. The quasifree nearest-neighbor rate, Rf, is that
characterizing the motion of a thermalized quasifree carrier
between neighboring sites, �2kT /me�1/2 /a�2�kTW�1/2 /h,
where W is the electronic bandwidth W�h2 /2mea

2, me is the
effective mass of the quasifree carrier and a is the nearest-
neighbor separation. By contrast, the largest possible rate for
thermally activated small-polaron motion is that for adiabatic
motion, R�� exp�−�WH�, where � is the characteristic vi-
bration frequency and WH is the activation energy of the
small-polaron hopping mobility.28,29 Thus, the ratio Rf /R
��2�kTW�1/2 /h��exp��WH� is typically very large. This ra-
tio is about 104 at room temperature for WH=0.15 eV and
W=3 eV.

The interface contribution to the fractional current-
induced enhancement of the local carrier density, the second
term on the r.h.s. of Eq. �33�, rises with the ratio Rf /r.
This ratio is even larger than Rf /R since R�r. In par-
ticular, in the semiclassical regime being considered here
r�� exp�−Econversion /kT�, where Econversion�Eb�WH. The
activation energy Econversion is the deformational energy
needed to establish an energy coincidence between the elec-
tronic energies of the self-trapped and quasifree states.30,31

This activation energy rises from its minimum value as the
kinetic energy associated with confining a carrier on a single
site increases. The associated barrier to self-trapping is a
general feature that arises from having a finite electronic
bandwidth.21,23–25 These features result in relatively slow
conversion between quasifree and self-trapped states, R�r.
This slow conversion rate produces a large interface-related
enhancement of the small-polaron density.

The above estimates of R and r ignore the dependences of
these rates on the strength of the applied electric field. As
noted below Eq. �20�, the activation energy of R is increased
by �qFa�2 /8Eb upon the application of an electric field.26

Similar considerations show that the minimum activation en-
ergy of r is increased by �qFa�2 /4Eb. The theory of adiabatic
small-polaron hopping gives Eb�2WH.28 The smallest ex-
perimental determination of WH is 0.15 eV.12–16,20 Taking Eb

to be its smallest value and assuming F=106 V/cm, a large
value, yields maximal corrections to the activation energies
that are �0.02 eV when a is as large as 1 nm. Such small
corrections to the activation energies are ignorable. In par-
ticular, these electric-field dependent corrections to the acti-
vation energies are comparable to their experimental uncer-
tainties and are no greater than the room-temperature thermal
energy, 0.025 eV. Most importantly, the relative relation
Rf �R�r is unaffected by the application of the external
electric field.

Beyond the factors Rf /R and Rf /r, the relative enhance-
ment also depends on exp��	� and exp��	 /2�, respectively.
Thus, a significant value of �	�1 increases the current-
induced accumulation of self-trapped carriers even further. A
positive value of 	 ensures that quasifree carriers are stabi-
lized in the crystalline state. It is then the disorder of the
noncrystalline state that is presumed to stabilize carriers as
small polarons.32

Thus, with �Rf /R�exp��	��1 and �Rf /r�exp��	 /2��1,
the density of small polarons will be greatly enhanced as
�qFa rises toward a significant fraction of unity. Indeed,
typical values indicate that �qFa will rise to about unity with
electric-field strengths comparable to those associated with
threshold switching. For example, with a=0.6 nm, �qFa
will rise from 2.4�10−2 to 2.4 at room temperature as the
electric field strength is raised from 104 V/cm to 106 V/cm.

This current-driven local enhancement increases a small-
polaron density that already may be relatively large. In par-
ticular, with small-polaron transport, current is carried by a
relatively high-density of low-mobility carriers rather than
by the low-density of high-mobility carriers which character-
izes transport in conventional insulators and semiconductors.
Since the activation energy of the small-polaron Hall mobil-
ity �Hall is about 1 /3 that of its drift mobility �, �
��Hall exp�−2WHall /kT�, where WHall is the Hall mobility
activation energy.18,19,28,29 The small-polaron mobility is thus
estimated to be about 10−3 cm2/Vs at 300 K for chalcogen-
ide glasses in which the Hall mobility has been
measured.12,13,15,16

The equilibrium density of small polarons is given by
n0�a−3 exp�−�ES�, where ES is the characteristic energy of
the Seebeck coefficient.18 For example, analysis of steady-
state electronic transport in noncrystalline As2Te3 indicates
ES�0.25 eV.12,13 Thus, the equilibrium carrier density in
noncrystalline As2Te3 is about 1018 cm−3 at room tempera-
ture. A similar analysis in noncrystalline Sb2Te3, a much
more conducting material, yields ES�0.10 eV and a room-
temperature carrier density of about 1020 cm−3 �Ref. 16�.

V. DENSITY-DRIVEN SMALL-POLARON
DESTABILIZATION

The efficacy of the electron-lattice interaction in stabiliz-
ing small-polarons decreases with their density.23 In particu-
lar, forces exerted by localized self-trapped charge carriers
tend to cancel one another in displacing intervening atoms.
Thus, there is an upper limit to the fraction of sites upon
which charge carriers can self-trap as small polarons. All
carriers remain quasifree above this critical density.
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To illustrate destructive interference between the atomic
displacements arising from adjacent small polarons, consider
a chain of sites within the generalized Holstein model. The
atomic-strain energy of the atomic-displacement parameters
associated with these two sites is ��ixi

2 /2, where � is the
Hooke’s law stiffness constant and xi is the atomic displace-
ment parameters associated with site i. The electron-lattice
interaction depicts the dependence of the potential energies
of an electron centered at site i on the atomic-displacement
parameters:

Vi = − Gxi + g�xi−1 + xi+1� . �37�

With G and g�0, a carrier on a site induces an expansion of
that site’s atomic-displacement parameter and a contraction
of the neighboring site’s atomic-displacement parameter.
Minimizing the sum of the electronic potential energy and
the atomic strain energy yields the corresponding ground-
state energies. The ground-state energy for a single small
polaron is −Eb, where Eb= �G2+2g2� /2�. However, the
ground-state energy for a pair of small polarons on adjacent
sites is −��G−g�2+g2� /�=−2Eb+2Gg /�. Thus, destructive
interference reduces the small-polaron binding energy of the
pair from that for two independent small polarons by 2Gg /�.
This simple model illustrates how destructive interference
arising from adjacent small polarons can lower their net
binding energy. Through this effect, the driving force for
carriers to self-trap is reduced by increasing their density.

The stability condition for small-polaron formation can be
described by

Eb

2W
�

1 − �disorder

1 − n/nc
, �38�

where Eb is the small-polaron binding energy in the low-
density limit and W is the electronic bandwidth. The numera-
tor on the r.h.s. of Eq. �38� indicates that the imposition of
disorder, as represented by an increasing positive value of
the disorder parameter �disorder, fosters a carrier’s localization
and its collapse into a small polaron.32 The denominator on
the r.h.s. of Eq. �38� indicates that small-polaron formation is
destabilized by increasing the small-polaron density n toward
a critical value nc beyond which small-polaron formation is
impossible.23 The condition for a single carrier added to an
ordered insulator forming a stable small polaron is given by
Eq. �38� with its r.h.s. equal to unity.21–25

VI. THRESHOLD SWITCHING

Small polarons can be locally destabilized by a suffi-
ciently large current-induced enhancement of their density.
As illustrated in Fig. 2, the current-driven enhancement of
the steady-state small-polaron density is not uniform. In par-
ticular, with a large enough exit-conversion-limited steady-
state current, in accord with Eq. �36�, the density of small
polarons peaks where they exit the m-member chain. Small
polarons at the end of the chain will be destabilized if their
density n there is large enough to satisfy the destabilization
criterion

Eb

2W
�

1 − �disorder

1 − n/nc
. �39�

The chain of sites that support small-polaron formation will
thereby be shortened.

As illustrated by the uppermost curve of Fig. 3, shorten-
ing of the chain of sites supporting small-polaron formation
does not reduce the peak small-polaron density. As a result,
the shortened chain is itself unstable with respect to further
shrinking. Thus, there will be a sequential destabilization and
progressive shortening of the chain of sites that support
small-polaron hopping. This current-driven shrinkage will
continue as an avalanche until the high-resistivity chain is
reduced to a small remnant �see Sec. VIII�. Concomitantly
the resistance will drop as regions with small-polaron hop-
ping are replaced with low resistance regions in which car-
riers move with high mobility.

These findings are consistent with observations of
“threshold switches,” summarized in Fig. 4. In particular,
threshold switching occurs as the applied emf across the re-
gion with small-polaron hopping is pushed to a sufficiently
high value for the steady-state small-polaron density to ex-
ceed its critical value. Then, after a temporal delay during
which the system relaxes toward the steady-state conditions
associated with the enhanced emf , switching to the “on

FIG. 3. �Color online� A sufficiently strong current can drive the
local density of small polarons high enough to destabilize them with
respect to forming quasifree carriers. This effect is modeled as re-
ducing the length of the chain on which carriers self-trap to form
small polarons. As depicted above, reducing the chain length from
10 sites �solid lines� to 9 sites �dotted-dashed lines� alters the pat-
tern of small-polaron accumulation. The accumulation driven by a
low current is reduced as the chain of sites with small-polaron for-
mation is shortened. By contrast, the small-polaron density driven
by a high current rises as the value of m is reduced. These effects
are illustrated by plotting fu, the current-driven increase of the
small-polaron density at site u divided by its equilibrium value, for
m=10 �solid lines� and m=9 �dotted-dashed lines� with both low
and high currents. The plot shows fu, as given by Eq. �33�, divided
by �1/B−1� plotted against u for lnA=0.1 and 1.0 with �1/BC
−1� / �1/B−1�=1/4. In the introductory paragraph of Sec. III, the
parameters A, B, and C are defined in terms of three rates charac-
terizing carriers’ intersite motion.
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state” occurs. By switching, the region without quasifree
transport shrinks to just a remnant. The on-state resistance
may then be dominated by that of the remnant. In this case,
as is often observed, the on-state resistance is independent of
the sample thickness.3 The on state can be maintained with
adequate current flow. However, a sufficient reduction of the
current will enable the carriers to relax thereby reforming as
small-polarons. Thus, a threshold switch returns to its off
state if current flow in the on state falls below its “holding”
value for a sufficient time.

As indicated by Eq. �33�, the electric-field strength is the
only externally controlled electronic parameter upon which
the current-driven enhancement of the small-polaron density
depends. Thus, threshold switching is initiated when the
electric-field rises to a material-dependent critical strength
Fthreshold. Furthermore, as indicated below Eq. �20� the cur-
rent density associated with small-polaron hopping at these
high electric fields is proportional to sinh��qFa /2�. At high
fields this dependency approaches exp��qFa /2�. This depen-
dency is qualitatively consistent with measurements showing
current densities and carrier mobilities of chalcogenide
glasses rising with applied field as exp�D�qFa�, where D
�5–10.33–35 However, the measured values of D are signifi-
cantly larger than that given above for the hopping of inde-
pendent charge carriers. Subsidiary experiments rule out
space-charge effects, contact effects, and Joule heating as the
causes of these enhancements.33–35 Percolation effects, local
field corrections, and carriers’ mutual interactions may po-
tentially explain these discrepancies.35

VII. MEMORY SWITCHING

If the holding voltage for a threshold switch drops to zero,
the switch is termed a “memory” switch. The material will
then remain in its on state even in the absence of current
flow. An appropriately engineered current pulse can return
the material from its high-conductivity on state to its low-
conductivity off state.1–3

The off state and the on state of a memory switch com-
prise distinct structural phases of the switched material. In
the case of chalcogen memory switches, the on state is crys-
talline while the off state is noncrystalline.

Changing the electronic state of a material can induce
structural phase transitions. Such situations are commonly
envisioned as consequences of transitions between semicon-
ductorlike electronic behavior and conductorlike electronic
behavior in transition-metal oxides.3 In particular, sustaining
a high density of delocalized high-mobility charge carriers
can induce an amorphous material’s transformation to a crys-
talline state. Consistent with Eq. �39�, the quasifree elec-
tronic transport of the crystalline state tends to be stabilized
by the lifting of disorder, �disorder→0. Sufficient current flow
can thereby transform some low-conductivity noncrystalline
materials into high-conductivity crystalline phases with qua-
sifree charge carriers.

Reports that continued current flow through the on state
of a threshold switch precedes crystallization are consistent
with this picture.1–3 The similarity of the electrical behavior
of the on states of threshold and memory switches is also
consistent with the crystallization of a memory switch being
electrically driven, rather than being thermally driven.1–3

The on state crystalline phase of a memory switch can be
returned to an off state noncrystalline phase. In particular,
Joule heating can be used to melt crystalline material. Sub-
sequent rapid cooling of the melt can leave it in its noncrys-
talline state. Since the electric field in the crystalline on state
is small, see Fig. 4, the resulting charge carriers will be in
their low-conductivity off state.1–3

VIII. DISCUSSION

This paper has presented an electronic mechanism for
driving a small-polaron semiconductor into a high-
conductivity state. The conductivity transition of the small-
polaron semiconductor occurs when the density of small po-
larons is pushed so high that they are destabilized with
respect to forming free carriers. This accumulation of small
polarons is propelled by high-mobility charge carriers being
driven into a semiconductor within which they form small
polarons and move with their characteristically low hopping-
type mobility.

A significant disparity between rates associated with
charge-carrier transport to, into, through, and from the small-
polaron semiconductor is required to produce a suitably con-
figured current-driven accumulation of small polarons to
presage the conductivity transition. High-mobility quasifree
charge carriers move rapidly between adjacent atomic sites
with the rate Rf. Small polarons hop slowly between adjacent
sites of the semiconductor with the rate R. The very slow rate
r characterizes the carriers’ conversion between being quasi-

FIG. 4. �Color online� A plot of the current density J versus
applied electric field F is used to describe the small-polaron model
of threshold switching. An applied electric field drives high-
mobility charge carriers into a material in which they form small
polarons and move via low-mobility hopping. As the applied field is
increased the small-polaron mobility rises exponentially and small
polarons increasingly accumulate in the material. Beyond a thresh-
old current, the density of small polarons is driven high enough so
that they are destabilized with respect to their forming quasifree
carriers. The region with small polarons then shrinks to a small
remnant. The resistance of the remnant contributes to that of the
high-conductivity state. Reducing current in the high-conductivity
state below its “holding” value permits carriers to relax into small
polarons thereby reforming the low-conductivity state. Alterna-
tively, current flow in the high-conductivity state may be high
enough and prolonged enough to induce a structural phase �e.g.,
amorphous to crystalline� transition. The switch becomes a memory
switch as its maintenance no longer requires a holding current.
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free and being small polarons at the semiconductor’s two
interfaces. When Rf �R�r, a sufficiently strong current will
produce a nonuniform accumulation of small polarons that
peaks where carriers exit the semiconductor. When driven to
a sufficiently high density, this spatial distribution of small
polarons becomes unstable with respect to their near-global
conversion into quasifree carriers.

The present work has only explicitly addressed the motion
of the predominant charge carriers �e.g., small-polaron holes
in binary chalcogenide glasses�. Nonetheless, this paper’s ar-
guments can be extended to address a semiconductor with
both electronlike and holelike small polarons. With a suffi-
ciently strong driving field, small polarons with opposing
signs will be driven toward opposing ends of the sample,
here the m-member chain. The widths of each of these two
peaks of accumulated charge will be �kT /qF. The current-
driven shrinkage of the chain with small-polaron charge car-
riers will cease when the peaks of the oppositely signed ac-
cumulated charge overlap. Then the accumulated densities of
oppositely charged carriers will tend to diminish as the over-
lapping carriers recombine with one another. Thus, the

current-driven shrinking of the low-conductivity chain will
leave a small remnant region of width �kT /qF. Indeed,
measurements of the resistance of the high-conductivity state
of the switched material are consistent with it being domi-
nated by a small remnant.1–3 In particular, the resistance of
the high-conductivity state of switched material is found to
be independent of sample thickness.1–3

This work demonstrates how current-driven charge accu-
mulation can drive threshold switching. Proceeding beyond
the present independent-carrier treatment to include space
charge effects would require treating Coulomb interactions
between all charge centers. Recombination between oppo-
sitely charged carriers should then also be explicitly consid-
ered. Inclusion of energetic and transfer-energy disorder in
treating small-polaron hopping would require study of a mul-
tidimensional model so as not to exaggerate their percolative
effects. However, inclusion of these effects, a very formi-
dable task, would not essentially alter the idea that sufficient
current-driven accumulation of small polarons destabilizes
them with respect to their forming quasifree charge carriers.
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