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Computation of the Stark effect in P impurity states in silicon
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We compute within the effective-mass theory and without adjustable parameters the Stark effect for shallow
P donors in Si with anisotropic band structure. Valley-orbit coupling is taken into account in a nonperturbative
way and scattering effects of the impurity core are included to properly describe low-lying impurity states. The
ground-state energy slightly decreases with increasing electric field up to a critical value E_..~ 25 keV/cm, at
which the donor can be ionized by tunneling due to a field-induced mixing of the “1s-like” singlet ground state
with a “2pg-like” excited state in zero field. The resulting ground-state wave function at high field extends
significantly outside the potential barrier surrounding the impurity. Calculations of the hyperfine splitting and
of the A-shell superhyperfine coupling constants as a function of the electric field complete the work.
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I. INTRODUCTION

In 1998 Kane proposed a scheme of a quantum computer!
in which the nuclear spins of *'P substitutional impurities in
silicon are used as quantum bits. Within this scheme, the
single-qubit manipulation depends on the capability of tun-
ing with an electric field the hyperfine splitting of the impu-
rity ground state which results from the interaction between
the nuclear spin of the P atom and the electron spin of the
hydrogenlike impurity, proportional to the square modulus of
the electron wave function at the P nucleus. The interaction
between the nuclear spins (qubit-qubit interaction) at differ-
ent impurity sites is mediated by the electron orbital of the
impurity which—for shallow donors like Si:P—has a radius
of a few nanometers. Kane’s proposal-? has revived intense
interest in shallow impurities in semiconductors, and several
computational studies of the properties of such systems have
been published recently.’-1°

Shallow impurity states can conveniently be studied with
the envelope function approximation. To calculate in a real-
istic way the dependence of the hyperfine splitting on the
electric field, it is mandatory to take into account the follow-
ing features: (i) band structure effects of the host material,
i.e., the band anisotropy of silicon near the conduction band
minima (CBM), (ii) the valley-orbit (VO) interaction,! i.e.,
the coupling by the impurity potential of electronic states
belonging to different degenerate CBMs (valleys) of Si; (iii)
the central-cell corrections, i.e., the difference (expected to
be significant only in the central cell'> containing the impu-
rity) between the actual potential of the impurity and the
screened Coulomb potential that is used to approximate its
long-range part.

Several authors® attempted to compute P-impurity states
in bulk Si or Si nanocrystals within the envelope function
approximation. Most of them neglected the valley-orbit in-
teraction; a few take it into account in an approximate'® or a
phenomenological way.’ So far, a reliable approach including
both valley-orbit effects and central-cell corrections to com-
pute electronic properties of shallow impurities in external
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electric fields is missing. In our approach we take into ac-
count the band anisotropy within the effective-mass approxi-
mation, and we are able to compute exactly, within the nu-
merical accuracy due to the use of a finite basis set, the
valley-orbit interaction of a realistically screened Coulomb
potential, of the core potential, and of the electric field. By
means of the envelope function of the conduction band and
of a Gaussian basis set, we compute the energy levels of the
shallow P impurity in silicon and the hyperfine splitting of
the ground state as well as their dependence on a uniform
electric field applied along the [001] direction. We will show
that to reproduce correctly the Si:P ground state one has to
include the central-cell corrections contribution due to impu-
rity core electrons, a quantity that, to the best of our knowl-
edge, nobody has taken into account before in this type of
calculation. We found that the ground-state energy decreases
on increasing the magnitude of the field, and that at high
electric field (20-30 keV/cm) the spectrum narrowing of
the 1s manifold, predicted in Ref. 9, is quite small, while the
main effect is the mixing of s,p-like states that, at a critical
value of the field &£,,, has as a consequence the vanishing of
the hyperfine splitting. Further, we predict the dependence of
the superhyperfine (SHF) splitting of the A shell as a func-
tion of electric field.

II. SHALLOW IMPURITIES IN UNIFORM
ELECTRIC FIELD

In the limit of small concentration, the Hamiltonian of a
substitutional impurity in an uniform electric field £ reads
(electron charge —|el)

H=Hy+ V;y,,—le|€ -, (1)

where V;,,, is the donor impurity potential which includes all
the effects due to the presence of the guest atoms in the
crystal, and H,, is the periodic Hamiltonian of the host crystal
whose Bloch eigenfunctions eik'run,k(r) can be calculated,
e.g., by density-functional plane-wave pseudopotential tech-
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niques, as is done in the present work. For shallow states,
where the extra electron is weakly bound to the impurity ion,
it is convenient to solve the eigenvalue problem of Hamil-
tonian (1) using the envelope function approximation!?

V()= 2, eiki'r”c,ki(r)Fi(l')a (2

ieCBM

where the summation index i labels all the equivalent CBMs
and k; are the corresponding wave vectors (hereafter, we
shall omit for simplicity the conduction band index). Within
this approximation one assumes that only conduction band
wave functions u, with energy close to the CBM contribute
to the expansion of the impurity wave function (for which
one can safely put u) = ”ki) and neglects, in reciprocal space,
the overlap between envelope functions F; of different
minima, since they are the Fourier transforms of highly de-
localized shallow wave functions in real space. With these
assumptions, one can also approximate the conduction band
near the CBM by a quadratic form (effective-mass approxi-
mation). By taking the expectation value of the Hamiltonian
(V|H-E|¥)=0, one obtains a Shindo-Nara-like equation'3

szﬁmwmﬁwhm%
1)

+ e‘i(ki‘kf)'ru;i(r)[Vimp(r) —le|&- r]ukj(r)}Fj(r) =0,
(3)

where M; " is the inverse mass tensor of the CBM, p is the
momentum operator, and the energy E is computed relative
to the CBM.

The functions Uy, have the periodicity of the host crystal;
we expand their product in Eq. (3) in Fourier series,

i (D (1) = X C; (G)eC™, @)
G

where G denotes the reciprocal lattice vectors and, as
usual,'* we consider only the G=0 terms.

For i # j, the second term in curly bracket in Eq. (3) gives
the intervalley coupling due to the impurity potential (and to
the external electrostatic potential if it is present). It is con-
venient to decompose the impurity potential into two terms:

2
e
viml’(r) == E_l 7 + Avcell(r); (5)

where the first term is the Coulomb potential of the hydro-
genlike impurity screened by the dielectric constant of the
host crystal €, while the second term AV, (r) represents
the difference between the potential of the impurity (when
the Coulomb tail is subtracted) and the potential of the bulk
Si atom.

In the computation of AV,,;, we have neglected the dif-
ference between the valence densities of Si:P and Si, as well
as the relaxation of the host atoms surrounding the impurity,
and we have approximated the central-cell correction
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AV (r) = AV,.(r) = Vp"(r) - V"(r) (6)

by the difference between the (short-range) potential of
(filled-shell) core electrons of Si and P atoms. The core cor-
rection potential AV,. has spherical symmetry, and practi-
cally vanishes outside the impurity core.

The electronic band structure of Si displays six CBMs
located along the [001] and equivalent directions at a dis-
tance k020.851—7: (a;, denotes the lattice parameter of Si)
from the Brillouin zone center. We use the experimental
values for the high-frequency dielectric constant
[e(k=0)=11.4] and the effective masses (m;=0.191m,,
m;=0.916m,) of bulk Si. All other quantities used to solve
Eq. (3) are obtained by first principles.!>!¢

III. NUMERICAL TECHNIQUE

We expand the envelope functions F;(r) on a Gaussian
basis set:

e‘“’zrlY,,m, (7)

where the spherical harmonics Y, describe the angular de-
pendence of the impurity envelope function. The core cor-
rection term is computationally inexpensive because it in-
volves a radial integral in the core region.!” All the other
matrix elements are analytically computed (i.e., we write
them by elementary or special functions) with a considerable
reduction of computational effort.'®!® We include spherical
harmonics up to f states (/=3). The Gaussian parameters
are chosen according to the formula a=qyd, where
n=-9,-8,...,8,9, 9=0.005 a.u., and 6,=1.85. In total we
use about ~ 1800 basis functions, which ensures an accurate
convergence of the results for both zero and nonzero fields,
for states that are localized at the impurity.?

IV. THEORETICAL RESULTS FOR Si:P

First, we validate our results by comparing them with
experimental data for vanishing electric field. If VO interac-
tion is neglected, the ground state of a substitutional impurity
in Si is sixfold degenerate. The VO interaction partially re-
moves this degeneracy, mixing these six ls states to obtain,
according to the symmetry of the system, a singlet (A;), a
doublet (E), and a triplet (7,) state. Our computed splitting
of the ground state reproduces well the experimental data at
zero field. The lowest-energy states, corresponding to the ls
manifold, are (experimental data from Ref. 12 are in paren-
theses) A,=-41.7 (-45.5) meV, E=-30.1 (-32.6) meV,
T,=-32.3 (-33.8) meV. Our results are obtained without
any adjustable parameters.

We stress the importance of including the core correction
term, which gives the correct scattering of the shallow wave
function with the impurity core. In fact, neglecting the AV,
contribution and considering only the intervalley coupling
due to the screened Coulomb potential, we found that the A
ground state has an energy that is considerably lower (less
than ~-120 meV) than the core-corrected one, while we
find very similar results (with differences within ~2 meV)
for E and T, states. The importance of including AV, in the
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FIG. 1. (Color online) Bottom panel: the lowest-energy levels of
Si:P (solid lines); the black dashed line denotes the minimum of the
barrier energy. Top panel: the square modulus of the corresponding
wave functions computed at the impurity site and normalized to the
zero-field value. Each |[W(0)|? is denoted with the same gray scale
(color) of the corresponding energy level (the black dotted line
denotes the ground state).

study of VO effects has not been noticed in the past since
intervalley coupling has frequently been neglected or in-
cluded in an approximate or in a phenomenological way
(i.e., by using experimental parameters). Considering the
studies'?! where VO effects due to the screened Coulomb
potential were included in the Hamiltonian and the ground
energy was obtained with a variational wave function,'? our
data suggest that the agreement between theory and experi-
ment must be considered as fortuitous, and that the neglect of
the repulsive AV,,; potential term is likely compensated by
the use of a variational trial function with a few adjustable
parameters only.

In the bottom panel of Fig. 1 we display the calculated
impurity-level energy [continuous (colored) lines] as a func-
tion of a uniform electric field applied along the [001] direc-
tion; the dashed line denotes the ionization threshold, i.e., the
minimum of the energy barrier that separates bound states
localized inside the barrier near the impurity from states lo-
calized outside the barrier, in a region of space where they
are superposed on the free-wave solutions of Eq. (1), and
corresponding to ionized states. Looking at Fig. 1 we notice
that the 2s and 2p manifolds (at £=0 these states have an
energy —6 to —11 meV) are ionized at fields of a few
keV/em. The excited states that at zero field have energy
~—11 meV correspond to the 2p, manifold (they form a
doublet, a singlet, and a triplet which are separated in energy
by ~0.1 meV). In particular, the states that originate from
the 2p, doublet have the lowest energy among the states of
this manifold also at nonvanishing field and, by increasing
the field, at £~3 keV/cm their energy equals the ioniza-
tion threshold and they become ionized; however, at
£=16 keV/cm their energy is again lower than the ioniza-
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FIG. 2. (Color online) Square modulus of the impurity wave
function (solid lines) and of the corresponding envelope function
(CF:(z)|P, dashed lines) for the three lowest-energy states (in
black, red, and green) of Si:P (top and middle panel with different
vertical scales) and the sum of electric field and screened Coulomb
potential (bottom panel) as a function of the Cartesian coordinate
z. The rapid oscillatory behaviors are fingerprints of interferences
between states from different conduction band valleys.
£=(0,0,24.5) keV/cm. The vertical dotted line corresponds to (the
saddle point at) the minimum of the energy barrier surrounding the
impurity. Inset: the same as bottom panel of Fig. 1 on a magnified
scale.

tion threshold. This astonishing behavior will be explained
later. Now we focus on the critical field £,,=24.5 keV/cm,?
when the energy of these two 2p,-like states becomes com-
parable (see inset of Fig. 2) to the energy of the singlet (4,)
1s-like state corresponding to the ground state of the system.
This is the case relevant for quantum computing (similar
crossings also occur between the 2p states and the E and T,
states of the 1s manifold). At this field the A; (1s) state and
one of the 2p, states anticross each other and at fields larger
than &,,, the ground state of the system becomes p-like. As a
consequence, the square modulus of the ground-state wave
function at the impurity site (displayed in the top panel of
Fig. 1) decreases dramatically at &,,, and, with it, the hyper-
fine interaction between nuclear and electron spins. Notice
that, since 1s and 2p, states have the same magnetic quan-
tum number m=0 their energy levels display anticrossing
behavior?® at &.. To understand the physical mechanisms
involved we have plotted in Fig. 2 the wave functions of
these states along the z axis (top and middle panel), and the
energy barrier (bottom panel) separating the states localized
near the impurity (at the origin) from the free-electron region
(in the right part of the figure). At &, the first excited states
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(in red) is a “pure” 2py-like state and it is mainly localized
outside the barrier at the “hill” at z~ 18 nm. It corresponds
to an ionized state even if its energy is lower than the ion-
ization threshold: the electron in this state can cross over the
energy barrier at £~3 keV/cm, when its energy is higher
then the ionization threshold and, by increasing the field, the
energy is lowered below the threshold but the state remains
localized outside the barrier. For fields slightly smaller than
&, the second exited state is localized outside the barrier
since it is a 2p,-like state, while the A; (1s) ground state is
localized within the impurity barrier. At &, the latter two
states mix as shown in Fig. 2; analysis of their wave function
shows that the electron in the ground state is mainly local-
ized at the impurity, but it has also a non-negligible probabil-
ity to be outside the barrier (the hill in black on the right of
the middle panel of Fig. 2). At fields larger than &, the
ground state is 2p-like and is outside the barrier, in the
region corresponding to ionized states. Physically, since the
ground state always has an energy lower than the ionization
threshold, it is localized within the barrier up to &, but at
the critical field it becomes ionized since by a tunnel effect it
mixes with the 2p,-like state outside the barrier.

Our results show that the energy range of the 1s manifold
narrows for increasing electric field, as predicted by Friesen,’
the ground state slightly decreases with increasing field up to
E.» however, the narrowing of the energy range of the s
manifold is quite small before the 1s state mixes with upper
(p-like) states (this latter effect was not considered in Fries-
en’s work).

In Kane’s quantum computer the electric field is used not
only to tune the hyperfine interaction, but also to allow, via
the exchange interaction, the shallow wave function of a P
impurity to interact with a neighboring P nucleus. For this
reason, it is important to know how the ground-state wave
function is modified by an electric field not only at the im-
purity site but also at other nuclear sites. To deal with a
directly measurable quantity we consider the Fermi contact
SHF constant obtained in electron-nuclear double resonance
(ENDOR) measurements.?* The SHF constants are propor-
tional to the square modulus of the (impurity) ground-state
wave function evaluated at the nucleus of atoms surrounding
the impurity.?> At zero field, due to symmetry, all atoms be-
longing to a given shell of neighbors, have the same SHF
constant.

To study the dependence of the SHF splitting on the elec-
tric field strength we consider here only the A shell corre-
sponding to the largest SHF constant at zero field (and it has
atoms placed according to the field direction). This shell con-
sists of the six Si atoms at (xa;,0,0), (0,+a;,0), and
(0,0,%a;). At zero field, for symmetry reasons, all these
atoms have the same value of SHF constant, but the electric
field lifts this degeneracy.
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TABLE 1. SHF interaction of A shell (in MHz) for Si:P at
different values of (001)-directed electric field (in keV/cm).

Field
0 5 10 15 20
(0,0,4) 5.238 5.253 5.251 5.230 5.180
(0,0,4) 5.238 5.206 5.158 5.090 4.995
(4,0,0) 5.238 5.232 5.213 5.179 5.122

Our result for the SHF interaction?® of the A shell at zero
field is a=5.238 MHz to be compared with the experimental
value a=5.962 MHz;?* other theoretical results taken from
the literature are @=2.963 MHz obtained by first-principles
calculations,” @=5.848 MHz obtained with a multiband
approach,”’ and a=8.414 MHz obtained in a traditional en-
velope function calculation.?’

In Table I we display the SHF interaction calculated
for all nonequivalent positions of the A shell and for
different values of a [001] electric field. They show both
linear and quadratic dependence of the SHF coupling on the
electric field and, more remarkably, they suggest the
possibility of measuring these effects also at small fields (at
£=5 keV/cm the difference between SHF couplings of non-
equivalent atoms in the A shell is ~1.0%).2® We see in Table
I that, while in general the shell atoms with negative or null
z have a reduction of the wave density, as expected (the field
is pointing to positive z), the atom at (004) has a SHF cou-
pling that increases for small electric field and decreases for
£=10 keV/cm since the electron is taken away from the
impurity in the direction of the field.?’

V. CONCLUSIONS

In summary, we have developed a robust and efficient
method based on a Gaussian basis set for the computation of
shallow impurity states in semiconductors without adjustable
parameters. The method takes into account valley-orbit cou-
pling in a nonperturbative way and the interaction with the
impurity core. Application of the method to the Stark effect
for shallow P impurities in silicon shows that the energy of
the 1s-like ground state decreases with increasing electric
field up to a value at which it anticrosses a 2p,-like excited
state: the ground state becomes p-like, the hyperfine cou-
pling drops, and the wave function extends significantly in
the region of space corresponding to free (ionized) states.*
Our technique allows us to give reliable predictions of the
hyperfine and SHF coupling as a function of electric field.
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