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We present a full band structure scheme to calculate the electronic contribution to the second order suscep-
tibility coefficient pertinent to optical rectification, �2

abc�−�� ;�� ,��� where ���0, within the independent
particle approximation for the electron dynamics, and in the dipole limit. This allows us to determine the
electronic response of a bulk semiconductor to a femtosecond optical pulse over a range of central frequencies,
both below and above the band gap frequency. Particularly interesting is the limit �2

abc�0;� ,−��. In addition to
the usual near-dc interband rectification current, shift and injection currents, associated with actual divergences
in �2

abc�0;� ,−��, are taken into account. Calculations for GaAs and GaP, in which injection currents are
forbidden, are performed. The band energies and matrix elements are computed with the full potential linear-
ized augmented plane wave method. For frequencies above the band gap, and for typically available pulse
widths, we demonstrate that the shift current dominates the current response, being approximately two orders
of magnitude larger than the rectification current. For very narrow pulse widths, on the order of a femtosecond,
the rectification current becomes comparable to the shift current.
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I. INTRODUCTION

Optical rectification �OR� is a second-order nonlinear op-
tical effect in which an applied monochromatic optical field
induces a static polarization inside a noncentrosymmetric
semiconductor.1 If the optical field comes instead from a
pulsed laser source, then the induced polarization varies in
time with the pulse intensity, and generates a fast current.
Although OR was discovered early in the study of nonlinear
optics,2 there has been renewed interest in it since the devel-
opment of femtosecond laser pulses first allowed the genera-
tion of ultrafast OR currents that emit THz radiation.3 These
sources are useful for spectroscopy in the far-infrared re-
gime, a part of the spectrum that has not been extensively
exploited.4 Since the THz radiation is related to the charge
dynamics of the electrons in the semiconductor, it is also of
interest as a means of examining the microscopic processes
responsible for its generation. Interactions of the laser field
with the ionic lattice of a polar material can also generate
THz radiation,5 but in this work we consider exclusively the
electronic response.

For applied laser fields with photon energies below the
band gap, the rectification current is the only second-order
nonlinear current induced in the system. For optical excita-
tions above the band gap, there is a markedly different
response.6 Absorption processes lead to short-lived currents,
whose time-variation adds to the THz generated from the
interband polarization. In a clean semiconductor with filled
bands and lacking inversion symmetry, there are two sources
of these currents: shift and injection processes.7 The differ-
ences between these currents and optical rectification have
not been fully appreciated. See the review by von Baltz8 for
a brief survey.

Shift currents arise when there is a charge transfer asso-
ciated with excitation from the valence band to the conduc-
tion band. The shift is on the order of a bondlength, and

occurs on femtosecond time scales. Figure 1 approximates a
“before-and-after” look at the electron density in GaAs, and
helps give a qualitative feel for how shift currents arise. In
panel �a� one sees the electron density, in a �110� lattice
plane, for the states at the top of the valence band �8 point;
these are fourfold degenerate. The density is localized
around the arsenic atom. The crystal can absorb photons of
energy larger than the band gap to populate the states near
the bottom of the conduction band. Panel �b� shows the den-
sity of the �6-point wave function of the lowest conduction
band, where the electron has now relocated nearer to the
gallium atom. Depending on the details of the light polariza-
tion, the electron density evolves differently to reach the
state depicted in �b�. If the electric field is polarized along the

FIG. 1. A plot of the electron density in the �110� plane of
GaAs. Panel �a� shows the electron density of the highest � valence
electron, and panel �b� the electron density of the lowest � point
conduction band. Dark regions correspond to higher densities. The
densities in panel �b� have been multiplied by two since the lowest
conduction band � point is twofold degenerate whereas the highest
valence band � point is fourfold degenerate.
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�100� direction, for example, an electron from the As atom
can move towards any one of its four nearest neighbors with
equal probability, giving no net current. But for polarizations
along the �111� directions, associated with each arsenic atom
is one particular gallium atom in a direction from the arsenic
atom indicated by the direction of the field. It is primarily
towards this gallium atom that the electron associated with
the arsenic atom moves, and a net electrical current results.

Shift current is also known as the bulk photovoltaic
effect.9 In a perturbative density-matrix calculation, shift
currents are associated with the nonzero off-diagonal
components.10 It has recently been proposed that shift cur-
rents could be observed in different systems, such as boron-
nitride nanotubes.11 A similar shift current occurs in finite
systems, such as molecules, in which there is a charge trans-
fer associated with the electronic excitation.12

Injection currents reflect a lack of symmetry in the crystal
structure that can give rise to phase differences between tran-
sition amplitudes associated with different polarizations of
light. When the crystal is photoexcited with circularly polar-
ized light, the different excitation pathways for horizontal
and vertical polarizations lead to an interference effect result-
ing in an asymmetric population in reciprocal space, and
hence a current. Because it is generated only with circularly
polarized light, the injection current is also called the circu-
lar photovoltaic effect.9 The injection current, which is sym-
metry forbidden in zincblende crystals, has not been thor-
oughly studied. We do not examine injection currents in
detail here, although our analytical results pertain to calcula-
tions of the effect.

In this work we address the difference between below-
and above-gap excitation in the generation of the electric
current in the zincblende crystals, and carefully distinguish
between the rectification and shift contributions. There have
been few theoretical attempts to describe the difference be-
tween below- and above-gap excitation in unbiased samples.
Early descriptions of the shift current introduced the shift
distance,10 an estimate of the shift in the center of an electron
charge induced by absorption, which replaced the explicit
evaluation of dipole matrix elements. Analytic models for the
band structure were used, which limited results to near the
band edge. Later, full-band-structure expressions for the shift
current, using the minimal coupling Hamiltonian, were pre-
sented and evaluated using model band structures.13 The
nonresonant polarization current has been difficult to calcu-
late for nonzero frequencies, even within the simplest ap-
proximations. To our knowledge, Khurgin was the first to
attempt to investigate the difference in below- and above-gap
rectification in GaAs within a single model.14,15 Based on
permanent dipole moments, his model is limited to excita-
tions near the band gap and uses an empirically determined
value for the bond dipole moment. More generally, the va-
lidity of this model has been questioned.16,17 Attempts to
include scattering effects on the evolution of the current
through kinetic theory have been reported.18

The difference in the response between below- and above-
gap excitation has recently been experimentally time re-
solved at the femtosecond scale,19 although it was noticed
much earlier for longer time scales.20 In this paper we ap-
proach these effects within a first-principles nonlinear

susceptibility formalism.21 Specific nonlinear effects are
associated with different frequency components of
�2

abc�−�� ;�� ,���, and a complete account of the response
would include effects at all ��=��+��. Our focus is on
nonlinear mixing of the frequency components of the field
around � and −�, so that the sum frequency �� is near zero.

Different approaches to a microscopic calculation of
�2

abc�−�� ;�� ,��� appear in the literature. Typically, they are
limited to the specific frequency components of the different
nonlinear effects. Popular examples are second-harmonic
generation22–25 �2

abc�−2� ;� ,��, the electro-optic effect24,26

�2
abc�−� ;0 ,��, and below-gap rectification6 �2

abc�0;� ,−��.
In approaches that directly evaluate �2

abc�−�� ;�� ,��� it is
insufficient to know one specific frequency component if the
response to a short pulse is to be evaluated, since the spec-
trum of the pulse cannot be approximated by a single fre-
quency. To include the dispersion one must be able to evalu-
ate �2

abc�−�� ;�� ,��� over a range of frequencies �� and ��.
In this paper we will show how this can be accomplished.

Recently, Sipe and Shkrebtii21 �SS� presented a general
formulation for calculating �2

abc�−�� ;�� ,��� within the in-
dependent particle approximation for the electron dynamics.
The approach is a perturbative one, accounting for both in-
terband and intraband transitions. Moreover, the formulation
applies to any frequency components of �2

abc�−�� ;�� ,���,
irrespective of whether the applied frequency is below or
above the band gap. Although the formalism is within the
independent particle approximation, it has been successful in
studies of second-harmonic generation.27 Here we apply the
formalism of SS to the rectification current and shift current
density in bulk GaAs. An outline of the paper is as follows.
In Sec. II we present our main analytic result, a simplifica-
tion of the general second-order susceptibility tensor for the
calculation of these processes. The simplification highlights
the different contributions to the current: rectification current
occurring at all frequencies, and shift and injection currents
when there is absorption from frequencies above the band
gap. We specialize to the zincblende crystals for which the
expressions reduce to a simple form. The resulting expres-
sions involve integrations over the Brillouin zone of the crys-
tal, and apply to all crystal classes. In Sec. III we focus on
GaAs and GaP, and we use our approach to numerically
evaluate the expressions. We employ the full potential linear-
ized augmented plane wave �FLAPW� method to estimate
the band energies and matrix elements, and the band gap
underestimation is treated within a scissors correction. Our
results are presented in Sec. IV. We first consider the con-
tinuous wave limit, including the shift distance as well as the
below-gap polarizability. The temporal response to a short
optical pulse is calculated, and the effect of nonlinear mixing
on the current generation is discussed. We conclude in Sec.
V.

II. SECOND ORDER COEFFICIENTS

A. General treatment

In this section we derive our expressions for calculating
the low frequency second-order response. We use “Gaussian
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centimeter-gram-second �CGS� units” throughout our deriva-
tions for convenience, but we switch to Systemé Interna-
tional �SI� units to present our results in the figures. While
our starting point is the general expression for the second-
order current density as given by Sipe and Shkrebtii, which
we sketch here,21 those authors ultimately considered only
monochromatic radiation in their examples, and it is neces-
sary to extend their formalism to deal efficiently with inci-
dent pulses. Unless otherwise stated, we use the same nota-
tion as in SS.

The current density for sum frequencies ���0 can be
written as the sum

�J�t�� = �Jintra�t�� + �Jinter�t�� ,

where

�Jinter�t�� =
d

dt
�Pinter�t�� ,

and

�Jintra�t�� = �Jintra�t��I + �Jintra�t��II. �1�

This separation into different intraband terms helps identify
the shift and injection contributions to the total current,
which are contained in �Jintra�t��I and �Jintra�t��II, respectively.
In terms of the Fourier components of the electric field,
given by

Ea��� = 	
−�

�

dt Ea�t�ei�t,

the total second-order polarization is

Pa�t� = 	
−�

� d��

2�
	

−�

� d��

2�
�2

abc�− �	;��,���


 Eb����Ec����e−i�	t, �2�

where ��=��+��. Here, superscript Roman characters rep-
resent Cartesian coordinates, and when they are repeated
they are to be summed over. The intraband electric currents
discussed in the Introduction appear as singularities of the
susceptibility coefficient in the limit ��→0.21

They arise in the following way in this treatment. It
is found that the current response can be described with
the aid of three third-rank tensors that are finite for all
values of their frequency arguments: �2inter

abc �−�� ;�� ,���,
�̄2

abc�−�� ;�� ,���, and K̄2
abc�−�� ;�� ,���. The first of these

relates the interband polarization term �Pinter�t�� to the ap-
plied field,

�Pinter
a �t�� = 	

−�

� d��

2�
	

−�

� d��

2�
�2inter

abc �− �	;��,���


 Eb����Ec����e−i�	t, �3�

the second relates the first intraband current term of Eq. �1�
to the applied field,

�Jintra
a �t��I = 	

−�

� d��

2�
	

−�

� d��

2�
�̄2

abc�− �	;��,���


 Eb����Ec����e−i�	t, �4�

and the third relates the time derivative of the second intra-
band current term of Eq. �1� to the applied field,

d

dt
�Jintra

a �t��II = 	
−�

� d��

2�
	

−�

� d��

2�
K̄2

abc�− �	;��,���


 Eb����Ec����e−i�	t. �5�

Since the total expectation value of the second-order current
response is

�J�t�� =
dP�t�

dt
�6�

we see from Eq. �2� that

�2
abc�− �	;��,��� =

K̄2
abc�− �	;��,���

�− i�	�2 +
�̄2

abc�− �	;��,���
�− i�	�

+ �2inter
abc �− �	;��,��� �7�

explicitly showing the divergences as ��→0.
Despite these divergences, we can of course still consider

the limiting case of monochromatic irradiation where

E���� = 2��E0���� − �� + E0
*���� + ��� , �8�

or

E�t� = E0e−i�t + c.c.

Returning to Eqs. �3�–�5�, it is clear that K̄2
abc�0;� ,−�� de-

scribes a current appearing in the crystal at a constant rate,
since using Eq. �8� in Eq. �5� yields

d

dt
�Jintra

a �t��II = K̄2
abc�0;�,− ��E0

b�E0
c�* + c.c.

This is the injection current. Similarly, we see that
�̄2

abc�0;� ,−�� is associated with a constant shift current ac-
companying the absorption of radiation, since using Eq. �8�
in Eq. �4� yields

�Jintra
a �t��I = �̄2

abc�0;�,− ��E0
b�E0

c�* + c.c.

As well, a constant polarization appearing in the crystal is
described by �2inter

abc �0;� ,−��, since using Eq. �8� in Eq. �3�
gives

�Pinter
a �t�� = �2inter

abc �0;�,− ��E0
b�E0

c�* + c.c. �9�

One might be tempted to identify this last term as the optical
rectification. This would be incorrect, since it would exclude
intraband contributions to the near-static polarization coming
from Eqs. �4� and �5�: Although �̄2

abc�0;� ,−�� and

K̄2
abc�0;� ,−�� strictly vanish for 
� below the band gap, an

expansion of the susceptibilities �̄2
abc�−�	 ;�� ,−��� and

K̄2
abc�−�	 ;�� ,−��� about �	=0 leads to terms linear in �	

that survive at all frequencies. When these are used in Eq.
�7�, contributions to a static polarization that are well be-
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haved as �	→0 arise. These add with �2inter
abc �0;� ,−�� to

form a tensor we call �2rect
abc �0;� ,−��, which describes the

total constant polarization,

Prect
a �t� = �2rect

abc �0;�,− ��E0
b�E0

c�* + c.c., �10�

induced in the crystal at frequencies below the gap. It is Eq.
�10�, not Eq. �9�, that describes the full optical rectification
for continuous wave excitation. This shows that, even
for continuous wave excitation, a direct identification

of the terms K̄2
abc�−�	 ;�� ,���, �̄2

abc�−�	 ;�� ,���, and
�2inter

abc �−�	 ;�� ,��� with injection, shift, and rectification
current, respectively, is incorrect. For pulsed excitation, the
situation is even more complicated and care is required to
identify the different components of the current. The work of
SS focused on excitation above the band and the continuous-
wave limit, so this issue did not arise there. For extremely
short pulses any such kind of division of the current into
different components probably loses all significance, but for
long pulses in the optical regime, one can still phenomeno-

logically identify an injection, shift, and rectification current
by the time dependence of their source terms. The identifi-
cation is more easily made if the symmetry properties of the

response tensors K̄2
abc�−�	 ;�� ,���, �̄2

abc�−�	 ;�� ,���, and
�2inter

abc �−�	 ;�� ,��� are identified, which we do in the next
section through a microscopic analysis. Once this is done, we
return to a description of pulsed excitation.

B. Response coefficients

Microscopic expression for the second-order nonlinear re-

sponse tensors K̄2
abc�−�	 ;�� ,���, �̄2

abc�−�	 ;�� ,���, and
�2inter

abc �−�	 ;�� ,��� have been derived by SS within the in-
dependent particle model. The interband polarization coeffi-
cient is written as �2inter

abc �−�	 ;�� ,���=�2ter
abc�−�	 ;�� ,���

+ �̃2tra
abc�−�	 ;�� ,���. The term �2ter

abc�−�	 ;�� ,��� survives
if only interband transitions are considered, and
�̃2tra

abc�−�	 ;�� ,��� contains both interband and intraband
contributions. These two coefficients are given by

�2ter
abc�− �	;��,���

=
e3

4
2 	 d3k

8�3 �
n,m,p


� rnm
a rmp

b rpn
c

�mp − ���mn
���fpmF+��mp,��� + ��fnpF+��pn,��� − fnmF+��mn,�	��� + �bc�� ↔ cb���
 ,

�11�

and

�̃2tra
abc�− �	;��,��� =

ie3

4
2 	 d3k

8�3�
n,m

fnm�rnm
a 
� rmn;c

b

���mn
−

rmn
b �mn

c

��
2�mn

2 � + � rmn;b
c

���mn
−

rmn
c �mn

b

��
2�mn

2 �
F+��mn,�	�

+ 
�rmn
b 
��rnm;c

a

���mn
+

��
2rnm

a �mn
c

��
2�mn

2 
F+��mn,���� + �bc�� ↔ cb���
� . �12�

In these equations, and ones that follow, �i=�i /�	 for i=�
or �, �mn�k�=�m�k�−�n�k� is the frequency difference be-
tween bands m and n, and we have dropped the explicit k
dependence of matrix elements and band frequencies. The
symbol F± denotes

F±��nm,��� =
1

�nm − �� − i�
±

1

�nm + �� + i�
,

and �bc��↔cb��� indicates that the preceding term should
be repeated switching b with c, and � with �. The small
positive real number � is taken to the 0+ limit at the end of
the derivation. For nondegenerate points in the Brillouin
zone �BZ�, the interband position matrix elements rnm

a �k� are
related to the velocity matrix elements, vnm

a �k�, by

rnm
a �k� = − ivnm

a �k�/�nm�k� , �13�

where

vnm
a �k���k − k�� =




mi
	 d3r�nk�r�

�

�ra �r�mk� ,

and �r �mk� is the Bloch state.28 The quantity �nm
a �k�

= (vnn
a �k�−vmm

a �k�) /m represents the difference between the
group velocities in different bands at a given k point. We also
require the generalized derivative of rnm

a �k� with respect to
kb, given by

rnm;b
a �k� = −

rnm
a �k��nm

b �k� + rnm
b �k��nm

a �k�
�nm�k�

−
i

�nm�k�


�
p

��nprnp
a �k�rpm

b �k� − �pmrnp
b �k�rpm

a �k�� ,

�14�

which arises from the intraband transitions that appear when
one considers the nonlinear response.29 It is easy to verify
that �rmn;b

a �−k��*=−rnm;b
a �k�, which helps simplify our com-
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putations. In Eq. �14� the index p runs over all bands. When
the energy band p is degenerate with another band s �and s is
either m or n� so that �ps�k�=0, the prescription detailed in
SS shows that matrix element rps�k� vanishes.

In terms of these microscopic quantities
�̄2

abc�−�	 ;�� ,��� is given by �Ref. 21�,

�̄2
abc�− �	;��,��� = −

e3

4
2 	 d3k

8�3


�
n,m

fnm�rmn
b rnm;a

c F−��mn,���

+ rmn
c rnm;a

b F−��mn,���� , �15�

and K̄2
abc�−�	 ;�� ,��� is given by �Ref. 30�,

K̄2
abc�− �	;��,��� = −

ie3

8
2 	 d3k

8�3�
n,m

fnm�mn
a �rnm

c ,rmn
b �


�F+��mn,��� − F+��mn,���� ,

where �rnm
c ,rmn

b ��rnm
c rmn

b −rnm
b rmn

c .
With these expressions in hand, a direct calculation of the

current response using Eqs. �6� and �7� would be possible.
But it would involve much computational overhead, since
at each pair of relevant frequencies the tensors
�ter

abc�−�	 ;�� ,���, �tra
abc�−�	 ;�� ,���, �̄2

abc�−�	 ;�� ,���,
and K̄abc�−�	 ;�� ,��� would have to be evaluated and
stored, which is impractical. To simplify our calculations, we
analytically rewrite these coefficients in terms of effective
single-frequency response coefficients that can be more sim-
ply computed.

We begin with the easier response coefficients. Clearly,
Eq. �15� separates into single-frequency effective coeffi-
cients,

�̄2
abc�− �	;��,��� = − i„�abc���� + �acb����… ,

where �abc��� can be expressed as the sum: �abc���
=�I

abc���+ i�II
abc���. The term �II

abc��� is real and explicitly
given by

�II
abc��� = −

i�e3

2
2 	 d3k

8�3�
n,m

fnmrmn
b rnm;a

c ���mn − �� .

�16�

Because of the form of F−��mn ,��, appearing in Eq. �15�, the
Kramers-Krönig equation relates �I

abc��� to �II
abc���,

�I
abc��� =

2�

�
	

0

�

d��P� 1

��2 − �2��II
abc���� , �17�

where P indicates the principal part. We also have the rela-
tions,

�I
abc�− �� = − �I

abc��� ,

and

�II
abc�− �� = �II

abc��� .

The delta function appearing in the integrand of Eq. �16�
restricts �II

abc��� to be nonzero only for frequencies such that

��� is greater than the band gap.

The susceptibility tensor K̄abc�−�	 ;�� ,��� for �Jintra�t��II

can also be separated into single-frequency terms,

K̄abc�− �	;��,��� = �abc���� − �abc���� ,

where

�abc��� = −
ie3

8
2 	 d3k

8�3�
n,m

fnm�rnm
c ,rmn

b �F+��mn,�� .

Unlike �abc���, which contains the factor F−��mn ,��,
�abc��� contains F+��mn ,�� in its integrand; thus we can
write �abc���=�I

abc���+ i�II
abc���, where the two purely real

terms �I
abc��� and �II

abc��� are related by another Kramers-
Krönig equation,

�I
abc��� =

2

�
	

0

�

d��P� ��

��2 − �2��II
abc���� , �18�

and they have the symmetry relations,

�I
abc�− �� = �I

abc��� ,

and

�II
abc�− �� = − �II

abc��� .

After some algebra, we obtain

�II
abc��� = −

ie3

4
2 	 d3k

8�3�
n,m

fnm�rnm
c ,rmn

b ��mn
a ���mn − ��

for the imaginary part. For frequencies � where 
��� is be-
low the band gap �II

abc���=0, and �I
abc��� contributes to the

nonresonant polarization.
We now turn to the more complicated coefficients

describing �Pinter�t��, namely �2ter
abc�−�	 ;�� ,��� and

�̃2tra
abc�−�	 ;�� ,���. In Appendix A we show that

�̃2tra
abc�−�	 ;�� ,��� can be written as the sum,

�̃2tra
abc�− �	;��,���

= �− 1

��

��abc�����* +
1

��

�abc��	�

+
��

��

1 −

�	

��

Wabc���� +

�	
2

��
2 Wabc��	��

+ �bc�� ↔ cb��� . �19�

Here Wabc��� is another effective single-frequency compo-
nent. It contains the factor F+��mn ,�� in its integrand, so like
�abc��� above, the real and imaginary parts of Wabc��� are
related through a Kramers-Krönig relation equivalent to Eq.
�18�. To simplify the computations, we note that the imagi-
nary parts of Wabc��� and �abc��� are related by WII

abc

=�−2�II
abc���.

So far the analytical rewriting of the susceptibility tensors
has been exact. In principle, the above expressions could be
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used in similar calculations for any frequency component of
�2

abc�−�	 ;�� ,���. The remaining term �2ter
abc�−�	 ;�� ,��� is

not so supple, and to express it in a computable form re-
quires approximations. In Appendix B we show that in the
limit �����1 and �����1 we can write,

�2ter
abc�− �	;��,��� � �
1 −

��

��

−
���	

��
2 
Cabc����

+
�	

��

1 +

��
2

��
2
C̃abc���� +

�	

��

Eabc��	�

+
�	

2

��
2 Ẽabc��	�� + �bc�� ↔ cb��� .

�20�

Like �abc���, Sabc���, and Wabc���, the terms Cabc���,
C̃abc���, Eabc���, and Ẽabc���, contain F+��mn ,�� in the in-
tegrands, and so their real and imaginary parts are related as
they are for �abc��� in Eq. �18�. After simplifying we find

CII
abc��� = −

�e3

4
2 	 d3k

8�3 �
n,m,p

fnmrnm
b � rmp

a rpn
c

�mp
+

rmp
c rpn

a

�np
�


���mn − �� ,

C̃II
abc��� = −

�e3

4
2 	 d3k

8�3 �
n,m,p

fnmrnm
b �mn� rmp

a rpn
c

�mp
2 −

rmp
c rpn

a

�np
2 �


���mn − �� ,

EII
abc��� =

�e3

4
2 	 d3k

8�3 �
n,m,p

fnm

rnm
a

�mn
�rmp

b ,rpn
c ����mn − �� ,

and

ẼII
abc��� =

�e3

4
2 	 d3k

8�3 �
n,m,p

fnm

rnm
a

�mn
2 �rmp

b rpn
c �mp + rmp

c rpn
b �np�


���mn − �� ,

for the imaginary parts of these terms.

C. The response to a pulse and simplifications for zincblende

We now return to our expressions for pulsed excitation,
and phenomenologically identify the injection, shift, and rec-
tification contributions to the response. We consider pulses in
the optical regime described by a carrier wave of frequency
��, modulated by an envelope function Eenv�t�, so that

E�t� = Eenv�t�e−i��t + Eenv
* �t�ei��t.

For this discussion, we consider an unchirped pulse, so that
Eenv�t� is real, but the resulting equations can be easily gen-
eralized to a chirped pulse. The Fourier transform of the
incident field is then

E��� = Eenv�� + ��� + Eenv�� − ��� ,

and using this in Eq. �2� the near-static interband response
becomes

�Pinter
a �t�� = 	

−�

� d��

2�
	

−�

� d��

2�
�2inter

abc �− �	;��,���


 �Eenv
b ��� + ���Eenv

c ��� − ���

+ Eenv
b ��� − ���Eenv

c ��� + ���� ,

where we have dropped the terms containing the factors
Ea��+���Eb��+��� and Ea��−���Eb��−��� since they cor-
respond to sum-frequency and second-harmonic generation.
Translating the integration variables and using permutation
symmetry simplifies this to

�Pinter
a �t��

= 2	
−�

� d��

2�
	

−�

� d��

2�
�2inter

abc �− �	;�� + ��,− �� + ���


Eenv
b ����Eenv

c ���� . �21�

The frequency spread of the pulse is narrow enough that the
susceptibility tensor can be expanded about the carrier fre-
quency to give

�2inter
abc �− �	;�� + ��,− �� + ���

= �2inter
abc �0;��,− ��� + ��� �

��
�2inter

abc �− �;�� + �,− ����
�=0

+ ��� �

��
�2inter

abc �− �;��,− �� + ���
�=0

+ ¯ .

Using this expansion in Eq. �21�, keeping only terms to first
order in �, and simplifying gives

�Pinter
a �t�� = 2�2inter

abc �0;��,− ���Eenv
b �t�Eenv

c �t�

+ 2� �

��
Im��2S

abc�− �;��,− �� + ����
�=0



�

�t
�Eenv

b �t�Eenv
c �t��

+ 2� �

��
Im��2A

abc�− �;��,− �� + ����
�=0



Eenv
b �t�

�

�t
Eenv

c �t� − Eenv
c �t�

�

�t
Eenv

b �t�
 .

�22�

where �2S
abc���2inter

abc +�2inter
acb � /2 and �2A

abc���2inter
abc −�2inter

acb � /2.
To obtain this final form we again used permutation symme-
try and that �2inter

abc* �−�	 ;�� ;���=�2inter
abc ��	 ;−�� ;−���.

The expansion demonstrates how the dispersion of the
susceptibility leads to a more complicated temporal re-
sponse. The first term follows the pulse intensity profile, and
as in the continuous wave case, the tensor �2inter

abc �0;�� ,−���
describes a polarization that is proportional to the instanta-
neous electric field squared. The second and third terms
follow the time derivative of the intensity profile, and
arise entirely from the off-diagonal components in
�2inter

xyz �−�	 ;�� ,���.
One can apply the same procedure to simplify Eqs. �4�

and �5� and express �Jintra
a �t��I and �Jintra

a �t��II in terms of the
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product Eenv
b �t�Eenv

c �t� and its derivatives, but the zincblende
symmetry of GaAs and GaP, which we focus on for the rest
of our presentation, allows some simplifications. For this
crystal class, third rank tensors must be symmetric under the
exchange of any pair of indices, so that �2

abc�−�	 ;�� ,���
=�2

acb�−�	 ;�� ,���. Thus the third term in the expansion for
�Pinter

a �t�� vanishes as does the similar term in an analogous
expansion for �Jintra

a �t��I and �Jintra
a �t��II. In fact, since the ten-

sor K̄abc��� governing �Jintra
a �t��II is antisymmetric under the

exchange of its last two indices, the intraband current
�Jintra

a �t��II, which includes the injection current, vanishes for
GaAs and GaP and so we will not consider it any further in
this paper; it will be the subject of a future communication.
For �Jintra

a �t��I we have

�Jintra
a �t��I = 2�̄2

abc�0;��,− ���Eenv
b �t�Eenv

c �t�

+ 2� �

��
Im��̄2

abc�− �;��,− �� + ����
�=0



�

�t
�Eenv

b �t�Eenv
c �t�� .

When we add d�Pinter
a �t�� /dt to �Jintra

a �t��I to construct the
total current �Ja�t�� we see that there will be terms that vary
as Eenv

a �t�Eenv
b �t�, as ��Eenv

a �t�Eenv
b �t�� /�t, and such higher or-

der derivatives. We identify the term in �Ja�t�� that varies as
Eenv

a �t�Eenv
b �t� as the shift current,

Jshift
a �t� = 2�̄2

abc�0;��,− ���Eenv
b �t�Eenv

c �t�

� 2�shift
abc ����Eenv

b �t�Eenv
c �t� , �23�

defining �shift
abc ����. Removing this contribution, the remainder

would then relate Pa�t� to Eenv
a �t�Eenv

b �t�, ��Eenv
a �t�Eenv

b �t�� /�t,
and higher order derivatives. This expression we take as
identifying the optical rectification Prect

a �t�, the generalization
of Eq. �10� to treat pulses.

The zincblende symmetry of GaAs and GaP leads to some
final simplifications of our expressions. Symmetry requires
that there be only one independent nonzero component in
which the indices are a=x, b=y, and c=z, for any permuta-
tion of �x ,y ,z�. For the shift current, the tensor component
�shift

xyz ���� can be written in terms of our effective single-
frequency tensors as follows:

�shift
xyz ��� = 2�II

xyz��� . �24�

For optical rectification, keeping the expansion of Prect
a �t� to

the instantaneous intensity, we have

Prect
a �t� = 2�2rect

abc ����Eenv
b �t�Eenv

c �t�

and, in terms of the single-frequency tensors, from Eqs. �19�
and �20� we find that

�2rect
xyz ��� = �2ter

xyz �0;�,− �� + �̃2tra
xyz �0;�,− �� +

��I
xyz���
��

,

=2
�I

xyz���
�

+ 4CI
xyz��� +

��I
xyz���
��

. �25�

Here �2rect
xyz contains the entire interband polarization response

of �2inter
xyz , and also contains the virtual polarization contribu-

tions in �̄xyz�−�	 ;�� ,���. The imaginary parts have van-
ished since the effective response tensors are symmetric un-
der any permutation of the Cartesian indices. This leaves the
rectification tensor purely real, as is expected from consider-
ing intrinsic permutation symmetry and zincblende symme-
try. At first sight this might seem surprising, since one gen-
erally expects response tensors to contain both real and
imaginary parts, which are related by Kramers-Krönig type
relations. Even in nonlinear response this holds, for example,
for the second-harmonic response tensor.31 There the real
part of the tensor is associated with conversion between fun-
damental and the second-harmonic frequencies, while the
imaginary part is associated with the removal of energy from
the total electromagnetic field.21 In linear response, of
course, the real part of the susceptibility is similarly associ-
ated with a modification of the propagation of the signal
through the medium, while the imaginary part is associated
with its absorption. In our case there is a similar “pairing” of
two effects, but they are associated with the rectification �de-
scribed by Eq. �25�� and the shift current �described by Eq.
�24��; it is the presence of both of them in �2 that allows it to
satisfy causality.

This concludes the main analytic result of the paper. As-
suming that only small deviations from �	=0 in the sum
frequency are required, we have expressed the second-order
nonlinear response in terms of effective single-frequency
components.

III. COMPUTATIONAL DETAILS

In this section we describe our procedure to evaluate the

coefficients, �abc���, Wabc���, Cabc���, C̃abc���, Eabc���,
and Ẽabc��� for the zincblende semiconductors GaAs and
GaP. For each of these single-frequency coefficients, only the
imaginary part of the Kramers-Krönig pair is evaluated di-
rectly; the other part is found from the corresponding
Kramers-Krönig relation. We use the linear analytic tetrahe-
dron method �LATM� to perform the required BZ
integrations.32 For the LATM, the energy eigenvalues and
momentum matrix elements are required on a dense tetrahe-
dral grid in the Brillouin zone. We estimate these with Kohn-
Sham density functional theory33,34 using the popular
FLAPW code WIEN2K.35,36

In the FLAPW method, real space is partitioned into non-
overlapping atomic spheres, collectively known as the
“muffin-tin” region, and an interstitial region. In the muffin-
tin region a linear combination of Schrödinger equation so-
lutions and their energy derivatives are used to expand the
wave functions. In the interstitial region a plane-wave expan-
sion is used, and each plane-wave is augmented by an atomi-
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clike function inside the sphere. Spin-orbit effects are in-
cluded through a second variational step. We refer the reader
to Singh37 for further details and references. Following usual
procedures, a self-consistent calculation is first made to gen-
erate a converged Kohn-Sham potential.

For the results presented below we used the room tem-
perature lattice constants of 10.683 a0 for GaAs and
10.300 a0 for GaP. We chose a muffin-tin radius of Rmt
=2.31 a� around each atom for GaAs, and 2.23 a� for GaP.
We found the parameters Rmt
Kmax=9.0, and lmax=12 to be
sufficient for convergence; here Kmax is the magnitude of the
largest vector in the plane-wave expansion, and lmax is the
maximum partial wave inside the atomic spheres. For the
exchange-correlation potential we use the local density ap-
proximation �LDA� as parametrized by Perdew and Wang.38

In our tests using generated gradient approximation �GGA�
functionals39 we found little qualitative difference in the re-
sponse functions. For the self-consistent calculation 1240 k
points were used in the irreducible Brillouin zone �IBZ�, as
determined by Blöchl et al.40 and the total energy was con-
verged to within 10−5 Ry. The resulting self-consistent poten-
tial was then used to solve the Kohn-Sham equations on a
tetrahedral grid of k points tailored for our BZ integrations.

Many different schemes have been presented for dividing
the IBZ into tetrahedra. Some common methods are given by
Harrison41 and Blöchl et al.40 To generate our grid we use an
implementation due to MacDonald et al.,42 in which the
zincblende IBZ is first divided into three tetrahedra described
by the sets of vertices: �� ,W ,U ,X�, �� ,W ,X ,L� and
�� ,W ,L ,K�. Each of these tetrahedra is divided into eight
smaller tetrahedra by introducing a new k point halfway
along each tetrahedron edge. In turn, each new tetrahedron
can be further divided as necessary to produce a mesh dense
enough for a converged spectrum. The integrals over each
resulting tetrahedron are done analytically by separately
linearizing the integrand and the energies over the
tetrahedron.43 Using this approach it is easy to keep track of
contributions to the spectrum arising from different sectors
of the IBZ, and then to refine the mesh as necessary to help
with convergence, but the initial specification and division of
the IBZ into tetrahedra must be done by hand for each crystal
class.

As the number of k points is increased, we find that con-
vergence of the GaAs spectra is slow around the band edge,
which has been noted by others calculating different optical
responses for this crystal.22,24 Even when we calculate the
response functions with 18 513 k points in the irreducible
zone we find that near the band edge the spectra are still not
completely converged. We attribute this slow convergence to
the small effective mass of the LDA conduction bands, and
to overcome it we perform a two-step calculation. First, we
calculate the spectra using our 18 513 k point mesh. We then
repeat the calculation but use 18 513 points in a region lo-
calized around the � point. At a photon energy of 2.5 eV, we
then match the spectrum accurate for high energies to the
valid one at low energies. To match the values requires scal-
ing down the high energy spectrum by about 1%. We note
that although 18 513 points may sound like an excessive
number to use, all the calculations are performed on a single
modern workstation. We anticipate that for many crystals,

where the bands are more linear than is typical for
zincblende crystals, the response calculations will require
fewer k points for convergence. We emphasize accurate in-
tegration near the band edge both because we make exten-
sive use of Kramers-Krönig relations, and because we want
to establish accurate FLAPW-LDA results for comparisons
to other bandstructure methods.

In our calculations for the optical response functions we
use 32 conduction bands for both GaAs and GaP. Using 20
conduction bands instead produces very similar response
functions. It is well known that the LDA underestimates the
conduction band energies. A popular fix for this, which we
follow in this work, is simply to shift the conduction band
energies such that the band gap agrees with the experimental
value. The argument for this is that in many cases, including
GaAs, the experimental band structure is close to the LDA
one, the major difference being a rigid shift in energy. Also,
for some systems, the GW wave functions have a significant
overlap with the LDA wave functions,44 indicating that the
matrix elements computed via the LDA are a reasonable ap-
proximation.

The details of our scissors implementation is different
from previous work concerned with the same underlying for-
malism for the response.21,24,25 We will briefly describe the
scheme, but refer to the reader to the literature45 for more
details. First, the LDA velocity matrix elements for each re-
quired k point on our mesh were computed from within the
WIEN2K package. Using these and the unscissored LDA-KS
eigenvalues, we construct the components rmn

a �k� using Eq.
�13�. If we were calculating the linear response, this would
correspond to the accepted scissors implementation, in which
there is cancellation of the correction to the momentum ma-
trix elements with the correction to the energies.24,46 Here
though, unlike an earlier approach,24 when we calculate the
generalized derivative rmn;b

a �k� from Eq. �14� we use the un-
scissored velocity matrix elements and energy eigenvalues.
Since the position matrix element should be computed from
the unscissored quantities, so should its generalized deriva-
tive. The scissors correction is then applied to all the explic-
itly remaining energies in our expressions. For GaAs and
GaP we used scissor shifts of 1.25 eV and 1.7 eV, respec-
tively.

The calculations for the nonlinear response tensors re-
quire a sum over intermediate states, labeled by the index p,

but for CII
abc��� and C̃II

abc��� there is an energy denominator
in the integrand associated with this index that potentially
introduces numerical difficulties. If the band p is degenerate
with the band m, then the basis can be chosen so that the
relevant component of position matrix element rmp

a �k� is
zero.21 But if the bands are not degenerate and have a small
energy difference, then this denominator can introduce error
into the integrand, since the wave functions are not as con-
verged as the energies. This type of issue appears for other
nonlinear response calculations, such as the second-harmonic
response.47

To determine that no such error is occurring, we simply
set up a tolerance for what the band separation must be to
qualify for a degeneracy, and set the integrand to zero at k
points and band combinations which qualify as a degeneracy.
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We found the spectra in question to be relatively unvarying
for tolerances between 10 and 50 meV. For smaller toler-
ances, different choices of tolerance lead to qualitatively dif-
ferent spectra, and for larger tolerances the overall magni-
tude of the spectra begin to significantly diminish, indicating
that we are excluding too much of the BZ in the integration.

For the figures, and results, we settled on a tolerance of
30 meV. An alternate procedure is to lift the degeneracies by
hand. Doing this gives nearly identical results.

The imaginary parts of the spectra all go to zero suffi-
ciently fast enough that evaluating the imaginary parts to
20 eV with a spacing of 1 meV was sufficient to evaluate the
Kramers-Krönig relations. Before evaluating the Kramers-
Krönig pairs, the imaginary parts of our spectra are smeared
by convolving them with a 25 meV full width at half maxi-
mum �FWHM� Gaussian, as is usually done to account phe-
nomenologically for population decay and dephasing. We
chose 25 meV since it roughly corresponds to room tempera-
ture broadening of the energy bands.

To establish a reference to other optical response calcula-
tions, we first present the real and imaginary parts of the
linear response function �1

xx��� for GaAs in Fig. 2. The usual
independent particle microscopic expression for �1

xx��� is
used; see, for example, Eq. �34� in SS.

Our results for the real and imaginary parts of the effec-
tive single-frequency response coefficients �xyz���, Cxyz���,
C̃xyz���, and Ẽxyz��� are presented in Fig. 3 for GaAs. We do
not show the effective single-frequency tensors for GaP since
those spectra are very similar to the ones for GaAs. This is
expected given the similar electronic structures of the two
materials. Since we use such a fine mesh for integration over
the Brillouin zone, resonances associated with critical points
are quite pronounced, especially in the nonlinear response.

FIG. 2. �Color online� The real and imaginary parts of �1
xx���

for GaAs.

FIG. 3. �Color online� The ef-
fective single-frequency tensors
required to form the optical recti-
fication tensors in GaAs. Panels
�a�, �b�, �c�, and �d� show the real
and imaginary parts of �xyz���,
Cxyz���, C̃xyz���, and Ẽxyz���,
respectively.
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Without the Gaussian smearing we find that the nonlinear
response spectra have a noticeable resonance at approxi-
mately 7 eV. These resonances are narrow enough that the
smearing significantly reduces them.

The �xyz��� spectrum is linear with � below the band
gap, as expected from Eq. �17�. The response functions

Cxyz��� and C̃xyz��� show much resonance structure. This is
not surprising, given the denominator in their integrands.
Similarly strong resonance structures are found for other cal-
culations for the second-order response.47,48 The spike in the
Cxyz��� spectrum for GaP is due to the small heavy-hole and
light-hole splitting in the valence bands. With a coarser k
mesh the resonances are not as pronounced, a usual conse-
quence of finite-element methods such as the LATM. The
effect of these resonances on the spectra is minimal below
the band gap. We performed calculations without the spin-
orbit interaction, and found that the general structure of the
spectra were similar.

The shape of the imaginary parts of the Ẽxyz��� and
�xyz��� spectra appears to be very similar. This is because
any terms in the second-order optical response functions ex-
plicitly containing the velocity matrix element differences
�mn�k� are zero by crystal symmetry for the zincblende
crystals.25 The generalized derivative rnm;b

a �k� in �II
abc���

contains such a term, and so only the second term of Eq. �14�
contributes. One then sees then that the resulting integrands
are similar, differing by a factor of 1 / �2�mn�. But the evalu-
ation of these two components under the scissors approxima-
tion is still different, since all the frequencies appearing in
the integrand of Eabc��� should be scissors corrected,
whereas the frequencies in the generalized derivative, ap-
pearing in the �abc��� integrand, are the unmodified Kohn-
Sham ones.

Care must be taken in the calculation of ��I��� /�� to
evaluate Eq. �25�. Artificial kinks in the frequency depen-
dence of �I���, which are too small to be noticed in the
plots, arise at energies corresponding to the tetrahedral mi-
crozone edges because of the piece-wise linearization of the
band structure over the BZ. Hence a straightforward numeri-
cal differentiation of the calculated �I��� to yield
��I��� /�� would produce unphysical oscillations. To avoid
these, we piece-wise spline fit the spectrum �I��� on a less
dense energy grid before we take the derivative.

IV. RESULTS

A. Continuous wave limit shift current and shift distance

We first investigate the continuous wave limit of the shift
current, where ��=−��. We use this opportunity to indicate
that in Fig. 2 of SS, the spectrum is incorrect due to a com-
putational error. The correct spectrum is given by 2���II

xyz���,
with �II

xyz��� as presented here in SI units.
From Jshift

a �see Eq. �23��, we can predict the average dis-
tance dshift that an electron center of mass shifts upon absorp-
tion of a photon. Since in this limit the shift current is pro-
portional to the absorption rate ṅ, we have dshift
= �Jshift

a / �eṅ��, where ṅ is the carrier absorption rate. For

zincblende systems and linearly polarized light along the
�111� direction, this “shift distance” is given by dshift���
=8��II

xyz��� /�2
xx���,21 where �2

xx��� is the imaginary part of
the dielectric function. As mentioned in the Introduction, the
�-point wave functions at the top of the valence band are
localized around the arsenic atoms, and at the bottom of the
conduction band they are localized around the gallium at-
oms. Absorption near the band edge then is expected to lead
to a shift distance of about the bond length. In these calcu-
lations the GaAs and GaP bond lengths are 2.45 and 2.36 Å,
respectively. In Figs. 4 and 5 we plot the frequency depen-
dence of the shift distance for GaAs and GaP, respectively.
We see that in GaAs just above the band edge the shift dis-
tance is slightly less, but still very close to the bond length.
As the frequency increases, it quickly approaches and ex-
ceeds the bond length. There is a small dip just below 2 eV
associated with the split-off band. Moving higher in energy,

FIG. 4. �Color online� Frequency dependence of the GaAs shift
distance.

FIG. 5. �Color online� Frequency dependence of the GaP shift
distance.
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the band structure and wave function symmetries are no
longer as simple as near the band edge. We see that there are
pronounced dips at certain photon energies, where the shift
distance falls to about half its peak value. Upon comparison
to the linear response spectra these dips correspond to ener-
gies of high absorption, where valence and conduction band
energies are nearly parallel. This happens along high symme-
try lines in the BZ, and the wave functions of k points in
these regions of the BZ are not as simple to model as those
of the high-symmetry points.

An immediately apparent difference in the GaP shift dis-
tance, when compared to the GaAs shift distance, is that at
the band edge the spectrum has a value around 1 Å, signifi-
cantly less than the bond length. Just above the band edge
there is a significant drop in the shift distance before it rap-
idly rises to the bond length. If the calculations are repeated
without including the spin-orbit interaction, then this dip
does not occur, and the spectrum immediately rises to the
bond length.

Earlier work by von Baltz and Kraut10 refers to the shift
distance as the anisotropy distance. The shift distance has
been experimentally estimated in the case of ferroelectrics
and pyroelectrics.10 Within a pseudopotential scheme, Hor-
nung et al. calculated the anisotropy distance for doped GaP
to be 0.9 nm for photon energies of 0.4 eV, a factor of four
larger than the bond length49 but in agreement to
experiment.50 To our knowledge, no similar experiment on
insulating GaP or GaAs, measuring the anisotropy distance
from photon energies crossing the direct band gap, has been
reported. It is surprising that an effect as simple and as in-
trinsic as this has not been experimentally investigated more
thoroughly.

Besides the excitation process, the effect of scattering on
the electron density after excitation is interesting in its own
right. The real space motion of the electrons as they relax
back to their ground states is not well understood. If �111�
linearly polarized light is used to excite the electrons, then it
is known that the excitation occurs directed along the bond

from the cation atom to the anion. While the electrons are in
the conduction band, if enough scattering events occur and
the electron momentum distribution is randomized, then the
electrons will lose “memory” of which cation they originally
came from, and will relax equally likely to any of the neigh-
boring cations. So, while the shift current was induced pref-
erentially along a direction, the relaxation current density
could very well be isotropic if the scattering is significant
enough. This would lead to a net current even if the applied
field were monochromatic. This should be contrasted with
shift currents generated in finite systems: in these systems,
the electron typically only has one pathway back to its donor
state. As the electron relaxes it produces a back current, and
in the continuous wave limit there is no net current. It would
be interesting to see if an experimental investigation of the
shift current, perhaps through time-domain THz spectros-
copy, could reveal information about the scattering processes
in semiconductor crystals.

B. Rectification tensor

We now turn to rectification current in the continuous
wave limit. In Figs. 6 and 7 we plot the rectification tensor
spectrum for GaAs and GaP. The tensors display an expected
resonance at critical points. At the band gap, the resonance in
the GaAs spectrum is large enough to make the spectrum
negative just above the band gap. This change in sign of the
bulk rectification tensor has been experimentally seen in the
work of Zhang et al.,51 in which they investigated the off-
normal incidence rectification in a GaAs �111� crystal. Un-
fortunately, a more detailed quantitative comparison cannot
be presented, since they did not extract a value for the �2rect

xyz

tensor component at photon energies above the band gap.
Moreover, although present, the photovoltaic effect �shift
current� was not considered in their analysis. For GaP we
find that the spectrum remains positive until higher photon
energies associated with the E1 transition at around 3.9 eV.
Although a resonance at the band gap is present, it is not

FIG. 6. Frequency dependence of the rectification tensor for
GaAs.

FIG. 7. Frequency dependence of the rectification tensor for
GaP.
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strong enough to cause a sign change in the rectification
spectrum.

For the static limit we find that �2
xyz�0;0 ,0�

=176.7 pm/V, and 72.8 pm/V for GaAs and GaP, respec-
tively. These results for the static limit are in agreement with
other calculations done for the static limit �2

xyz�0;0 ,0� of the
zincblende crystals.52 Our static limits are also in close
agreement with the experimental low frequency values of
166 pm/V for GaAs and 74 pm/V for GaP, as presented by
Roberts,53 but determined from second-harmonic measure-
ments. There is a wide variation in the low-frequency values
of �2

xyz for GaAs from electro-optic measurements. These
values range from 100 to 200 pm/V54,55 and the best we can
say is that our value for GaAs falls within this range.

C. Temporal response

We now investigate the importance of the frequency com-
ponents in �2

abc�−�	 ;�� ,��� for which ���−�� on the
nonlinear response of GaAs to a short laser pulse. We assume
a Gaussian pulse profile given by

Eenv�t� = E�e
−�2t2/�2�ln 2.

The carrier frequency is 
��=1.55 eV, E� is the peak field
strength, and � is the full temporal width at half maximum of
the intensity. For convenience we assume the laser is incident
on a �110� GaAs crystal, and the field is polarized in the

�1̄10� direction so that E�=E��−x̂+ ŷ� /�2.
Expressing the interband polarization in terms of our

single-frequency effective coefficients we have from Eq. �22�

�Pinter
z �t�� = − 2� 2

��

�I
xyz���� + 4CI

xyz�����Eenv
2 �t�

− 2� 8

��

C̃II
xyz���� +

2

��
2�II

xyz���� + 4CII�
xyz����

+ 2�II�
xyz����� �

�t
Eenv

2 �t� , �26�

where the prime denotes differentiation with respect to �.
Note that the bracketed quantity in the first term is only part
of the optical rectification tensor in Eq. �25�. The remaining
contributions to the rectification appear in the intraband cur-
rent �Jintra

z �t��I which, for the same optical pulse, is

�Jintra
z �t��I = 4�II

xyz����Eenv
2 �t� + 2�I�

xyz����
�

�t
Eenv

2 �t�

− 4�II�
xyz����Eenv�t�

�2

�t2Eenv�t� . �27�

The other single-frequency effective tensors such as SI
xyz���,

and CI
xyz��� would appear in these expressions if we had

considered more complicated pulses, such as those involving
chirp. In Eq. �27� we have expanded �Jintra

z �t��I to include
second-order derivatives of the envelope Eenv�t�. This is to
keep to orders consistent with the current from the polariza-
tion in Eq. �26�, which would also be to second order.

The total current is the sum �Jintra
z �t��I+d�Pinter

z �t�� /dt. We
can then proceed to identify the shift current Jshift�t� Eq. �23�

which, as explained in Sec. II, varies with the pulse intensity;
it is the first term on the right-hand side of Eq. �27�. The
remainder of the total response is the rectification current. In
Fig. 8 we show the magnitude of the currents from our cal-
culations for a 150 fs pulse. We use a peak field strength of
E�=107 V/m. The top panel shows the pulse intensity pro-
file, normalized to the peak intensity. In the middle and bot-
tom panels, we plot the rectification and shift currents, re-
spectively. The total current response is the sum of the two
bottom panels. We have divided out the peak intensity, so
that the curves can be compared to the magnitudes of the
susceptibilities. For these pulse parameters the rectification
current follows the time derivative of pulse, and the shift
current follows the pulse profile. Clearly, the shift current
dominates the response above the band gap. The sign change

FIG. 8. The current response in GaAs to a 150 fs pulse showing
the difference between above and below band gap excitation. The
top panel shows the intensity profile I�t� normalized to the peak
intensity I0. The middle panel shows the rectification current re-
sponse to this pulse for photon energies below and just above the
band gap. The bottom panel shows the shift current, which follows
the pulse profile. The net current response is the sum of the bottom
two panels.
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in the rectification part of current reflects the change in sign
of �2rect

abc �0;� ,−�� just above the band gap.
Although much experimental work on THz radiation from

GaAs has been reported, most researchers do not present
quantitative details of the measured THz field, and focus
mainly on qualitative features such as the line shape. An
experiment by Coté et al.19,56 has attempted to distinguish
between the temporal response of the rectification current
and shift current. Since the former is proportional to the time
derivative of the latter, one signature of the difference is a
phase shift in the signal. This phase shift is a natural conse-
quence of our formalism, appearing in the divergence
�−i�	�−1 of Eq. �10�. In their experiments, Coté et al. used a

�110� GaAs crystal, and �1̄10� polarized electric fields as we
have used in our calculations above. They found that the
shift current densities exceeded the rectification current den-
sity by a factor of 570. For the experimental parameters we
chose here, we find that the factor is roughly 180, off by a
factor of three. However, a complete quantitative comparison
of our results to this experiment is prohibitive; to do this
would require solving for the full electron dynamics includ-
ing scattering and space-charge effects, and solving the Max-
well problem for the emission of the THz radiation through
the interface and the effects of the optical elements used in
its detection. Steps towards dealing with the latter of these
problems have been reported,56,57 and the tensors calculated
here will be an important input to full studies of current
generation and transport in semiconductors.58

With shorter pulses, one expects the off-diagonal coeffi-
cients to play a more important role, since there will be a
larger range of frequencies mixing to produce the slowly-
varying response. One also expects the shorter pulse to result
in a larger rectification current, since this current is propor-
tional to the time derivative of the pulse intensity. As an
example of what one should expect with shorter pulses, in
Fig. 9 we plot our results assuming a Gaussian pulse, but
with �=10 fs. The spectral width of such a pulse is ap-
proaching the limit of validity for our linear expansions.
Here, one notices a different rectification response. The rec-
tification response above the band gap is now asymmetric,
because the dispersion terms are now important. At frequen-
cies closer to the band gap, where the tensors vary more
rapidly, one can find even more asymmetric profiles for the
rectification current. By definition, the shift current again
follows the pulse profile. The most striking difference arising
due to the shorter pulse is that, because the pulse profile now
varies more rapidly, the rectification current is roughly two
orders of magnitude larger than with the 150 fs pulse, and is
comparable in magnitude to the shift current.

V. CONCLUSIONS

We have derived expressions for the second-order re-
sponse tensor �2��	 ;�� ,��� in the optical rectification limit,
where �	�0, and applied them to the zincblende structures
GaAs and GaP using a FLAPW scheme. This has allowed us
to compute the optical rectification response tensor
�2rect�0;� ,−�� both below and above the band gap from a

full band structure scheme. Above the band gap, the photo-
voltaic shift current is associated with this response. We have
computed the frequency dependence of the average shift of
the electron density responsible for this current. In agreement
with simple models relevant to the band edge of GaAs, we
find that the shift distance is approximately the bond length,
but at certain laser frequencies the shift falls well below that
distance. In GaP, we find that the shift distance is signifi-
cantly smaller than the bond length very near the band edge.

We have also included the effects of off-diagonal disper-
sion in the susceptibility tensor, and shown that they become
appreciable for pulses shorter than approximately 10 fs. Us-
ing the same approach we have presented here, the off-
diagonal dispersion in other nonlinear effects, such as sum
frequency generation, can be addressed.

Future work involves investigating the optical rectifica-
tion in lower symmetry crystals, such as the wurtzite struc-
tures. These crystals allow the circular photovoltaic effect,
which can be comparable in magnitude to the shift current

FIG. 9. Same as Fig. 8 but with a FWHM intensity of �
=10 fs.
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response, but are forbidden in the zincblende crystals which
we have studied here.
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APPENDIX A

In this appendix, we outline how �̃2tra
abc�−�	 ;�� ,��� can

be decomposed into single-frequency effective tensors. From
Eq. �12� we can write

�̃2tra
abc�− �	;��,��� = ���

��

T̄abc���;��,��� +
1

��

Sabc��� + ���

+
1

��
2 Wabc��� + ���� + �bc�� ↔ cb��� ,

where

T̄abc��;�1,�2�

=
ie3

4
2 	 d3k

8�3�
n,m

fnmrmn
b 
 rnm;c

a

�mn
+

�1rnm
a �mn

c

�2�mn
2 
F+��mn,�� ,

Sabc��� =
ie3

4
2 	 d3k

8�3�
n,m

fnm

rnm
a rmn;c

b

�mn
F+��mn,�� ,

and

Wabc��� = −
ie3

4
2 	 d3k

8�3�
n,m

fnm

rnm
a rmn

b �mn
c

�mn
2 F+��mn,�� .

Note that �� /��=�� /��, and since we are interested in fre-
quency components where ���−�� but neither �� nor ��

are close to zero, we will not have any divergence problems
in evaluating the above expression for �̃2tra

abc�−�	 ;�� ,���
once the effective coefficients T̄abc�� ;�1 ,�2�, Sabc��� and

Wabc��� are known. Our expression for T̄abc�� ;�1 ,�2� still
contains two frequency components. Upon further simplifi-
cation to decouple the frequencies we find that

T̄abc��;�1,�2� = �Sbac����* +
�1

�2
Wabc��� .

Finally, one can show that Sabc���=�−1�abc���, which when
used in the expressions above gives Eq. �19�.

APPENDIX B

Here we outline how �2ter
abc�−�	 ;�� ,��� can be decom-

posed into single-frequency tensors. From Eq. �11� we can
write

�2ter
abc�− �	;��,���

= C̄abc���,��� +
��

��

D̄abc���,��� +
1

��

Ēabc��	,���

+ �bc�� ↔ cb��� ,

where

C̄abc��,�� =
e3

4
2 	 d3k

8�3 �
n,m,p

fnm

rpm
a rmn

b rnp
c

�−1�mn − �mp
F+��mn,�� ,

D̄abc��,�� =
− e3

4
2 	 d3k

8�3 �
n,m,p

fnm

rnm
c rmp

a rpn
b

�−1�np − �mp
F+��mn,�� ,

and

Ēabc��,�� =
− e3

4
2 	 d3k

8�3 �
n,m,p

fnm

rnm
a rmp

b rpn
c

�−1�mp − �mn
F+��mn,�� .

Unfortunately, these expressions still simultaneously involve
two frequency components. It does not seem possible to fur-
ther separate these expressions into separate frequency com-
ponents, but note that for the frequency ranges relevant in
OR, we have �����1, �����1. Hence, we are led to try the
expansions

C̄abc��,�� = Cabc��� + �−1C̃abc��� + ¯ ,

D̄abc��,�� = Dabc��� + �−1D̃abc��� + ¯ ,

and

Ēabc��,�� � Eabc��� + �−1Ẽabc��� + ¯ ,

and keep only the first term. After some manipulations, fol-
lowing in spirit those detailed in Appendix B of SS, we find

that Dabc���=−Cabc���, and D̃abc���=−Cacb���+ C̃acb���,
where

Cabc��� = −
e3

4
2 	 d3k

8�3 �
n,m,p

fnm

rnm
b rmp

a rpn
c

�mp
F+��mn,�� ,

C̃abc��� = −
e3

4
2 	 d3k

8�3 �
n,m,p

fnm

rnm
b rmp

a rpn
c

�mp
2 �mnF+��mn,�� ,

Eabc��� =
e3

4
2 	 d3k

8�3 �
n,m,p

fnm

rnm
c rmp

b rpn
c

�mn
F+��mn,�� ,

and

Ẽabc��� =
e3

4
2 	 d3k

8�3 �
n,m,p

fnm

rnm
a rmp

b rpn
c

�mn
2 �mpF+��mn,�� .

Combining all this and simplifying gives Eq. �20�.
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