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Algorithmic details and results of fully frequency-dependent G0W0 calculations are presented. The imple-
mentation relies on the spectral representation of the involved matrices and their Hilbert or Kramers-Kronig
transforms to obtain the polarizability and self-energy matrices at each frequency. Using this approach, the
computational time for the calculation of polarizability matrices and quasiparticle energies is twice as that for
a single frequency, plus Hilbert transforms. In addition, the implementation relies on the PAW method, which
allows to treat d-states with relatively modest effort and permits the reevaluation of the core-valence interaction
on the level of the Hartree-Fock approximation. Tests performed on an sp material �Si� and materials with d
electrons �GaAs and CdS� yield quasiparticle energies that are very close to previous all-electron pseudopo-
tential and all-electron full-potential linear muffin-tin-orbital calculations.
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I. INTRODUCTION

The accurate calculation of excitation spectra �i.e., quasi-
particle energies� is a long-standing problem in solid state
physics, as these can be directly compared to electronic and
optical measurements such as electron photoemission, pho-
toabsorption, photoluminescence, etc. The widely used den-
sity functional theory �DFT� performs reasonably well for
the determination of structural properties of many materials
but fails to predict the band gaps and sometimes even gen-
eral characteristics of the conduction band. Such a failure of
the DFT is not unexpected, since there exists no formal jus-
tification to interpret the DFT eigenvalues as quasiparticle
�QP� energies. As a remedy to this inherent problem, the GW
approximation is widely used, which generally yields signifi-
cantly better values for quasiparticle energies.1,2 The predic-
tive capabilities of the GW approximation stem from inclu-
sion of many-body effects in the electron-electron interaction
and going beyond the mean-field approximation of indepen-
dent particles.3 This is achieved via screening the exchange
interaction operator with the inverse frequency-dependent di-
electric matrix to include many-body interactions between
the electrons as opposed to effective local exchange-
correlation potentials in DFT.

The downside of such an involved approach, however, is
its large computational cost, caused by the evaluation of
dielectric matrices, their inversion, and solving a non-
Hermitian nonlinear eigenvalue problem. Therefore, GW cal-
culations are usually restricted to small systems. To reduce
the computational effort, the GW method relied initially on a
simplified inclusion of dynamical effects �frequency depen-
dence� via the plasmon-pole model.4–6 Although in this case
only the static dielectric matrix is calculated explicitly, the
plasmon-pole model proved to perform reasonably well at
least for sp materials. However, the method is principally
limited to the calculation of quasiparticle energies and does
not permit the evaluation of other useful quantities such as
quasiparticle lifetimes or spectral functions. Moreover, for
materials with d electrons, the reliability of the plasmon-pole
model is disputable.1 Therefore, even in some early imple-

mentations of the GW method, dielectric matrices have been
calculated precisely at each frequency.7

To circumvent the slow performance of the GW method,
the space-time method, which resorts to imaginary time and
frequency,8–10 has been suggested. The only drawback of this
method is that it requires an analytical continuation from the
imaginary axis to the real axis. More recently, Miyake et al.11

proposed an efficient method that avoids an explicit calcula-
tion of the real part of the polarizability matrix at each fre-
quency by a spectral representation of the polarizability and
a subsequent Hilbert or Kramers-Kronig transform to obtain
the full polarizability at a frequency grid. In the present
implementation, we adopt a similar strategy and extend it to
the calculation of quasiparticle energies.

A further problem is posed by d and f electrons, espe-
cially, if a plane wave basis set is used in combination with
pseudopotentials. Quite a large number of plane waves are
required for a reasonable description of these localized
states, which significantly slows GW calculations. To cir-
cumvent this problem, Gaussian orbitals or localized basis
sets can be applied.12–15 This was first done in the linear
muffin-tin-orbital �LMTO� method,12 which has the draw-
back of a poor description of the interstitial region and an a
priori constraint on the form of the electronic charge distri-
bution. More elaborate full-potential linear muffin-tin-orbital
�FP-LMTO� or full-potential linear augmented plane-wave
�FLAPW� methods, which utilize the localized basis set in
the muffin-tin region and plane waves in the interstitial re-
gion, have been used in combination with GW for a precise
and unbiased treatment of the response functions. Represent-
ing the polarizability in the spheres and the interstitial region
with high accuracy is, however, cumbersome and difficult, as
well as computationally demanding.17,18 A very promising
alternative is the PAW method,19 first adopted by Arnaud and
co-workers for the GW case.20,21 A simplified PAW GW
scheme that uses a model dielectric function together with a
plasmon-pole approximation for the dynamical contribution
has also been implemented in the VASP code.22 The PAW
method has three major advantages. From the FLAPW
method it inherits a fast convergence with respect to the basis
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set size and, therefore, can be applied efficiently to d and f
elements. On the other hand, it is a full potential method with
no shape approximation on the charge distribution, allowing
in principle for exact results within the considered theoretical
framework. Compared to other full potential methods, it,
however, retains most of the simplicity of a pseudopotential
approach. Section II A will convey why this method is par-
ticularly well suited for an implementation of the GW
method.

In this paper we discuss the implementation of the GW
approximation in the PAW code VASP and carefully evaluate
important aspects of the method. In Sec. II we give the ex-
pressions for the relevant quantities in the PAW formalism
�polarizabilities, dielectric matrices, self-energies, etc.�. Sec-
tion III describes the calculational procedure using spectral
representations of frequency-dependent quantities. We use a
method similar to the one proposed in Ref. 10, however, the
spectral representations and Hilbert transforms are used not
only to calculate the polarizabilities but also to determine the
self-energies at all required frequencies. Results of our cal-
culations are provided in Sec. IV. We put particular emphasis
on understanding the discrepancy between published pseudo-
potential and all-electron data. In order to disentangle these
discrepancies, GW calculations are performed using various
PAW potentials, and high lying core shells are successively
unfrozen. Furthermore, we treat the core-valence interaction
either in DFT or using the Hartree-Fock approximation. As
test cases, we consider Si and materials that include d elec-
trons �GaAs, CdS�. The conclusions are given in Sec. V.

II. GW METHOD

A. Basics of the PAW method

The basic concepts of the PAW method that are necessary
to understand the present GW implementation have been out-
lined in Refs. 29 and 30. More extensive descriptions can be
found in Ref. 19 �the present notation closely follows Ref.
31�. Here we give a simple intuitive account of the PAW
method.

The important concept of the PAW method is that of ad-
ditive augmentation. On the plane-wave grid, the Hamil-
tonian is represented in a pseudopotential-like manner, with
the only complication that the pseudo-wave-functions are not
correctly normalized. To correct for the resultant error, local
compensation charges are added in the vicinity of each atom
in such a way that the final charge density distribution has,
around each atom, exactly the same moments and multipoles
as the exact all-electron �AE� charge density. The electro-
static potential determined from this charge distribution is
essentially exact in the interstitial region, but the kinetic en-
ergy and the potentials are not accurately represented inside
the atomic spheres. To make up for the error, the pseudo-
wave-functions and AE wave functions are reconstructed in-
side the PAW spheres, and the resultant energy terms are
subtracted and added from the energy �see Fig. 1�.

Inside the spheres, the Hamiltonian is equivalent to the
usual Kohn-Sham �or GW� Hamiltonian using a local basis
set. The basis functions used to represent the pseudo and AE
wave functions are usually imported from an atomic pseudo-

potential generation code and are termed “partial waves.”
The one-center density matrices �occupancy matrices in the
basis spanned by the partial waves� are, however, not free to
vary but depend on the wave-function coefficients on the
plane-wave grid.

For the implementation of the GW method, it is important
to emphasize that usually most of the physics is already cor-
rectly captured on the plane-wave grid, with the quality of
this description matching that of a norm-conserving pseudo-
potential. The rapid variations of the AE wave functions are
however only accounted for on the radial grid. For our GW
implementation, we have thus decided to implement the
plane-wave terms exactly, but to use a simple and physically
transparent approximation for the one-center terms �see Sec.
II E�. Note that it would be possible to add a more sophisti-
cated treatment in the atomic spheres at a later point. This
could for instance even include a full quantum chemical de-
scription such as configuration interaction �CI�.

B. Quasiparticle equations

The quasiparticle energies �Enk
QP� can be calculated, in

principle exactly, by searching the roots of the following
nonlinear system of equations:

�T + Vn-e + VH − Enk
QP��nk�r� +� d3r���r,r�,Enk

QP��nk�r�� .

�1�

Here T is the kinetic energy operator, Vn-e is the operator that
accounts for the nuclear-electron interactions, VH is the Har-
tree potential, and � is the self-energy operator, which has
the form

��r,r�,�� =
i

4�
�

−�

�

ei���G�r,r�,� + ���W�r,r�,���d��

�2�

within the GW approximation, where G is the Green’s func-
tion, W is the screened Coulomb interaction, and � is a posi-
tive infinitesimal. The screened interaction W is usually con-
structed using the polarizability in the random phase
approximation �RPA�, i.e., excluding vertex corrections. At-
tempts of inclusion of vertex corrections made in the past
resulted only in minor changes of the calculated values �e.g.,

FIG. 1. Illustration of additive augmentation in the PAW
method. Pseudized quantities are defined in the entire space on a
regular �plane wave� grid �a�. To obtain AE energies, the pseudo-
wave-functions are reconstructed inside spheres and the corre-
sponding one-center energy terms are subtracted �b�, and finally the
AE wave functions are reconstructed as well and the AE one-center
energies are added �c�.
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0.05 eV for Si�.24–26 Fully self-consistent calculations, on the
other hand, deteriorate the quasiparticle spectrum and yield
overestimated gaps.27,28 In the non-self-consistent GW ap-
proximation �G0W0�, adopted throughout this work, G0 and
W0 are calculated using LDA Kohn-Sham eigenvalues and
eigenfunctions. By approximating the eigenstates of the qua-
siparticle Hamiltonian �Eq. �1�� by LDA wave functions as
well, the eigenvalues can be calculated to first order from the
diagonal matrix elements of the QP equation4

Enk
QP = Re���nk�T + Vn-e + VH + ��Enk

QP���nk�� . �3�

Since Eq. �3� already requires the value of Enk
QP, the equation

must be solved by iteration. Using the usual Newton-
Raphson method for root finding, one obtains the following
update equations:

Enk
QP ← Enk

QP + ZnkRe���nk�T + Vn-e + VH + ��Enk
QP���nk� − Enk

QP� ,

�4�

where Z, the normalization factor, is calculated as

Znk = 	1 − Re��nk�
 �

��
����


Enk
QP

��nk��−1

. �5�

The iteration is usually started from the DFT eigenvalues �nk.
All QP energies presented in this work have been calculated
using this approach and a single iteration, i.e., Eq. �4� was
iterated once starting from Enk

QP=�nk on the right-hand side.
This is in the spirit of first-order perturbation theory, and
hence a well-founded approximation.

C. Evaluation of dielectric matrix

The dynamically screened Coulomb interaction is evalu-
ated by multiplying the bare Coulomb kernel with the in-
verse dielectric matrix:

Wq�G,G�,�� = 4�e2 1

�q + G�
�q

−1�G,G�,��
1

�q + G��
. �6�

In the RPA the symmetric dielectric matrix is calculated as

�q�G,G�,�� = �G,G� −
4�e2

�q + G��q + G��
	q

0�G,G�,�� , �7�

where 	q
0�G ,G� ,�� is the time ordered independent particle

polarizability,32

	q
0�G,G�,�� =

1



�

nn�k

2wk�fn�k−q − fnk�

�
��n�k−q�e−i�q+G�r��nk���nk�ei�q+G��r���n�k−q�

� + �n�k−q − �nk + i� sgn��n�k−q − �nk�
.

�8�

In the last expression, wk is the k-point weight, fn�k−q and fnk
are the one electron occupancies of the corresponding states,
q is a Bloch wave vector, and � is an infinitesimal complex
shift. Within the current implementation the quantity
��n�k−q�e−i�q+G�r��nk� �the exchange charge density� is ap-
proximated as

��n�k−q�e−i�q+G�r��nk�  �ũn�k−q�e−iGr�ũnk� +

�
ij,R,LM

�ũn�k−q�pik−q��pjk�ũnk�

�� d3r�e−iq�r−Ri�Q̂ij
LM�r − Ri�e−iGr� ,

�9�

where ũnk is the cell periodic part of the one-electron

pseudo-wave-function ��̃nk�=eikr�ũnk�; pik is the k-dependent
projector function, related to the usual PAW projector func-
tion pi, centered on the atom with coordinates Ri, through

�pik�=e−ik�r−Ri��pi�, and Q̂ij
LM�r−Ri� are the multipole expan-

sions of the compensation charges �for details we refer to
Refs. 29 and 30�. The second term is added to restore the
correct multipoles of the AE charge density on the plane
wave grid �ũnk is not correctly normalized, see Sec. II A�.
Expression �9� includes only the plane-wave part of the
charge distribution and neglects the one-center terms in the
PAW spheres, which should be added to reconstruct the all-
electron charge density �see Figs. 1�b� and 1�c��. In the cal-
culation of the dielectric matrix, this approximation can be
justified by the observation that the difference between the
all-electron and pseudo-charge-density is most pronounced
in the short wave range �large G and G�� and therefore can
be usually neglected due to the factor 1 / �q+G��q+G�� in
Eq. �7�. Indeed, we found this conjecture confirmed in a
recent work on the dielectric properties of simple semicon-
ductors. We find that the inclusion of one-center terms
changes the macroscopic dielectric constants by at most
0.3%, even in difficult cases such as GaAs where strongly
localized d electrons have to be taken into account.29 Special
care is required for the case q=0. An obvious singularity in
the calculation of the dielectric matrix �Eq. �7�� occurs if
G=0 or G�=0 �the wings� or G=G�=0 �the head of the
dielectric matrix�. Solutions for this specific case have been
presented in a recent presentation,29 which describes the
PAW expressions for the head and wings of the dielectric
matrix.

D. Self-energy calculation

In the present implementation, the diagonal matrix ele-
ments of the self-energy ����nk,nk are calculated as

�̄���nk,nk =
1



�

qGG�
�
n�

i

2�
�

0

�

d��W̄q�G,G�,���

���nk�ei�q+G�r��n�k−q���n�k−q�e−i�q+G��r���nk�

�	 1

� + �� − �n�k−q + i� sgn��n�k−q − �

+
1

� − �� − �n�k−q + i� sgn��n�k−q − �� ,

�10�

where  is the Fermi energy. The Greens function is never
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explicitly stored or evaluated. The frequency grid has been
constrained to positive values, observing that the screened
potential W is an even function of ��, whereas the Green’s
function is an odd function of ��. Furthermore the bare Cou-
lomb kernel �q

bare has been subtracted

W̄q�G,G�,��� = Wq�G,G�,��� − �q
bare�G,G�� , �11�

which makes the integral well behaved, since W��� ap-
proaches �bare at large frequencies. In order to obtain the final
self-energy, the exact Fock exchange term must be added
concomitantly,

����nk,nk = �̄���nk,nk + ��nk��x��nk� . �12�

In the self-energy, the exchange charge densities
��nk�ei�q+G�r��n�k−q� are again approximated according to Eq.
�9�. The exchange term ��nk��x��nk� is calculated using the
same description for the exchange charge density, but utiliz-
ing the diagonal properties of the bare Coulomb kernel.30

The frequency integration is carried out using the method
described in Appendix A, adopting a suitable frequency grid
as described in Appendix B.

Before continuing we note that our implementation differs
from that of Arnaud et al.20 in one important aspect. Arnaud
et al. suggested to develop the difference between the one-
center AE and pseudocharge into a Fourier series and to add
this difference to the plane-wave pseudo-charge-density in
order to restore the properties of the one-center AE charge
density on the plane-wave grid �second term in Eq. �9��. In
principle, the total exchange charge density constructed in
this way is exact, provided that the AE charge distribution
can be represented with the applied basis set. We refer here
to the basis set used for the dielectric functions and the ex-
change charge density �maximum G in Eq. �9�� and not the
usual plane-wave basis set used for the expansion of the
wave functions. In practice, however, this requirement can-
not be met, since the AE charge distribution contains very
high Fourier components. We believe that this can lead to
inaccuracies in the evaluation of the exchange and self-
energy: for a finite basis set, Arnauds approach does not
guarantee the proper conservation of the norm or multipole
moments inside the atomic spheres. Since the electrostatic
interactions are long ranged and prone to errors in the charge
distribution, Arnauds approach might lead to inaccuracy in
the calculation of the QP energies. Our construction of the
exchange charge density—which is in its essence equivalent
to the original method of Blöchl for the treatment of the
Hartree energy19—conserves multipole moments inside the
spheres even for small basis sets. We note that the basis sets
used by Arnaud for the representation of the dielectric matrix
and exchange charge-density distribution are not particularly
large �typically 100–200 plane waves�.20

E. One center terms

Up to this point, we have entirely neglected the PAW
one-center terms. Modelling the dielectric function in the
spheres is a delicate and complicated issue and would be
required in order to obtain a full GW PAW implementation.

This could be done using the product basis sets suggested in
Refs. 12 and 16, but it would make the implementation not
only much more involved, but it would also slow the calcu-
lations significantly. The approach we adopt here is much
simpler and inspired by Massidda, Posternak, and
Baldereschi:43 we assume that the dielectric matrix is diago-
nal and its diagonal is equal to one whenever terms inside
atomic spheres are evaluated.

For the one-center terms, the GW Hamiltonian is thus
simply approximated by the Hartree-Fock Hamiltonian. This
amounts to an evaluation of the Hartree-Fock Hamiltonian
for each atomic sphere using first the reconstructed pseudo-
wave-functions and then the reconstructed AE wave func-
tions �see Figs. 1�b� and 1�c��. This approximation is the
crucial one of our present implementation, but it is expected
to be reliable since differences between the pseudo-wave-
function and AE wave function are only present for large
reciprocal lattice vectors G, and ��G ,G� ,�� approaches
��G−G�� very rapidly. As in the pseudopotential case, one
can make the pseudo-wave-functions more precise by de-
creasing the core radius used during the generation of the
PAW datasets. In the limit of very small radii, the pseudo-
wave-function will approach the exact AE wave function, as
it does in pseudopotential codes. As shown below, a decrease
of the core radius from 1.9 a.u. to 1.6 a.u. for Si 2p elec-
trons, or from 2.3 to 1.6 a.u. for Cd 4s electrons had practi-
cally no influence on the QP shifts. In general, we found that
the results are very robust with respect to the core radius, and
QP shifts are typically constant within 0.01–0.02 eV, if the
core radii are reduced. But we cannot entirely exclude to see
a stronger change, for instance, in the more problematic tran-
sition metal oxides or in lanthanide oxides. For semiconduc-
tors and main group oxides, however, the present approxima-
tion seems to give very reliable results to within the quoted
0.02 eV.

It is emphasized that the additive augmentation concept
used in the PAW method �i.e. subtracting the pseudo-one-
center terms and adding the AE one-center terms� is a pre-
requisite for the success of this approximation. The approxi-
mation would be less reliable in other full-potential methods,
such as the FLAPW or FP-LMTO method.

For the one-center terms, the exact all-electron exchange
contribution onto a state �nk has been amply discussed in
Ref. 30 �see Eq. �31� ff.� and involves the calculation of the
following term:

��nk��x
�1���nk� = − �

n�
�
ij;kl

��̃nk�p̃i��p̃k��̃nk���̃n�k�p̃l��p̃j��̃n�k�

� e2� �i�r�� j�r��l�r���k�r��
�r − r��

d3rd3r�,

�13�

where the sum over n� is performed over all occupied one
electron states, and �i�r� is the ith all-electron partial wave.
The indices i, j, k, and l contain an atomic site index, and are
constrained to a single atom; the integral is evaluated for
each atomic sphere separately. The one-center pseudocontri-
butions ��nk��̃x

�1���nk� are analogous �see Ref. 30 for details�.
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F. Treatment of core-valence interaction

In the calculation of the quasiparticle energies �Eq. �4��,
one should also include the exchange-correlation contribu-
tion from the core-valence interaction—for the sake of
consistency—in the GW approximation. This contribution
can be estimated in the LDA or on the Hartree-Fock level,
where the latter one is expected to be more reliable since the
GW self-energy approaches the bare Fock exchange operator
in the short wavelength regime. Within LDA, the core-
valence exchange-correlation contribution is calculated as

��nk��xc core-val
LDA ��nk� = ��nk��xc

LDA�nv + nc� − �xc
LDA�nv���nk� ,

�14�

where nv and nc are the valence and core densities, respec-
tively. This term is calculated in the PAW framework, which
involves the calculation of a plane wave and two one-center
terms �see Fig. 1� and the final contribution is simply added
to the QP energies defined in Eq. �3�.

When the core-valence interactions are treated on the
Hartree-Fock level, the matrix element is calculated for the
all-electron contribution in the atomic spheres analogously to
Eq. �13�,20,30

��nk��x core-val
�1� ��nk� = − �

ij;c
��̃nk�pi��pj��̃nk�

� e2� �i�r��c�r��c�r��� j�r��
�r − r��

d3rd3r�,

�15�

where �c�r� are core-electron orbitals c, centered on the
same atom as the partial waves and projectors with the indi-
ces i and j. Since our present PAW implementation uses the
frozen core approximation, the core wave functions need to
be determined consistently with the partial waves of the va-
lence wave functions �orthogonality�. This implies that we
must use the atomic core wave functions of a previous LDA
calculation for the evaluations of Eq. �15�.

As a short note, it should be mentioned that the evaluation
of the core-valence interactions on the HF level is not pos-
sible in the pseudopotential approximation, since, in this
case, the charge distribution and the wave functions of the
valence electrons in the core region are not physically mean-
ingful.

III. SPECTRAL REPRESENTATION

A. Polarizability using Hilbert transform

The calculation of the polarizability matrix �Eq. �8�� is
rather time consuming, as the summation is carried out over
all possible pairs of occupied and unoccupied states. More-
over, these summations must be performed for each fre-
quency of the chosen frequency grid. To optimize the com-
putational procedure one can instead calculate the spectral
representation of the polarizability,11

	q
S�G,G�,��� =

1



�

nn�k

2wk sgn�������� + �nk − �n�k−q�

��fnk − fn�k−q���n�k−q�e−i�q+G�r��nk�

���nk�ei�q+G��r���n�k−q� , �16�

where the spectral function is related to the imaginary part of
the polarizability through

	q
S�G,G�,��� =

1

�
Im 	q

0�G,G�,�� .

Evaluation of the spectral function at a frequency �� is rather
efficient, as the only states that must be included in the sum-
mation are those that satisfy the criteria ��+�nk−�n�k−q=0
for a given frequency ��. Or from another point of view,
each pair of states nk ,n�k−q contributes to 	 only at the
frequency ��=�n�k−q−�nk.

The polarizability is calculated on a discrete grid of fre-
quencies, and the �-function in �16� is approximated by a
triangular function centered at �n�n=�n�k−q−�nk in the fol-
lowing manner: at a given frequency �i, the triangular func-
tion is nonzero only if �i−1��n�n��i+1. If the energy dif-
ference �n�n lies in one such interval, the � function is
approximated as

���i - �n�n� →�
�n�n − �i−1

�i − �i−1

for �i−1 � �n�n � �i,

�i+1 − �n�n

�i+1 − �i

for �i � �n�n � �i+1.�
�17�

The triangular function is equal to one for �n�k−q−�nk=�i

and approaches zero, if �n�k−q−�nk is close to either �i−1 or
�i+1. With this definition, the frequency grid is not restricted
to a linear form, and the norm of the delta function is auto-
matically exactly conserved. The representation is inspired
by finite element basis sets and can be readily extended to
higher order Lagrange polynomials. But we note that the
nonanalytic behavior of the polarizability makes higher order
interpolation procedures not necessarily more accurate.

The polarizability matrices are obtained from the spectral
function by the following Hilbert or Kramers-Kronig trans-
form:

	q
0�G,G�,�� = �

0

�

d��	q
S�G,G�,���

�	 1

� − �� − i�
−

1

� + �� + i�
� , �18�

with frequencies � and �� that, in the general case, could be
defined on different frequency grids, but are chosen to be-
long to the same set in the present implementation. The Hil-
bert transform is performed using a triangular finite element
basis set, as described in Appendix A.

In the described method, one must carry out a single loop
over all pair of states nk ,n�k−q, determine the largest fre-
quency �i� that observes �i���n�k−q−�nk, and add contribu-
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tions to the spectral function 	q
S�G ,G� ,��� �Eq. �16�� at �i�

and �i+1� using proper weights �Eq. �17��. For this procedure,
the computational effort does not depend on the density of
the frequency grid, and it is exactly twice as large as for
static calculations. The Kramers-Kronig transformation how-
ever scales quadratically with the number of frequencies. In
practice, we found its computational time to be one order of
magnitude smaller than for the evaluation of Eq. �16�.

The presented procedure for the calculation of the
frequency-dependent polarizability matrices is similar to the
method of Miyake and Aryasetiawan,11 with the difference
that they represented the � functions using Gaussian contours
centered at the energy point �n�k−q−�nk. Our methodology,
identical in its essence to that of Miyake and Aryasetiawan,11

seems to be more straightforward in its implementation,
since it avoids Taylor expansions of the exponential function
and summation over the moments of the expansion.

B. Self-energy using Hilbert transforms

The evaluation of the self-energy �Eq. �10�� is equally
time consuming. At a first glance, two possible methods can
be adopted. Either, one first starts by contracting all G and
G�-dependent quantities in a summation over G and G�,

�nk,n�k−q���� =
1



�
GG�

Wq�G,G�,�����nk�ei�q+G�r��n�k−q�

���n�k−q�e−i�q+G��r���nk� . �19�

Then, the self-energy can be evaluated with relatively mod-
est computational effort as a Hilbert transform of
�nk,n�k−q����:

����nk,nk = �
n�

i

2�
�

−�

�

d��

�
�nk,n�k−q����

� + �� − �n�k−q + i� sgn��n�k−q − �
.

�20�

We have adopted this method, if the full frequency-
dependent self-energy is required. The calculation of the
function � is by far the most time-consuming part for the
determination of the quasiparticle energies, and savings must
concern this part in order to be effective.

The second procedure inverts the order of execution and
starts from the Hilbert transform of the frequency-dependent
screened interaction

Cq,n�k−q�G,G�,�� =
i

2�
�

−�

�

d��

�
Wq�G,G�,���

� + �� − �n�k−q + i� sgn��n�k−q − �
,

�21�

with a final evaluation of the self-energy using a similar
equation as in �19�. The second route is more time consum-

ing than the first, as it requires a Hilbert transform of the
screened potential matrix W���� �Eq. �21�� for each state
n�k−q, in contrast to the Hilbert transform of the functions
�nk,n�k−q���� �Eq. �20��, which usually possess less elements
than Wq�G ,G� ,���. The problematic point is the depen-
dency on the eigenenergy �n�k−q in the denominator of the
preceding equation.

An alternative and admittedly less obvious approach,
which does not require to carry out Hilbert transforms for
each state n�, can be obtained by substituting �̄=�−�n�k−q.
In this case the Hilbert transform needs to be carried out only
once for positive and negative complex shifts as

Cq
±�G,G�,�̄� =

i

2�
�

0

�

d��Wq�G,G�,���

�	 1

�̄ + �� ± i�
+

1

�̄ − �� ± i�
� . �22�

In the current implementation of Eq. �22�, �̄ lies on the same
frequency grid as other quantities. For each matrix
Cq

+�G ,G� , �̄� and Cq
−�G ,G� , �̄�, the screened two-electron

integrals are defined as

Snk,n�k−q
± ��̄� =

1



�

G,G�

Cq
±�G,G�,�̄���nk�ei�q+G�r��n�k−q�

���n�k−q�e−i�q+G��r���nk� . �23�

The self-energy at �nk can be finally calculated as a sum of
these screened two-electron integrals

��nk����nk���nk� = �
n�k−q

sgn��nk − �n�k−q�

�S
nk,n�k−q
sgn��n�k−q−�sgn��nk−�n�k−q����nk − �n�k−q�� .

�24�

Because the screened two electron integrals are originally
calculated at a discrete set of frequencies �̄i, the values of S+

or S− at the points �nn�=�nk−�n�k−q need to be obtained by a
linear interpolation from those two frequency points of the
grid which are closest to the energy �nn�,

S±���nn��� = ����nn�� − �̄i����̄i+1 − ��nn���

� 	 �̄i+1 − ��nn��

�̄i+1 − �̄i

S±��̄i� +
��nn�� − �̄i

�̄i+1 − �̄i

S±��̄i+1�� .

�25�

The above expression is given for absolute values of �nn�.
For negative �nn�, the following simple transformations are
used for S+ or S− to write them as functions of positive fre-
quencies:

Snk,n�k−q
± �− ��nn��� = − Snk,n�k−q

� ���nn��� . �26�

The sign of �nn� is already accounted for in Eq. �24�.
The last approach is particularly fast for the evaluation of

QP shifts using Eq. �5�. For the evaluation of ���nk� and
� Re ���nk� /��nk, one needs to evaluate the screened two
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electron integrals �23� not at all frequencies of the grid �̄i,
but only at those two frequencies which are closest to �nk
−�n�k−q. In practice, this is simple to implement. As for the
polarizability, a loop over all pairs of states nk ,n�k−q is
performed, the energy difference �nn� is calculated, the larg-
est frequency �i that observes �i��nn� is determined, and
the screened two electron integral is evaluated for this fre-
quency �i and �i+1. Thus, the number of operations is inde-
pendent of the frequency grid and twice as large as for a
purely static calculation.

IV. RESULTS FOR QUASIPARTICLE ENERGIES

A. Technical details

The details of the PAW potentials used in the present
work are presented in Table I. These potentials differ from
the “standard” PAW potentials—as supplied in the VASP
package and normally used in DFT calculations—by an ac-
curate description of scattering properties even at very high
energies. The scattering properties were evaluated for spheri-
cal atoms. As an example, Fig. 2 provides the logarithmic
derivatives for the s, p, and d wave functions at a radius
equal to one-half the interatomic distance as a function of the
energy, for a norm-conserving Troullier-Martins Si potentials
�Si-TM� �Ref. 41� and the Si PAW potential. Such a plot is
usually used to evaluate the performance of pseudopoten-
tials, and the magnitude of the deviation between the pseudo-
potential �PAW� results �dotted lines� and all-electron calcu-
lations �filled lines� allows to determine how well the
scattering properties are reproduced at the considered energy.
Up to 1 Ry above the vacuum level, the scattering properties
for both potentials are in close agreement with each other
and with the exact AE results. This is sufficient for ground
state DFT calculations, and even the static dielectric proper-
ties are hardly affected by the discrepancies of the Si TM

potential at higher energies. However, the TM potential
shows marked deviations from the AE results above 1 Ry, in
particular, for s, and to a lesser extend, for p like waves. An
important consequence of this deviation is that states 1 Ry
above the Fermi level tend to be bound too strongly by the
TM potential. For the PAW potential no deviations are vis-
ible, but we note that we had to take into account d projec-
tors in order to obtain this agreement with the AE values.
Additionally, we have used two partial waves for the s, p,
and d states; one in the valence band and a second one
roughly 6 Ry above the vacuum level. This allows to “pin-
point” the scattering properties at these two energies exactly.
In principle, it would be even possible to add a third nonlocal
projector in order to improve the scattering properties at even
higher energies, but this has not been attempted in the
present work.

TABLE I. Core radii rc and typical energy cutoffs E for the PAW potentials used in the present work. If
the core radii for different quantum numbers are different, they are specified using a subscript. Nonlocal
projectors were generated for the states indicated in the column “val.” As local potential a pseudopotential
was generated for the states indicated in the column “local.” The number of frequencies N� used in the GW
calculations for each material is provided as well. The norm conserving Troullier-Martins potential for Si is
marked as Si-TM �Ref. 41�.

val local rc�a.u.� E�eV� N�

Si-TM 3s3p 3d 2.1 350 300

Si 3s3p3d 4f 1.9 250 300

Si-2p 2p3s3p3d 4f 1.6p ,1.9sd 430 500

Ga 4s4p 4f 2.6 140 300

Ga-3d 3d4s4p 4f 2.3 310 300

Ga-3pd 3p3d4s4p 4f 1.7p ,2.0sd 380 500

Ga-3spd 3s3p3d4s4p 4f 1.4s ,1.7pd 500 500

As 4s4p 4f 2.1 210

Cd-4d 4d5s 4f 2.3sp ,2.0d 370 300

Cd-4pd 4p4d5s 4f 2.3s ,1.7p ,1.9d 400 500

Cd-4spd 4s4p4d5s 4f 1.6 660 500

S 3s3p 4f 1.9 260

FIG. 2. Atomic scattering properties of the Si TM �left� and
PAW �right� potentials used in the present work for QP calculations
�Tables I and II�. Shown are the logarithmic derivatives of the radial
wave functions for different angular momenta for a spherical Si
atom, evaluated at a distance of r=1.3 Å from the nucleus. Solid
lines correspond to the all-electron full-potential, and dotted lines to
the TM pseudopotential or PAW potential. The energy zero corre-
sponds to the vacuum level. Circles indicate linearization energies
for projectors.
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Table I provides the core radii of the potentials, the energy
cutoffs for the plane-wave basis sets, the number of the fre-
quencies used in the GW calculations and highlights the
states treated as valence. For compounds, calculations were
performed at the higher energy cutoff of the two elements
involved. Two projectors are used for any of the l quantum
numbers listed in the column “val.” For all GW calculations,
160 electronic bands were used, as this number gives reason-
ably well converged results and is also close to the values
used in other presentations.6,10 A 6�6�6 k-point grid cen-
tered at the �-point was used for all tabulated values. The
number of frequency points used for the calculations of
GaAs and CdS are given only for the potentials of Ga and
Cd. Note that potentials with deep lying semicore states
treated as valence �e.g., Ga-sv� require more frequency grid
points in order to achieve convergence. Tests indicate that
the applied frequency grids yield converged results with re-
spect to all specified digits �better than 0.01 eV�. Throughout
all GW calculations we used a complex shift of 0.1 eV for
the calculation of the dielectric matrices and self-energies.
We report only single shot G0W0 values and they have been
calculated using Eq. �4�. Furthermore the experimental
�room temperature� lattice constants were applied throughout
all calculations: 5.43 Å for Si, 5.65 Å for GaAs, and 5.85 Å
for CdS.

The basis set size for the response functions and W was
chosen to include all plane waves up to an energy cutoff of
250 eV. At 250 eV the diagonal components of the dielectric
function is already converged to one, and the results are in-
sensitive to an increase of the cutoff. The exchange integrals
were calculated using much larger basis sets, with plane-
wave cutoffs exceeding those used for the wave functions.

B. GW quasiparticle energies of Si

To test our implementation, we carried out GW calcula-
tions for Si, since the results for this material can be com-

pared to an abundant amount of data provided by previous
GW calculations and experimental results. Calculations re-
veal that the eigenvalues of the LDA calculations change
only by 0.02 eV from �4�4�4� to �6�6�6� k points. The
GW eigenvalues show satisfactory k-point convergence as
well �the change of the gap is only 0.03 eV�, with the excep-
tion of the bottom of the valence band ��1v and L2v�, which
differs by more than 0.2 eV between the two k-point sets.
Using �8�8�8� k points the conduction bands change by at
most 5 meV and the bottom of the valence band by 20 meV.
Hence our reported values are essentially k-point converged.
We note that the head and wings of the dielectric matrix are
calculated exactly, which is important for fast convergence.
Calculations also show that the treatment of core-valence
interactions using DFT or HF does not alter the eigenvalues
significantly, indicating that the core-valence interaction is
small for Si �see below�.

The results for various PAW potentials and the norm con-
serving Troullier-Martins pseudopotential41 are shown in
Table II. The LDA eigenenergies are identical for all three
potentials to within typically 0.02 eV, except for the �2c and
X3c point, for which the TM potential underestimates the
energies by 0.1 and 0.05 eV, respectively. The indirect GW
gap �25v−X1c calculated using the norm-conserving valence-
only TM potential is close to values reported before for other
G0W0 pseudopotential calculations �1.31 eV for 186
bands�,10 but the gap and other eigenvalues differ by up to
0.2 eV from the PAW calculations. Two reasons are respon-
sible for the observed discrepancies. First, in the TM pseudo-
potential calculation, we need to treat the core-valence inter-
action on the LDA level. As Table II indicates, this accounts
for roughly half of the discrepancy �difference between,
GW-Si-LDA and GW-Si-HF�. We note that our TM potential
incorporates nonlinear core corrections as suggested by
Louie.40 Omitting these corrections increases the gap even

TABLE II. Quasiparticle energies for Si referenced to �25v using LDA and G0W0 and various potentials. The core-valence �c-val�
interaction is treated either on the LDA �left� or HF level �right�. The FP-LMTO results of Kotani et al. �Refs. 16 and 44� and the AE-PP
calculations of Tiago et al. �Ref. 6� and experimental values are also shown. Details for potentials are given in Table I.

Method
Potential
c-val

LDA
Si

LDA

LDA
Si-TM

LDA

GW
Si-TM

LDA

GW
Si

LDA

GW
Si

HF

GW
Si-2p

HF

GW �Refs. 16 and 44�
FP-LMTO

HF

GW �Ref. 42�
FLAPW

GW �Ref. 6�
AE-PP

Expt.
�Ref. 34�

�1v −11.97 −11.97 −11.62 −11.75 −11.85 −11.87 −12.5±0.6

�25v 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

�15c 2.52 2.53 3.23 3.17 3.17 3.16 3.12 3.20 3.24 3.40

�2c 3.20 3.10 3.82 4.04 4.01 3.97 4.23

X1v −7.82 −7.81 −7.60 −7.68 −7.76 −7.77

X4v −2.86 −2.85 −2.83 −2.88 −2.91 −2.90 −2.92

X1c 0.60 0.62 1.33 1.19 1.15 1.14 0.98 1.19 1.18 1.25

X3c 9.98 9.94 10.44 10.54 10.64 10.61

L2v −9.63 −9.62 −9.37 −9.46 −9.55 −9.59 −9.3±0.4

L1v −7.00 −6.99 −6.78 −6.87 −6.94 −6.94 −6.7±0.2

L3v −1.20 −1.20 −1.20 −1.22 −1.23 −1.23 −1.23 −1.2±0.2

L1c 1.43 1.41 2.10 2.10 2.07 2.04 2.12 2.4±0.15

L3c 3.29 3.31 4.05 3.93 3.93 3.92
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further to 1.41 eV, and places the bottom of the valence band
at −11.57 eV.

The remaining discrepancies were difficult to disentangle,
but generating PAW potentials with only a single projector
per angular quantum number and norm-conserving potentials
with two projectors, we concluded, that one-half of the re-
maining discrepancy is related to the inaccurate description
of the scattering properties at high energies �typically
0.05 meV�, and the remainder is related to the inaccurate
representation of the valence wave functions close to the
core. These effects are, however, to some extent intercon-
nected.

We conclude that valence only pseudopotentials typically
incur errors of the order of 0.1–0.2 eV even for a material
with a fairly small core-valence interaction. For norm-
conserving pseudopotential, it is possible to improve the
scattering properties and the description of the charge distri-
bution by carefully adjusting the core radii and unfreezing
shallow core states �e.g., 2s and 2p�. By doing this Tiago
et al. obtained a QP energy of 1.18 eV at X1c using a norm-
conserving pseudopotential, in good agreement with the
present results.6 It is likely that such a small core potential
yields an excellent description of high lying conduction band
states and of the charge distribution close to the core. It
remains to be demonstrated that the core states �2s and 2p�
influence the results only little in the PAW case, in particular,
in view of a recent work claiming that the results are sensi-
tive to whether the 2s and 2p electrons are treated as core or
valence states.35 In order to test this, we have moved the 2p
shell into the valence and simultaneously decreased the core
radius to 1.6 a.u. As Table II shows, this has a negligible
influence on the gap �decreases by 0.015 eV�, and a slight
downshift of the lower valence band edge ��1v� by 0.02 eV
is observed. By any practical means such a change is small
considering the errors incurred by the G0W0 approximation
itself.

We believe that the present values are essentially con-
verged with respect to the number of k points and with re-
spect to other technical parameters �frequency grid, complex
shift�. There is some room for further improvement, by in-
creasing the number of conduction bands in the GW calcu-
lation, and we indeed obtain a value of 1.173 �2p in core�
and 1.162 eV �2p in valence� at X1c using 250 bands and 6
�6�6 k points. This value is still somewhat smaller than
experiment.34 Our present values are in between previous
“all-electron” pseudopotential values by Tiago et al. and
other all-electron calculations �X1c: FLAPW 1.14 eV,23

FLAPW 1.00 eV,35 FP-LMTO 0.98 eV,44 PAW 1.01 eV
�Ref. 21��. The reason for the large deviations between the
all-electron calculations are yet unknown, but Friedrich et al.
has recently pointed out that the linearized basis sets used in
the FLAPW and FP-LMTO method are not sufficiently large
to allow an accurate treatment of high lying conduction band
states.42 They obtained a value of 1.19 eV �2p in core� and
1.17 �2p in valence� using 6�6�6 k points, 250 bands and
augmenting the usual FLAPW basis set with higher energy
derivatives of the one-center wave functions �local orbitals�.
In their case k-point converges was slightly slower, because
they calculate the head of the matrix using finite differences,
and their k-point converged values are reported to be 0.02 eV

smaller than those using 6�6�6 k points �1.17 2p in core,
and 1.15 2p in valence�. The k-point converged values are
hence identical to our values.

C. GW quasiparticle energies of GaAs and CdS

The second important test case is GaAs. Here we want to
demonstrate that a treatment of the core valence interaction
on the Hartree-Fock level is highly desirable and allows to
keep most electrons in the core.

The LDA and quasiparticle eigenvalues of GaAs are pre-
sented in Table III. In distinction to Si, even the LDA eigen-
values of GaAs are sensitive to how many electrons are
treated as valence electrons. The LDA gap, calculated treat-
ing only the three outermost electrons of Ga as valence
�0.39 eV� is very close to most previous pseudopotential cal-
culations �e.g., 0.40 eV�.33 If the 3d electrons are treated as
valence electrons, the gap shrinks by 0.1 eV and we obtain
an LDA gap of 0.31 eV. Moving the 3p electrons into the
valence as well has little influence on the gap �0.32 eV�. We
have found the same gap using the APW+ lo method, as
implemented in the WIEN2K program,39 in agreement with
some other previous FP-LMTO calculations.16

We now concentrate on the GW gaps, when the core-
valence interaction is evaluated on the HF level �right-hand
side of Table III�. As for DFT/LDA calculations, the funda-
mental gap �15c is slightly larger, if the Ga 3d shell is treated
as a core shell; unfreezing the shell yields a reduction by
0.12 eV. If the 3p shell is treated as valence as well, no
further change is observed for the valence electrons, whereas
the 3d level shifts upwards. We explain this by a screening of
the exchange interaction between the 3p and 3d electrons: if
the 3p electrons are placed in the core, the bare exchange
interaction between the 3p and 3d shell is implicitly used
�Hartree-Fock�, whereas, when the 3p electrons are treated
as valence electrons, the interaction can be screened by the
other valence electrons, causing an upshift of the 3d orbitals.
This upshift, however, has no effect on the valence electrons,
and we also note that treating the 3s shell as valence caused
no further change of the position of the 3d states or the band
gap.

In the case of GaAs we observe excellent agreement with
AE full-potential calculations. The fundamental gap is
slightly smaller in our case, and the gap at the X point is
somewhat larger. Similar tests as presented here—successive
un-freezing of lower core shells—have also been performed
by Kotani et al.16 They found similar trends, but their results
were slightly more sensitive to the number of electrons
treated as core electrons. We initially found a similar “scat-
ter,” and only when we carefully inspected the logarithmic
energy derivatives at high energies �6 Ry above the vacuum
level of the atom� and constructed all potentials to have es-
sentially identical high energy scattering properties, consis-
tent results were obtained. We therefore believe that their
small deviations are related to differences in the representa-
tion of high lying conduction band states, which are difficult
to treat in any linear method.42

We now turn to the results obtained, when treating the
core-valence interaction on the LDA level �left-hand part of
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Table III�. When the 3d electrons are treated as core, the
results are improved with respect to LDA, but the band gaps
still tend to be underestimated. Un-freezing the 3d shell only,
does help but results are still not identical to the previous
calculations, and even if the 3p shell is treated as valence,
results deviate from the AE GW calculations. Only if the 3s
shell is unfrozen as well, the values for the core-valence HF
treatment are almost recovered ��15c 1.28 eV, X1c 1.79 eV,
L1c 1.64 eV�. These values are also close to other pseudopo-
tential calculations in which the Ga 3d, 3p, and 3s shells
were treated as valence �Ref. 6, �15c 1.38 eV, X1c 1.83 eV,
L1c 1.65 eV�. It is however also clear that such calculations
are much too time consuming for routine type calculations
even in the PAW case, and a more robust and computation-
ally cheap approach is the evaluation of the core-valence
interaction on the HF level. This yields converged results, if
the 3d shell is treated as valence, but even if the 3d shell is
kept in the core, satisfactory results are obtained.

For CdS we performed similar tests as for GaAs, but here
we only report on the results for the core-valence interaction
treated on the HF level �Table IV�. The important difference
between GaAs and CdS is that the 4d shell is located inside
the valence band for CdS. We therefore expect that a precise
treatment of the 4d shell is more important in CdS than in
GaAs. Three potentials were constructed unfreezing the 4d,
4p4d, and 4s4p4d electrons, respectively. Simultaneously
the core radius was progressively decreased. We first note
that the final two potentials Cd-4pd and Cd-4spd yield iden-
tical results. Decreasing the core radius to 1.6 a.u. �Cd
-4spd case� had no noticeable effect, but it illustrates that our
results are robust with respect to the chosen core radii. With
the 4p states in the valence the Cd 4d states are less strongly
bound �−8.19 eV compared to −8.35 eV�. As for GaAs, the d
electron levels shift upwards, if the 4p electrons are treated

as valence. We again explain this by a screening of the core-
core exchange interaction by valence electrons. Opposed to
GaAs, the precise position of the d band also influences the
band gap, which is slightly smaller for the final two poten-
tials.

For Cd our results are not in good agreement with previ-
ous pseudopotential calculations �we are not aware of AE
values�.25 But given the robustness of our results we tend to
believe that the results of Fleszar et al. were impaired by
either their local basis sets or by an inaccurate description of
the scattering properties at high energies �details about the
pseudopotential construction were not given by the authors�.

V. CONCLUSIONS

This paper provides details on the implementation of the
GW methodology in the PAW framework. The advantages of
the PAW method over the pseudopotential approach are
threefold: first, it allows to treat d and f electrons with rela-
tively modest effort. Second, it permits to represent the va-
lence wave functions accurately without any shape approxi-
mation, and finally it allows to reevaluate the core-valence
interaction on the Hartree-Fock level. In the present imple-
mentation, the plane-wave terms �pseudo-wave-functions�
are treated exactly, whereas a simple approximation is used
for the one-center terms: within the PAW spheres, the GW
Hamiltonian is approximated by the Hartree-Fock Hamil-
tonian. This approximation is expected to be reliable since
differences between the pseudo-wave-functions and AE
wave-functions are only present for large reciprocal lattice
vectors G, and ��G ,G� ,�� approaches ��G−G�� very rap-
idly. In practice, the incurred errors were not noticeable and
are most likely smaller than 0.02 eV.

TABLE III. Quasiparticle energies for GaAs referenced to �25v using LDA and G0W0 and various potentials. The core-valence �c-val�
interaction is treated either on the HF or LDA level. The FP-LMTO calculations of Kotani et al. �Ref. 16� and the AE-PP calculations of
Tiago et al. �Ref. 6� and experimental values are also shown.

val.
Ga pot
c-val

LDA
Ga-3d

LDA

GW
Ga

LDA

GW
Ga-3d

LDA

GW
Ga-3pd

LDA

GW
Ga
HF

GW
Ga-3d

HF

GW
Ga-3pd

HF

GW �Ref. 16�
FP-LMTO

HF

GW �Ref. 6�
AE-PP

Expt.
�Refs. 36

and 37�

�12d −14.94 −13.61 −16.57 −18.85 −18.34 −18.1 −18.8

�1v −12.79 −12.71 −12.76 −12.64 −12.58 −12.64 −12.63

�25v 0.00 0.00 0.00 0.00 0.00 0.00 0.00

�15c 0.31 0.93 1.42 1.46 1.38 1.26 1.28 1.30 1.38 1.52

�2c 3.65 4.19 4.40 4.35 4.29 4.19 4.20 4.31

X1v −10.28 −10.31 −10.26 −10.28 −10.20 −10.26 −10.23

X4v −2.72 −2.81 −2.83 −2.77 −2.73 −2.77 −2.76

X1c 1.33 1.76 1.78 1.79 1.76 1.72 1.71 1.65 1.83 1.98

X3c 1.54 2.01 2.23 2.25 2.06 2.02 2.02 1.99

L2v −11.02 −11.07 −10.98 −11.00 −10.95 −11.04 −11.01

L1v −6.72 −6.77 −6.58 −6.51 −6.62 −6.67 −6.66

L3v −1.16 −1.23 −1.20 −1.18 −1.16 −1.19 −1.18

L1c 0.84 1.38 1.74 1.76 1.63 1.53 1.55 1.55 1.65 1.82

L3c 4.57 5.11 5.21 5.18 5.08 5.04 5.04
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Similar to the method presented earlier by Miyake and
Aryasetiawan11 we achieve very rapid fully frequency depen-
dent GW calculations using a spectral representation of the
polarizability and Kramers-Kronig transformations to obtain
the real part of the polarizability. This decreases the compu-
tational requirement to that for the static case. Moreover, we
have extended this method to QP energies, allowing the
evaluation of QP shifts with a computational effort that
hardly differs from GW calculations invoking the plasmon
pole approximation.

In Table V we summarize the computational time required
to perform single shot G0W0 calculations for the materials
considered in the present work. The timings include the cal-
culation of the QP shifts at all k points for twice as many
electrons as treated as valence. These timings can be further
improved, without noticeable changes of the QP energies, by
decreasing the cutoffs for the response functions, using
smaller fast Fourier transformation grids or by decreasing the
number of frequency points �for the grids used in the present
work, the Hilbert transforms and inversions of the dielectric
matrices require already 30%–50% of the compute time�.
After optimizing the computational parameters in this man-
ner for Si, we were able to obtain values within 0.01 eV of
the reported ones in only 900 seconds �100 frequency points,

150 eV cutoff for response function�. Furthermore, using 4
�4�4 k points and 100 bands, the calculation takes only a
very affordable 100 seconds and errors for the top of the
valence and bottom of the conduction band remain below
0.02 eV. Using a similar setup, calculations for a 64 atom Si
supercell are possible in less than one day on 4 Opteron
nodes, which opens the possibility to perform systematic
studies of impurity levels and band offsets in real materials.

We have presented QP shifts for three materials, Si, GaAs,
and CdS. In order to obtain converged G0W0 results, high
lying core shells were successively unfrozen until the results
became stable. This gives confidence that we have been able
to calculate the true “converged” G0W0 limit. In all cases, we
found convergence to be most rapid, if the core-valence in-
teraction was treated on the HF level. For Si, it is sufficient
to treat the 3s and 3p shell as valence, whereas for GaAs, the
Ga 3d electrons must be included in the valence, and finally
for CdS even the 4p electrons need to be treated as valence
electrons.

Our final calculated G0W0 QP energies are, with respect to
the top of the valence band, 1.16 eV at X1c for Si, 1.26 eV at
�15c, 1.51 eV at L1c, and 1.72 eV at X1c for GaAs, and 1.81
at �1c for CdS. Overall these values are in between previous
all-electron pseudopotential calculations of Tiago et al.6 and
the FP-LMTO calculations of Kotani et al.16 The Si QP gap
X1c, however, stands out, since our present values are clearly
larger than those obtained by the FP-LMTO method
�0.98 eV�.44 In this particular case, the present value is sup-
ported by recent FLAPW GW calculations of Friedrich, who
augmented the usual FLAPW basis sets by higher energy
derivatives of the one-center wave functions.42 It is also clear
that the present values are systematically smaller than the
experimental gaps, reinforcing the argument that a treatment
beyond G0W0 is required to obtain very accurate QP ener-
gies.

TABLE IV. Quasiparticle energies for CdS referenced to �15v using LDA and G0W0 and various potentials. The core-valence interaction
is calculated on HF level only. For comparison, the pseudopotential values of Fleszar et al. �Ref. 25� are provided.

Valence
LDA GW

Cd-4d
GW

Cd-4dp
GW

Cd-4spd
GW �Ref. 25�

Cd-4spd
Expt.

�Ref. 38�

�1v −12.29 −12.06 −12.10 −12.08 −11.84

�15d −7.74 −8.35 −8.19 −8.18 −8.29 −9.20

�12d −7.28 −7.99 −7.79 −7.79 −7.88

�15v 0.00 0.00 0.00 0.00 0.00

�1c 0.87 1.92 1.82 1.81 2.13 2.48

X1v −11.73 −11.64 −11.65 −11.65 −11.37

X3v −4.01 −3.91 −3.95 −3.96 −3.94

X5v −1.90 −1.92 −1.93 −1.94 −1.92

X1c 3.32 4.41 4.37 4.37 4.54

L1v −11.86 −11.74 −11.75 −11.74 −11.48

L1v −4.46 −4.32 −4.37 −4.38 −4.37

L3v −0.76 −0.79 −0.79 −0.80 −0.78

L1c 2.76 4.00 3.91 3.89 4.13

TABLE V. Computational time required to calculate QP shifts
using 160 bands and 6�6�6 k points �16 k points in IRZ� on a
dual processor Opteron 250 �in seconds�. Timings are comparable
on a single CPU 3.4 GHz P4. For Ga-3d and Cd-4d only the 4d
shell has been treated as valence, whereas for Cd-4pd the 4p shell
has been treated as valence as well.

Si 3500 s

Ga-3d As 8700 s

Cd-4d S 10 600 s

Cd-4pd S 19 000 s
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APPENDIX A: NUMERICAL INTEGRATION

To perform the numerical Hilbert transform of the polar-
izability �Eq. �18�� we evaluate the following frequency de-
pendent weights:

tji = t�� j,�i� = �
0

�

d���i����	 1

� j − �� − i�
−

1

� j + �� + i�
� ,

�A1�

where we introduce triangular shaped functions or finite el-
ements �i����, centered at frequency �i, as

�i���� =�
�� − �i−1

�i − �i−1
for �i−1 � �� � �i,

�i+1 − ��

�i+1 − �i
for �i � �� � �i+1,

0 elsewhere.
�

Here �� is a continuous variable, whereas �i are discrete grid
points. The integrals �A1� can be performed analytically. Hil-
bert transforms such as the one in Eq. �18� can then be per-
formed by a simple summation

	q
0�G,G�,� j� = �

i

tji	q
S�G,G�,�i� . �A2�

The summation can be done using BLAS3 routines, achieving
peak performance on any modern computer platform. It
should be noted, that slightly different frequency-dependent
weights �Eq. �A1�� must be used for the Hilbert transform of
the self-energy �Eq. �10��.

APPENDIX B: FREQUENCY GRID

The discrete frequency grid is chosen recognizing the
character of the integrated function. It is prudent to choose a
denser grid in the interval where the function changes rapidly

and a coarser grid where the function is relatively mono-
tonic. In our case, the integrated function behaving roughly
like

F��� 
1

�2 − �p
2 ± i�

, �B1�

with poles at �p. Integrals of the general form

I =� F���d� =� F���
g���

g���d� �B2�

are most efficiently evaluated by introducing a weighting
function g��� and performing a variable substitution d�
=g���d�. We have chosen the following weighting function,
which observes the correct asymptotic behavior and is free of
a singularity in the interval �0,��:

g��� =
1 + ��/�m�2

1 + ��/�m�4 . �B3�

The function is one at �=0, increases slightly, falls back to
one at �=�m, and finally decays quadratically. The fre-
quency �m is adjusted to be at the outermost node of the
head of the frequency-dependent microscopic dielectric func-
tion or at the position of the bottom of the conduction band
with respect to the bottom of the valence band �whichever
value is larger�. An equally spaced mesh on � maps onto a
nonlinear mesh in �, where the following relationship is ob-
served:

�i = G−1��i� with G���� = �
0

��
g���d� . �B4�

The integral �B2� can then be numerically evaluated as

I =� F�G−1����
g�G−1����

d� = �
i

wi
F�G−1��i��
g�G−1��i��

, �B5�

where wi are weights chosen according to a standard integra-
tion scheme �trapezoidal, Simpson, etc.�. At present we how-
ever only choose a nonequally spaced grid according to Eq.
�B4�, and then integrate using the finite element basis set
�A1� and �A2�. We expect that a variable substitution in �A1�
would give more accurate results for coarser grids, but this
approach has not yet been implemented.
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