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Expansion of the spectral representation function of a composite material in a basis of Legendre
polynomials: Experimental determination and analytic approximations

C. Pecharromén' and F. J. Gordillo-Vazquez?
Unstituto de Materiales de Madrid, C.S.1.C., Cantoblanco, 28049 Madrid, Spain
2nstituto de Optica, C.S.1.C, Serrano 121, 28006 Madrid, Spain
(Received 2 February 2006; revised manuscript received 24 April 2006; published 31 July 2006)

A unique formulation is presented to derive the spectral representation function of heterogeneous two-
component materials in terms of an expansion on Legendre polynomials. This approach notably simplifies the
calculations needed to estimate the effective dielectric function from the spectral density function and allows
one to extract it from experimental data by using quite simple analytic expressions. The spectral representation
function derived by the present method agrees notably well with experimental infrared reflectance measure-
ments obtained from several ionic compounds. In addition, we state that the infrared spectral region is the
optimal one in order to determine the full relationship between the spectral density function and the effective

dielectric constant of a composite material.
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I. INTRODUCTION

The precise determination of the electrical and optical
properties of heterogeneous materials is still a challenging
problem, although the basic physical laws describing these
aggregates are the well-known Maxwell equations. In the
case that we restrict the study to particles smaller than the
light wavelength in vacuum, only the Laplace equation, with
adequate boundary conditions, is needed to fully describe the
problem. However, in spite of this apparent simplification, in
realistic heterogeneous materials composed of submicromet-
ric particles, a precise geometrical description of the material
system is rarely possible.!

In order to approach the solution of the Laplace equation,
several authors have used an expansion of the potential func-
tion in Legendre polynomials around the center of each of
the particles making up the composite.” Additionally, many
models have been developed based on some of the few cases
for which the Laplace equation admits an analytical and rela-
tively simple solution. The most widely known of them is
that of an ellipsoid embedded in an infinite region of con-
stant electric field. Based on this fact, several theories have
been put forward as, for example, that of Maxwell-Garnett,
the effective medium theory,*> Landau,® and others.”® From
these methods, the effective medium theory has shown to be
the most flexible and able to approximately reproduce many
of the available experimental results.”

The above-mentioned theories can all be obtained as par-
ticular cases of the so-called spectral representation method
of the effective dielectric constant.'®!! This method states
that the effective dielectric constant of a heterogeneous ma-
terial can be written as a function of the ratio of the dielectric
constant of one of the composite phases to that of the other,
and in terms of a geometrical function, the so-called spectral
density function, g(n) (where n runs from 0 to 1 and it stands
for the depolarization factor of the particles making up the
composite). This function is determined by the shape and
distribution of the interfaces between the different phases
present in the composite. Moreover, this function is con-
strained by a number of sum rules.!>!3 A considerable num-
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ber of theoretical and empirical models'*?' of g(n) have

been described in the literature that fit reasonably well to
experimental data.

Several works have exposed different procedures to de-
duce the spectral density function from experimental infrared
(IR) reflectance data without assuming a previous model for
the spectral density function. These approaches estimate g(n)
by using a Monte Carlo algorithm,>> by a continuous
fraction,” a least squares fitting procedure,?* or by a combi-
nation of them.? According to some of the authors of these
works,?? the process to extract g(n) from experimental data
of (&) is ill posed, so that small errors in (&) could carry large
mistakes in g(n). In all cases, models discretize the spectral
representation function in small intervals where it is assumed
that the function takes constant values. Thus, the higher the
precision of the fitted values, the narrower the interval con-
sidered. However, in order to minimize the impact of the
experimental data on the spectral representation function,
constrictions given by sum rules must be incorporated into
the calculations. Additionally, Tuncer® has introduced a
more robust formalism, previously applied to the estimation
of inversion of dielectric relaxation spectra,”®?’ based on the
random selection (by a Monte Carlo technique) of the n in-
tervals. These processes notably complicate the determina-
tion of g(n) in such a way that it is very difficult to reproduce
the calculations without a deep knowledge of computer pro-
gramming.

In the present paper we introduce a unique formulation,
based on an expansion on Legendre polynomials, to extract
g(n) from experimental measurements. This method notably
simplifies most of the calculations needed to estimate (&)
from g(n). In addition, our procedure automatically provides,
by using quite simple expressions, the needed constraints in
order to determine the spectral density function from experi-
mental data. The spectral density functions determined by
this method agree significantly well with experimental re-
sults. Moreover, a simple and fully analytical expression for
(&), which only depends on the filling factors and the perco-
lation strengths, can be deduced.
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In order to determine g(n) from spectroscopic experi-
ments, we have used the property that relates a surface plas-
mon resonance of the experimental spectrum to the condition

(1-n)e,, +ne,=0. (1)

When this condition is satisfied, a peak at the absorbance
and a band at the reflectance spectra appear. Since n runs
from O to 1, we would get a set of resonances, corresponding
to all values of n, with a weight related to g(n) only if g,
runs from — to 0. While metallic materials satisfy this con-
dition all along the spectral range (more than 14 frequency
orders of magnitude), a very unique narrow spectral area,
called the reststrahlung region, exists in strongly ionic di-
electric materials, where the complex dielectric function ex-
hibits a resonance in such a way that it takes values all along
the upper complex semiplane. In particular, the real part
takes large negative values close to wr, i.e., the transverse
phonon frequency (g,~-100) to reach the null value, €,
=0, at wy, i.e., the longitudinal phonon frequency. The larger
the longitudinal-transverse splitting is, the more negative &,
becomes. Typically, the largest w;-w; splitting is around
500 cm™! wide, a spectral region that can be easily measured
by a single IR spectrum. In this sense, the best materials that
exhibit this property are ferroelectrics or strongly ionic ma-
terials (MgO, alkaline halides, etc.).

II. THEORETICAL APPROACH

The spectral representation theory states that the effective
dielectric constant (&) of a heterogeneous medium made up
of two phases, labeled p and m, with dielectric functions €,
and g, and filling fractions f,=f and f,,=1-f, is given, ac-
cording to the notation of the Fuchs and Claro paper,'* by

1
@ c(fﬂ—1>+f —f&dn, )
0

P
Em Em m

€= &y

where g,(n) is the spectral density function for phase p, C, is
the so-called percolation strength of phase p, and n can be
identified as the depolarization factor. In general, g,(n) is a
complicated function of the geometric structure of the com-
posite.

We can rewrite expression (2) as

1
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This expression can be easily converted into a Hilbert
transform by introducing two new variables. In the first
place, we adopt the following change of variable:

x=1-2n; (4)
the second new variable 7 is defined as

2 +
T=ﬂ+1=M. (5)

Ep—&n Ep—E€nm

The variable 7 relates the dielectric constants €, and g,, of
the two components of the composite. After some algebra,
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we can derive the relationship between ¢, and ¢,, from ex-
pression (5) and we have

8p=3m|:T+1:|:>{8p(T:_l)=O (6)

—1 g(1=1)=~ .

Thus, the variable 7 belongs to the interval 7e[-1,1].

Introducing Egs. (4) and (5) into (2) and (3), the effective
dielectric constant can be written as the Hilbert transform of
the spectral representation functions of the p or m medium,
respectively, as follows:

1
(6=, /e, 6,) + 120 f YNNG

1 T—X

g, [ m(X)
<8> =g+ (1 _f)Cm(Sm_ 81’) - (1 —f)_zgj_l gTjdx.

(8)

However, the spectral representation functions g,(x) and
g,(x) are not independent since they are correlated through
the expression (according to the Fuchs and Claro notation'*)

(1= fng,(n)=f(1-n)g,(1-n), )

which, after introducing the change of variable [Eq. (4)],
transforms into

1—-x 1
(1= gn®) =f%gp<— %). (10)

However, there is an alternative way to describe the spectral
density function without ambiguity of media. This can be
done by taking into account the relationship between g, and
g [expressions (9) and (11)] so that we can redefine the two
spectral density functions (according to the Fuchs and Claro
notation'?) as follows:

_ g _ &n(n)
Xp(n)_(n_l)’ Xm(n)_ (l’l—l)’ (11)
or in terms of the variable x
_ 28 _ 28,0
p(X)—ai—l), Xon(X) = GrD’ (12)

Then, the original Eq. (9) from Ref. 14, (11), can be rewrit-
ten as

(1 _f)Xm(_ X)Zpr(X). (13)

It results that the spectral function y,, times its filling fac-
tor is related with the corresponding function y,, by just an
inversion of variable. Thus, the effective dielectric constant
can now be calculated by using

_ fou [ hFHL
<8>_8m+fcp(8p_8m)+ 2 f_lXp(X)T—.xdx (14)

or

035120-2



EXPANSION OF THE SPECTRAL REPRESENTATION...
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1
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(15)

Introducing the sum rules that link the percolation
strengths with the spectral representation functions (accord-
ing to the Fuchs and Claro notation'#), we end up having

(1-HC,+fC, +ff —p(—)d =1, (16)

(1=NCp+fCp+( f)f gm(n) =1 (17)

these equations transform into the expressions below after
introducing the change of variables from g, n to y, x [Egs.
(4) and (5)],

I
(1 —f)Cm+pr+§f Xp()dx =1, (18)
-1

(1-HC,+fC,+ )(m(x)dx— 1. (19)

(-5
2
Finally, introducing Eq. (18) into (15), we have obtained a

unified expression both for m and p media,

1
(e)=fe,C,+(1 _f)Cm8m+2f—8pg—mf Xg(x)dx.
Ep=EpJ_ T—X

(20)

This expression combines the information of both spectral
representation functions into a single one. The use of a uni-
fied expression enhances the precision degree because, it can
be seen that if the spectral representation functions are de-
duced from experimental data by separately using Egs. (7)
and (8), the resulting g,(n) and g,,(n) do not satisfy Eq. (9)
because large errors appear for values of n close to 1 in both
cases. Thus, the use of both functions allows one to get pre-
cise values for g,(n) for values of n ranging from 0 to 0.5,
while the use of g, (n) to determine g,(n) through Eq. (9)
allows one to estimate this function in an interval of n rang-
ing from 0.5 to 1. It should be pointed out that Day et al.>*
were aware of this fact but they used a linear combination of
these two functions instead of a unified expression.

It is possible to expand the spectral density function, y,,
as an infinite series of orthogonal functions. We have chosen
the Legendre polynomials?®?° since they are the natural or-
thogonal polynomials along the interval [—1,1] in order to
use the Gaussian quadrature formula to estimate the inte-
grals. Thus, we can write x,(x) as

o0

Xp(%) = 2 Yk Pil). (21)
k=0

In the case that the spectral representation functions were
known, the expansion coefficients could be calculated by
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2k+1

Yk=" 5 J Xp(X) Pi(x)dx; (22)

considering expression (21), we can now rewrite Eq. (20) as

o]

+(1-)Cpe +2f—”—2 Yok Oi(7),

p Emk=0

(e)=r¢,C,

(23)

where the Q,’s are the Legendre functions of the second
kind, which are the Hilbert transformation of the P;’s Leg-
endre polynomials. It is important to note that the Q; func-
tions can be easily estimated. In the case of the first terms
they can be calculated analytically in a straightforward way
(see the Appendix ). The analyticity of the Hilbert transform
of the Legendre polynomials is another reason to justify the
selection of this base. Although any of the Q, terms can be
recursively obtained, in the case of higher orders (from the
sixth and higher) the numerical errors produced in the evalu-
ation of the explicit expressions become unacceptable so that
we have used the numerical procedure introduced by Gil and
Segura.®® The same expansion can be applied to x,,(x). Ac-
cording to expression (13), the coefficients 7,, and v, are
related through the expression

(R4
1-f
At this point, it is convenient to introduce the sum rules for

the spectral functions ¥, and x,, as (according to the Fuchs
and Claro notation'¥)

Yk = ypk' (24)

1
J gy(n)dn=1-C,
0

1
f gm(n)dn =1- Cm? (25)
0

which transforms into the following equations by introducing
the x variable and Egs. (11), (12), and (21),

1 12 1
EJ gy(x)dx = 4_12 ypkf (1+x)Pi(x)dx=1-C
-1 k=0 -1
(26)
and
1! 1
_f gm(x)dx_ E Ymk (1 +x)Pk(x)dx= 1- Cm
2 40 -1
(27)
Operating on expressions (24)—(27), we obtain the follow-

ing set of equations for the first two terms of the expansion,

ZLO_'_ZL':l_CP’
2 6
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Yoo | Vi _
5 + 6 =1-C,, (28)
which results in
Fro=f(1=C)+(1=P(1=Cp). (29)
Do _s1-c)-(1-pii-c,). (30)

3
Introducing the variable x, the second sum rule [expres-
sion (26)] becomes

1
o a-meataop. oen
-1

Expanding (1-x?) and X,(x) in their Legendre polynomi-
als series, it results that

Yoo — Zgﬁ =2(1-1). (32)

As a result, we have that the first three Legendre coeffi-
cients of the effective dielectric constant given by Eq. (22)
are correlated and depend on the percolation strengths C,
and C,,. The explicit expressions for the first three coeffi-
cients are

1
7])0:_ Cp+ _[l - (1 _f)Cm]9
f
3
Yp1= 6— 3Cp_ }[1 - (1 _f)Cm]’

5
’yp2=—10(1 —f)—SCp+}[1_(1 _f)cm]' (33)

Therefore, collecting all the terms, Eq. (23) can be rewrit-
ten in the following compact form:

<8> =pr8pq)p(T) + (1 _f) Cmsmq)m(T)

p~ Em

+2f£—8”_8—m[<l>o(r) + 3 ykakw] (34)
k=3

where

D,(1)=1-(7=-D[Qo(7) =301(7) +505(D],  (35)
D, (1) =1 = (7+ D[Qo(7) +30:(7) +505(7)],  (36)

Do(7) =[Qo(7) = 3(2f = DO (7) +5(1 = 2f + 2/*) 0x(7)].
(37)

It is important to remark that Eq. (34) allows to calculate
the effective dielectric constant in a fully analytical way,
avoiding numerical integration required for the calculation of
the Hilbert transform. Moreover, the sum rules are implicitly
included in this equation, so that no further check of the
validity of the solution referring to these constraints are re-
quired. Finally, it will be shown later that, even if the sum-
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mation term is dropped from expression (34), it still pro-
duces an acceptable approximation to the effective dielectric
constant.

III. EXPERIMENTAL PROCEDURE

Pressed pellets of MgO and NaF were obtained by com-
pressing submicrometric powders under 800 MPa and
vacuum with a smooth die of YTZP (yttria/tetragonal zirco-
nia partially stabilized). The resulting pellets had a roughness
much smaller than the infrared wavelengths considered in
the experiment. Additionally, KBr/CaF, composites with
volume concentrations of 0.03, 0.15, 0.20, and 0.3 of cal-
cium fluoride were prepared by solving KBr in de-ionized
water, and then adding submicrometric powder of CaF, to
prepare a suspension (CaF, is poorly soluble into water). The
suspension was continuously stirred until the KBr precipi-
tated and dried for 8 h under agitation in order to prevent the
CaF, segregation. Only fluorite concentrations below 30%
were prepared to avoid porosity. The resulting powder were
pressed in the same way as the MgO and NaF pellets. Mea-
surements of the IR reflectance at near normal incidence
(12°) were performed with a specular reflectance attachment
in a Bruker 66V/S FTIR (Fourier transform infrared) spec-
trophotometer with CsI (1000-250 cm™') and Mylar®
50 um (400—50 cm™!) beam splitters and their correspond-
ing deuterated triglycine sulfate (DTGS) detectors.

IV. EXPERIMENTAL RESULTS

In order to check the proficiency of the present method to
extract the spectral density function from specular normal
incidence reflectance experiments, several spectra corre-
sponding to heterogeneous materials have been recorded.
Particularly, two types of composites have been chosen: (a)
single component porous pellets and (b) mixtures of alkaline
halides. In the case of porous pellets, special care was taken
to obtain surface roughness and volume porosity much
smaller than the incident infrared wavelength (equal or less
than 1 wm). However, the correct preparation of mixtures of
different materials requires the removal of porosity (air)
while maintaining a good homogeneity. The conditions that
induce composite heterogeneity occur when the powdered
material is formed by particles of different sizes or when one
of the constituents suffers an anomalous grain growth driven
to coalescence to the second component. Under these cir-
cumstances, the grain size of one or both components of the
composite becomes comparable or larger than the IR wave-
length so that the quasistatic approximation is no longer
valid, and some different model must be introduced to repro-
duce the experimental reflectance spectrum.

A. Porous ionic pellets

Two different ionic substances have been chosen to pre-
pare the pellets, most of which have a different microstruc-
ture. The systems considered are NaF and MgO. In the first
material,>! the main transverse phonon is located at around
250 cm~!. As most of halides, this material sinters under
pressure at room temperature, so pellets of high concentra-
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FIG. 1. (a) Experimental near normal reflectance spectrum (dot-
ted line) for NaF/air (with fy,z=0.88) and the corresponding fit
(solid line) according to the present model. (b) Spectral density
functions for NaF and air.

tion were obtained (f=0.88). The second type of compound,
MgO, is a strongly ionic oxide with very large values of the
dielectric constant at the reststrahlung frequency, located at
401 cm™'. As for the case of NaF, MgO has a salt rock crys-
talline structure, with only one main IR mode (plus a weak
secondary one).

The experimental IR reflectance and the corresponding
fits provided by the model for NaF/Air and MgO/Air are
represented in Figs. 1(a) and 2(a), respectively.

The fit to the experimental reflectance curve of NaF/Air
was remarkably good with only six terms. The spectral den-
sity function is shown in Fig. 1(b) for air and NaF.

In the case of the MgO/Air sample, only a modest com-
paction degree (f=0.62) could be achieved. The correspond-
ing reflectance spectrum appears in Fig. 2(a) while the spec-
tral density function (fitted with 12 coefficients) is presented
in Fig. 2(b).

B. Binary insulator mixtures

The design and preparation of ideal binary mixtures suit-
able to be studied by IR spectroscopy in order to check the
proposed model is not a simple task. For the sake of simplic-
ity, two isotropic compounds with nonoverlapping reststrah-
lung frequencies are desirable. Moreover, the composite
must be dense and, in addition, the particle sizes must be
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FIG. 2. (a) Experimental near normal reflectance spectrum (dot-
ted line) for MgO/air (with fy;,0=0.60) and the corresponding fit
(solid line) according to the present model. (b) Spectral density
functions for MgO and air.

much smaller than the incident wavelength. These two latter
conditions impose the condition of absence of porosity and
coalescence phenomena. While porosity introduces a new
phase (air) in the composite, coalescence causes the growth
of some of the component grains to sizes larger than the IR
wavelength. Therefore, the quasistatic approximation
(2mn/\ < a, where a is the average size of a single particle
and n is its refractive index) would no longer be valid, and
scattering and retardation effects should be taken into ac-
count.

Therefore, we choose two plastic phases (halides),
KBr/CaF,, with similar grain sizes and similar growth rates
to prepare the composites. The reflectance of a pressed pow-
der pellet of KBr/CaF, is shown in Fig. 3(a). We see from
this figure that, in the case of very low CaF, concentration
(f=0.03), the reflectance peak is around 258 cm™, that is, at
higher frequency than the transverse CaF, phonon.? It indi-
cates that this composition is below the percolation threshold
[see Fig. 3(b)]. Additionally, the spectral density functions of
these spectra are shown in Fig. 3(c), where it can be ob-
served how the spectral density function corresponding to
composites with the lowest concentration (f=0.03) exhibits a
maximum around n=1/3, which is in good agreement with
all the effective medium theory limits. On the contrary, spec-
tra of higher concentrations present a definite maximum very
close to the fluorite transverse phonon frequency. The fit
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FIG. 3. (a) Experimental near normal reflectance spectra (dotted
lines) for the composite KBr/CaF, and the corresponding fits (solid
lines) according to the present model for fCaF2 ranging from 3%
(lower curves) to 30% (upper curves). (b) Percolation strengths of
phases KBr and CaF, for fc,p, ranging from 3% to 30%. (c) Spec-
tral density functions for the composite KBr/CaF, for fc,p, ranging
from 3% to 30%.

assumes that calcium fluoride is percolated and their spectral
representation function presents large values for n=0.

V. DISCUSSION

We consider that the present approach is simpler than the
ones previously mentioned in the sense that, in many cases,
an accurate spectral density function can be derived analyti-
cally as the sum of only the first three terms of an expansion
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of g(n) on Legendre polynomials. An additional advantage of
the present work is that it describes the spectral density func-
tion without ambiguity of the composite phases (either p or
m) chosen to calculate the spectral density function. There-
fore, the effective dielectric constant of the composite is in-
dependent of the choice of matrix (m) and inclusion (p), as
Eq. (23) indicates. Moreover, this effective dielectric con-
stant can be calculated analytically. In fact, only logarithm
and polynomic functions are needed to calculate {&).

The main difference of the present formalism, with re-
spect to previous ones,”>?* is the expansion of the spectral
representation function as a linear combination of elements
of an orthonormal base. This base is defined by the scalar dot
product defined in the space of continuum functions in the
interval of x e[-1,1],

1
w(x)f(x)g(x)dx. (38)

-1

(f-g)=

This formalism implies that, even after the truncation of
the series, the approach remains optimal. Thus, the degree of
the precision attained and the simplicity of the calculations
only depend on the chosen basis and on the order of the
expansion. In fact, the simpler base is a constant sampling of
X,(x) along [-1,1] in N intervals that can be written as?***

= \/g[ﬁ(x —xp-1) — Ox —xp) 1, (39)

where 6(x) is the step function, k runs from 1 to N, and x;
=—1+2(k/N). In this sense, the reduced spectral density
functions x,,(x) and yx,,(x) can be written as

N
X,(0) = 2 1, 1 i),
k=1

N
Xm(x) = 2 tm,kqsk(x)» (40)
k=1

where the coefficients 7, and 7, are the mean values of
spectral representation functions, x,(x) and x,,(x), along the
interval [x;_;,x;]. Their explicit expressions are

2 [
i=\y L Xp(X)dx,
k-1
2 [
tm,k = ]T]J)Ck_l Xm(x)dx' (41)

According to Eq. (13), it can be seen that coefficients 7, ;
and 7, are related through

ftp,k = (1 _f)tm,N—k+1 . (42)

Finally, the effective dielectric constant can be estimated
as follows:
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N

(e)=fe,Cp+ (1 = )Cpp + 21— L

- e 1 iLi(7),
P mk=1

(43)

where C,,, C,, and 7, will be the fitting parameters, and the
function L(7) is defined by

N[ 1 N 2
Lk(T)=\/jf dx=\/:ln[1——]
2 g T—X 2 (r+1)N -2k

(44)

The main difference of this approach, similar to that pos-
tulated in Refs. 22 and 24, with respect to that of the present
article [expansion of X,(x) as Legendre polynomials], is that,
in the present approach, the sum rules are used to determine
the value of the first three coefficients as a function of the
percolation strengths, while for interval based expansions, as
those of Refs. 22, 24, and 28, the sum rules must be intro-
duced through equations as constraints that considerably
complicate the application of this procedure. In fact, the ex-
plicit expression of the first sum rules for x,(x) can be writ-
ten as

1
f gy(n)dn=1-C,,
0

1
J gnin)dn=1-C,, (45)
0

N
|2
ﬁ\/;g tp,szcp+(l _f)(l_cm) (46)

The same expansion may be done by choosing some dif-
ferent bases, such as trigonometric functions, in which case
the coefficients to be fitted should be related to the Fourier
transform of the spectral representation function. However,
to the best of our knowledge, we think that the Legendre
polynomial expansion is the most advantageous in order to
simplify the calculation.

In fact, it is possible to directly generate a spectral density
function just by truncating the Legendre polynomial expan-
sion of x,(x) at the second term, in such a way that the
coefficients are solely determined by C, and C,,. This ap-
proximation is similar to that employed in Ref. 9. In this
work, an effective medium approximation was introduced to
describe the dielectric constant of the experimental powder
compact. This approximation has become a valuable tool to
determine IR optical constants of materials that cannot be
obtained as single crystals.*33 This method has been applied
to some of the most employed substances in the world of
material science [for instance, ceramic such as -ZrO, (Ref.
36) or transitional aluminas, magnetic materials, 'y—FezO3,37
or ion conductors such as*® Li,;Tis;;04]. The most remark-
able feature of the work of Ref. 9 is that the most relevant
microstructural parameters resulted to be the percolation
threshold (which is related to particle and matrix shapes) or,
more specifically, the volume concentration in excess of this
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magnitude, namely (f—f,). It should be noted that, according
to the effective medium approximation, this term is propor-
tional to C,,. In the following, we will discuss the validity of
a simple effective medium approximation in which the only
fitting parameters will be the percolations strengths.

According to our tests, for composites with intermediate
concentrations, reasonable fits can be obtained for the spec-
tral density function to a third degree polynomial. However,
due to the smooth profile of a third degree polynomial, it is
expected that this approximation may fail for highly diluted
systems (f<<0.01). Moreover, under these conditions, an
analytic expansion of the spectral representation functions is
possible. In fact, for a low concentration of the p component,
the percolation strengths, C » and C,,, can be written as

Cc,=0,
l’f_>0
dc,,
C,=1+—| . (47)
f—0 df | =0

According to these assumptions, the first three coefficients
of x,(x) can be written as

=1 d&
’YpO_ df s
_3<1+d&)
7p1_ df ’
— 5(1_,_&) (48)
ypZ_ df >

so that the reduced spectral function can be written as

X,,(x)=Z 24 <1+dd£fm)(3x—12—5x2). (49)

+ +
2 2df

In order to fulfill the positive definite condition for x,(x),
the variation of the percolation strength at f=0 cannot take
any value. Expression (49) takes positive values for —7/9
<(dC,,/df)<-19/9 (Fig. 4). However, for this range of val-
ues, the spectral representation function does not tend to zero
for n=0 (or x=1). In fact, this condition is attained when
(dC,,/df)<-1/3, so that Xp(x)=—5x2+2x+3. The corre-
sponding spectral representation g,(x)=1/ 2(x+1)(=5x%+2x

+3) reaches its maximum at x=% =0.4078 or n=0.2945,
very close to n=0.3333, which corresponds to the maximum
of a spectral representation function of a diluted suspension
of spheres. However, it should be noted that this spectral
representation function takes small negative values in a nar-
row region of x close to 1. Then, it can be concluded that the
use of only three terms into the Legendre polynomial expan-
sion of x,(x) could be a very simple, fast, and valuable ap-
proximation. However, some caution must be taken into ac-
count when considering only C, and C,, to estimate the full
spectral representation function, especially for low concen-
trations values. Under these circumstances, we recommend
the use of some additional terms in order to get more accu-
rate results.
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FIG. 4. Spectral density functions in the low concentration ap-
proximation, considering only C, and C,, as the fitting parameters.
Several curves are shown for different values of D=dC,,/df.

The fitting of the experimental reflectance spectra of
NaF/air, MgO/air, and KBr/CaF, composites to the pro-
posed model is, in general, quite remarkable. As a result of
the fitting, it is possible to obtain the experimental shape of
the spectral representation functions for the studied systems.
In the case of the dielectric/air composites [Figs. 1(b) and
2(b)], the spectral representation functions of the dielectric,
labeled g,(n), present a pronounced increase for n approach-
ing zero.* This behavior corresponds to a percolated phase.
Moreover, this curve present a close resemblance to the
model reported by Poladian*” for periodic arrays of touching
spheres. The spectral representation functions of air, desig-
nated as g,(n), exhibit definite maxima at n=0.11 and n
=0.45 for the NaF/air system [Fig. 1(b)], and at n=0.09 and
n=0.30 for the MgO/air composite [Fig. 2(b)]. These values
of n correspond to pores with oblate shapes.

With regard to the KBr/CaF, composite, we see in Fig.
3(a) that the maximum corresponding to the lowest CaF,
concentration sample (f=0.03) appears at around 300 cm™'
[Fig. 3(a)]. Moreover, the minimum of the reflectance is
nearly missing. The latter is the behavior of a nonpercolated
material as seen in Fig. 3(b). The spectral representation
function of this sample shows a maximum at n=0.33, which
corresponds to disperse spherical particles. However, this
maximum is not as sharp as it should be considering the low
concentration of the sample. This suggests that fluorite par-
ticles suffer some large degree of agglomeration in spite of
the precautions taken to prepare the composite. This behav-
ior can be clearer observed in the rest of the samples of the
series since they are all percolated [see Fig. 3(b)]. As the
CaF, concentration increases, the sharp maxima of the re-
flectance appear at the transverse phonon wave number
(270 cm™') and the minima shift toward higher wave num-
bers [see Fig. 3(a)].

The spectral representation functions of the KBr/CaF,
evolve from a single peaked function (f=0.03) to a function
with a pronounced increase for n approaching zero (f
=0.30) going through a double headed function (f=0.15) in
the neighborhood of the percolation threshold. As can be
seen in Fig. 3(c), the derived spectral representation func-
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tions follow the behavior that can be expected for composites
with concentrations in the surrounding area of the percola-
tion threshold.

It is worth mentioning the sensitivity of the method in
order to determine the position of the maxima and minima
for concentrations close to the percolation threshold. The
reason underlying the above mentioned sensitivity has to do
with the behavior of the second kind Legendre functions,
0.(7). These functions exhibit two singularities at 7==%1,
which correspond to the transverse (w;) and longitudinal
(w;) frequencies of the phonon, respectively. Moreover, the
frequency associated with the reflectance minimum, w,,, ful-
fills the condition &,(w,,)=¢,,(w,) at 7=, where Q;()=0.
Thus, it can be inferred that, in a relatively narrow spectral
region from w; to w,,, the real part of the second kind Leg-
endre functions takes all the possible values of the real axis.
The latter allows to univocally determine the coefficients of
the spectral representation function in the bases of the Leg-
endre polynomials.

According to our experience, the main drawback of the
proposed method in this paper is the fact that negative values
of the spectral representation function are often obtained for
some values of n. The latter statement always applies when
particle aggregation phenomena have been detected (by elec-
tron and/or optical microscopy). In this regard, it is worth
mentioning that the creation of a perfectly dispersed
(shuffled) composite is quite difficult due to the interaction
forces of the particle surfaces and their low size. As a con-
sequence of this, it is usual to find large clusters (>1 um)
formed of submicrometer-sized particles. In order to deter-
mine the effect of clusters comparable to or larger than the
wavelength on the effective refractive index, several theoret-
ical models have been proposed.*'~** Although the range of
application of these models, referring to the particle size, is
limited, all of them show a notable variation in the effective
properties. Moreover, the experimental effective refractive
index of composites made by large particles can be outside
of both the Hashin-Strickman and Wiener bounds.*** In this
regard, it can be concluded that negative values in some
spectral representation functions are not due to a flaw of the
proposed method but to scattering phenomena produced by
large clusters. Therefore, special care must be taken when
preparing composites free of agglomerates in order to keep
the quasistatic approximation (k=2mn/\, wave vector, much
larger than a, the particle sizes). In the case of moderate
agglomeration (a~k/10), scattering effects, although
present, can be neglected so that we succeed to eliminate
them by applying the constriction of positive defined g(n) to
the least square fitting. Once more, the choice of the Leg-
endre polynomials allows one to notably simplify the intro-
duction of the above mentioned constriction. Thus, we have
introduced linear inequalities assuming two type of condi-
tions,

0=cC,=1, (50)

and
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N
Xp(x)) = > YokPilx) = 0, (51)
k=0

where x; are points in the interval 0 =x;= 1. In order to cover
a homogeneous range of values of x, we have chosen the
zeros of the Py, (x) Legendre polynomial because they sat-
isfy the condition that they remain unchanged if the summa-
tion was truncated at the k+ 1th term instead of at the kth
term.

The formalism developed in the present work is, on one
hand, of interest for the fundamental knowledge of the elec-
tromagnetic properties of heterogeneous materials and, on
the other hand, it can be a very useful tool for determining
morphological and microstructural properties of materials of
technological interest. For example, this procedure, or a gen-
eralization of it for anisotropic substances, could be used to
determine, among others, the shape and connectivity of pores
in dense ceramics, orientation and distribution of fibers in
reinforced composites, and the shape and agglomeration
state of powdered materials.

VI. CONCLUSIONS

We have developed a relatively simple, reliable, and ro-
bust procedure to extract the spectral representation function
from experimental infrared near normal reflectance data. For
this spectral range, a quasistatic approximation was assumed
in order to neglect scattering effects. The ideas underlying
the present formalism are, first, the merging of the spectral
representation functions corresponding to each of the phases
of a binary composite into a single one and, second, the
expansion of the latter function in the orthogonal base of a
Legendre polynomial.

We have been able to extract the spectral representation
function of a series of composites made of different types of
materials. The behavior of the obtained functions agree well
with some previous theoretical works. However, special care
must be taken in the preparation stages in order to avoid
agglomeration phenomena, which produce large clusters that
break the quasistatic approximation due to scattering effects.
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APPENDIX: LEGENDRE POLYNOMIALS AND SECOND
KIND LEGENDRE FUNCTIONS

Although readers can find the explicit expressions of both
Legendre polynomials and function in several handbooks,
we think it is pertinent to include here their explicit expres-
sions up to the fifth degree of both functions in order to help
readers to implement the explicit calculation of the spectral
density function with the present model:

Py(x) =1,
P1(x) =X,

3x%-1
2

Pz(x) = s
5x° = 3x
35x* = 30x% + 3
P4(x) = T?

63x° = 70x" + 15x

Ps(x) = o ; (A1)
1 1+x
=—1 ,
Qo(x) 3 n(l—x)
0,(x) { xl <1+x)
= — + — ,
1 2 M1
0,09 3x+3x2—11 <1+x>
X - n—|,
2 2 4 1—x
0.0 15)c2—4+5)c3—3)c1 (l+x>
=— n s
3 6 4 1—x
000 105x3—55x+35x4—30x2+31 (1+x>
= - n .
v 24 16 1—x
040 = 945x* - 735x” + 64
SW= 120
63x° 70X+ 15x [ 1+x
+ In . (A2)
16 1—-x
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